

Management of Feature Interactions with Transactional Regions

Thomas Cottenier

UniqueSoft, LLC
thomas.cottenier@uniquesoft.com

Aswin van den Berg

UniqueSoft, LLC
aswin.vandenberg@uniquesoft.com

Thomas Weigert

Missouri University of S&T
weigert@mst.edu

Abstract

This paper presents a modeling language to modularize the
features of a system using orthogonal regions and to man-
age the interactions between these features. Orthogonal
regions are a language construct to structure a state ma-
chine into a set of semi-independent behaviors. We intro-
duce two concepts to manage the interactions between re-
gions. First, we present a notion of interface between re-
gions which captures the essence of their interactions.
Second, we introduce a transactional composition operator
to synchronize the regions and check the interaction for
non-determinism and termination. The approach is eva-
luated by comparing a monolithic legacy implementation of
a telecommunication component to two refactored imple-
mentations. Our results show that transactional region
composition can achieves independence between the im-
plementations of the features of the system and that it im-
proves the cohesion of the regions, compared to classic
regions.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features –
classes and objects, modules, packages.

General Terms Design, Languages

Keywords feature interaction, statecharts, modularity

1. Introduction

Systems that are decomposed into features take the form S
= F1 + F2 + F3 where each Fi is a feature module and +
denotes a feature composition operation. Structuring a sys-
tem by feature requires implementing each feature into a
separate module. Ideally, this module implements a cohe-
sive piece of functionality that can be understood, imple-
mented and tested independently of the other features so
that different development teams can focus on different
features of the system. Isolating the implementation of the

different features also provides the flexibility of delivering
different variants of a system by assembling different com-
binations of feature modules. However, this assembly re-
quires a thorough understanding of the interactions between
features. A feature interaction occurs when one feature
modifies the way another feature contributes to the overall
behavior of the system. The feature interaction problem is
known to be a difficult problem of general importance [1].
The approach presented in this paper is most directly appli-
cable to distributed systems where components interact
asynchronously. We believe however that it is relevant to
all systems that need to be decomposed into a set of semi-
independent features for modularity or flexibility purposes.

Our goal is to allow a feature of a system to be unders-
tood and implemented independently of other features. In
this paper, we present a modeling language that supports
the modularization of features using orthogonal regions.
Orthogonal regions are a language construct to structure
state diagrams into a set of semi-independent behaviors [2].
Orthogonal regions have been widely adopted in state ma-
chine based formalisms such as the UML. When system
features are modularized using regions, the feature interac-
tions take the form of interactions between regions. These
region interactions need to be understood and managed to
avoid conflicts and inconsistencies. In most cases, synchro-
nization entities such as additional states and transitions
have to be added to the regions to coordinate their execu-
tion.

When the number of regions in the system grows, the in-
teractions between regions can become very hard to main-
tain. Our language therefore introduces a concept of inter-
face between regions. Such an interface concisely captures
the essence of the interaction and avoids direct dependen-
cies between regions that implement different features.

Nevertheless, the coordination of the regions still re-
quires synchronization. The core behavior of each region
becomes tangled with synchronization behavior. The intro-
duction of states whose purpose is to coordinate with the
interface region is a source of errors and can easily lead to
deadlocks. In order to address these issues, our modeling
language introduces a transactional composition operator
that simplifies the synchronization of regions and whose
semantics detects deadlocks.

We evaluate interface regions and transactional compo-
sition by comparing size, coupling and diffusion metrics for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright 2012 ACM 978-1-4503-1092-5/12/03...$10.00.

119

three versions of an industrial telecommunication compo-
nent. The first version was developed as a monolithic state
machine by a third party. The second and third versions
were obtained by refactoring the monolithic version for
maintenance purposes. The second version uses regions to
modularize the features of the system. The third version
uses interfaces between regions and transactional composi-
tion semantics. Our results show that interface regions and
transactional composition improve the quality of the system
and support the management of the interactions between
the system features.

The paper is organized as follows. Section 2 introduces
the case study and describes the features of the system.
Section 3 introduces orthogonal regions and presents the
operational semantics of our modeling language. Section 4
discusses interactions between regions and interface re-
gions and details the syntax and semantics of the transac-
tional composition operator. Section 5 presents the experi-
ment setting. Section 6 discusses the metrics used to eva-
luate the system and presents the results of our study in
terms of size, coupling and complexity. Section 7 presents
related work and Section 8 concludes this paper.

2. Case Study: Cellular Network

2.1 Cellular Network

The component used in the case study is a base station
controller (BSC) of a cellular network. A mobile subscriber
(MS) communicates with the network through a set of base
stations (BTS), which are controlled by a BSC. Each base
station provides coverage over a cell of the network.
Adjacent base stations are grouped into paging groups.
Data packets flow from the network to a base station
through a series of routers (RTR) controlled by the BSC.
The subscriber context is maintained in a database (CTXT).
The communication between the network and the mobile
subscriber is secured by an authentication protocol (AK).
The BSC monitors network incoming data for a mobile
subscriber through a proxy router (PROXY). The behavior
of the system can be described according to two
complementary decompositions: a feature-based
decomposition and a scenario-based decomposition.

2.2 Base Station Controller Features

The behavior of the base station controller can be
decomposed into the following features:
1. Lease Management (LSM): tracks which component of

is currently handling the session with the MS.
2. Context Management (CX): handles the download and

upload of context information between BTS and BSC
3. Authentication Keys (AK): handles the synchronization

of the authentication keys between BTS and BSC.
4. Idle Mode Management (IMM): tracks when the sub-

scriber enters or exits idle mode.
5. Handover (HO): handles the transfer of a session from a

serving BTS to a target BTS.

6. Paging Control (PC): performs paging when inbound
traffic is detected for a MS in idle model.

7. Proxy Monitoring (PY): monitors traffic intended for a
MS when the MS is in idle mode

8. Router Control (RR): updates the routing tables when a
handover is performed. The system supports three types
of routing: nomadic (NRR), simple IP (SRR) and mo-
bile IP router control (MRR).

2.3 Base Station Controller Scenarios

The requirements of the system are described using basic
scenarios. Each scenario describes how the BSC responds
to an input. These scenarios are organized as follows:
1. Lease Request (LREQ): a BTS requests control over a

session or renews a session.
2. Lease Release Request (LREL): the subscriber enters

idle mode and the BTS releases control over the lease
3. Idle Mode Request (IMREQ): the MS requests to enter

idle mode.
4. Exit Idle Mode Request (XIM): the MS requests to exit

idle mode.
5. Power Down Indication (PDIND): the subscriber device

is powering down.
6. Context Download Request (CXDLD): a base station

requests a copy of the subscriber context.
7. Reentry Complete Indication (REIND): a handover was

successfully performed.
8. Location Update Request (LUREQ): a subscriber in idle

mode has moved to a new paging group.
9. MIP Request and Verify (MIPRV): sent by the MS to

maintain a mobile IP session with the network.

3. Orthogonal Regions

3.1 Introduction

We use orthogonal regions to modularize the implementa-
tion of the system features. Figure 1 presents a state ma-
chine composed of four regions, represented using the sta-
techart notation. Each region implements a different feature
of the cellular network component. The LSM region im-
plements the lease management feature. The IMM region
implements the idle mode management feature. The PY
region implements the proxy monitoring region and the
RTR region controls a router.

Each region is composed of a set of states and a set of
transitions between these states. Transitions are executed in
response to stimuli, which can be external events or internal
events. The trigger of a transition is expressed using a logi-
cal expression over the occurrence of events. The execution
of a transition corresponds to the execution of the actions of
the transition. These actions are defined using statements
and expressions. Transitions can also be guarded by logical
expressions over the state of other regions. The guard
[IMM::ACT] on the LSM transition triggered by the signal
LEASE_REQ indicates that the transition is only enabled
when the IMM region is in the state ACT.

120

In Figure 1, the transition from state BTS to state PC in
the LSM region is triggered when the external signal
LEASE_REL_REQ is received by the state machine and the
IMM region is in the IDLE state. The transition evaluates a
conditional expression c1 and executes the corresponding
decision branch. Depending on the conditional, the transi-
tion either generates the internal event LEASE_REL_LSM
(using the gen keyword) and steps into the PC state or it
steps back into the BTS state. The LEASE_REL_LSM inter-
nal event triggers the transition from ACT to LREL in the
RTR region if and only if the LEASE_REL_PY internal sig-
nal is generated during the same step of execution as indi-
cated using the conjunction in the trigger of the transition.

Figure 2 shows a state diagram composed of a single re-
gion that was obtained by weaving together the regions of
Figure 1. The states of the state machine of Figure 2 cor-
respond to the reachable combination of the states of the
regions. Such a combination is called a configuration. A
state machine that consists of multiple regions executes
according to steps between state configurations. A step cor-
responds to the execution of a set of enabled transitions
from different regions.

In the example of Figure 1, the external signal
LEASE_REL_REQ triggers a series of steps in the configu-
ration (BTS, IDLE, IDLE, ACT). The first step simulta-
neously executes the transition from BTS to PC in the LSM
region and the transition from IDLE to MON in the PY re-
gion. Depending on the evaluation of the conditionals, the
state machine steps into the configurations (BTS, IDLE,
MON, ACT), (PC, IDLE, IDLE, ACT), (PC, IDLE, MON,
ACT) or back into (BTS, IDLE, IDLE, ACT). In case both
events LEASE_REL_LSM and LEASE_REL_PY.are gener-
ated in the first step, a second step is triggered, which con-
sist of the execution of the ACT to LREL transition in the
RTR region. The state machine then reaches a quiescent
state, where it has nothing left to executed The series of
steps that are executed in response to the external event
LEASE_REL_REQ until the state machine reaches a quies-
cent state is called a macro-step. The corresponding confi-
gurations are called macro-configurations. In the woven
state machine of Figure 2, only the macro-configurations
are represented as states.

The semantics of step execution are further detailed in
the next section.

Figure 1. State machine obtained by flattening the 4 regions into a single region.

Figure 2. A state machine composed of 4 regions that implement different features of a telecom component.

121

3.2 Operational Semantics or Regions

The semantics used in this paper are close to the semantics
of classic statecharts as implemented in the Statemate tool
[3]. Our approach follows the following guiding principles:
1. Determinism: Our semantics do not allow non-

determinism to avoid differences of behavior between
simulation and execution of the generated code on the
target platform.

2. No shared variables: Our semantics do not allow the
sharing of variables between regions. The sharing of va-
riables between regions violates encapsulation and is a
cause of non-determinism. Transitions that access the
same variable in the same step can cause race conditions.

3. Causality: Internal events are only sensed in the step
that follows the step in which they are generated. They
do not persist after the following step.

4. Asynchrony: External signals received by the state ma-
chine are queued in a buffer. The state machine fetches a
signal from the queue and executes until it reaches a
quiescent state, after which it fetches the next signal
from the queue. Timeout events are treated as external
events and put in the same queue as external signals.
The semantics of our language make it more appropriate

for distributed systems such as telecom systems rather than
embedded real-time systems. However, the concepts pre-
sented in this paper are applicable to other statechart va-
riants or other concurrent programming formalisms. To
simplify this discussion, we do not consider hierarchy, state
entry and exit actions or history. We do not discuss static
reactions, spontaneous transitions or transition priorities.

Listing 1 defines the semantics of the state machine ex-
ecution in Lisp pseudo-code. It is assumed that a data struc-
ture sm containing the topology of the state machine is
available. A state machine executes steps until it terminates.
Each step takes as input a status, which consists of a confi-
guration and a set of events and produces a new status. The
execution of a step consists of computing the set of enabled
transitions for each region based on the current status, fol-
lowed by the execution of the enabled transitions. If the set
of events is empty, the state machine enters a quiescent
state after which it fetches a new event from the queue.

The set of enabled transitions is computed by matching
the trigger and the guards of each outgoing transition with
respect to the current configuration and set of events. The
set of triggers and guards are first normalized in the dis-
junctive normal form so that each element in the list is a
conjunct of guards or triggers. The matching functions eva-
luate whether the set of events matches the expression of
the trigger and whether the configuration matches the ex-
pression of the guards. The guard and trigger logical ex-
pression support conjunction, disjunction and negation.
Conjunction of events means that all events are generated
during the same step, as events only persist for a single step.

The execution of a step consists of executing all the
enabled transitions. Each transition execution updates the

status of the step by adding the events generated during the
transition execution to the set of events and by updating the
configuration based on the next state of the transition. The
configuration is updated by replacing the region’s previous
state by the new state.

(defstruct status
 configuration events termination)

(defun execute-statemachine (sm)
 (let (status)
 (while (status.configuration != stop)
 (set status (execute-step sm status)))))

(defun execute-step (sm status)
 (when (status.events = ())
 (let ((event (pop-event-from-queue sm)))
 (when event
 (push event status.events))))
 (if (status.events != ())
 (let ((trs (get-enabled-transitions sm
 status)))
 (set status.events ())
 (set status (execute-transitions sm trs
 status)))
 else
 status))

(defun execute-transitions (sm trs status)
 (let ((ustatus status))
 (dolist (tr trs)
 (set ustatus (execute-transition sm tr
 ustatus)))
 (set status ustatus)))

(defun execute-transition (tr sm status)
 (set tr (bind-parameters-to-actuals tr status))
 (let (a)
 (while (set a (get-next-action a tr))
 (when (is-gen-action a)
 (push a.event status.events))
 (when (is-nextstate-action a)
 (set status.configuration
 (update-configuration sm
 status.configuration (get-nextstate a)))
 (when (is-stop-action a)
 (set status.configuration stop))
 (execute a)))

 status)

Listing 1. Statemachine execution semantics

(defun get-enabled-transitions (sm status)
 (let (enabled-transitions)
 (dolist (r sm.regions)
 (set enabled-transitions
 (append enabled-transitions
 (get-enabled-transition r sm status)))))

(defun get-enabled-transition (r sm status)
 (let (enabled-transitions)
 (dolist (tr (outgoing-transitions r
 status.configuration))
 (dolist (g tr.guards)
 (when (match-guard g status.configuration)
 (dolist trig in tr.triggers
 (when (match-trigger (trig, status.events))
 (push tr enabled-transitions))))))
 enabled-transitions))

Listing 2. Computation of the set of enabled transitions

122

3.3 Checker Semantics

The state machine checker computes the set of macro-
configurations of the system and detects problems with the
region composition such as deadlocks. The checker algo-
rithm can also be used to statically compose the regions
into a single region by weaving together the actions of the
region transitions, as illustrated in Figure 2.

The checker algorithm of Listing 3 performs a depth-
first traversal on the reachable configurations by iterating
over all possible external inputs and paths.

(defvar *macro-configs* ())

(defun check-statemachine (sm)
 (let (status)
 (traverse-statemachine sm status)))

(defun traverse-statemachine (sm status)
 (if (status.events = ())
 (when (not (find status.configuration
 macro-configs))
 (push status.configuration *macro-configs*)
 (dolist (s *signals*)
 (push s status.events)
 (compute-step sm status))
 else
 (compute-step sm status)))

(defun compute-step (sm status)
 (let (new-statuses)
 (dolist (r sm.regions)
 (let ((tr (get-enabled-transition r sm
 status)))
 (when tr
 (set new-statuses (append new-statuses
 (collect-reachable-statuses r
 (list status) tr))))))
 (dolist (st new-statuses)
 (traverse-statemachine sm st))))

(defun collect-reachable-statuses (r statuses tr)
 (dolist (a tr.actions)
 (when (is-gen-action a)
 (let (event (get-signal a)
 (dolist (st statuses)
 (when (not st.termination)
 (push event st.events)))))
 (when (is-nextstate-action a)
 (dolist (st statuses)
 (when (not st.termination)
 (set st.configuration
 (update-configuration st.configuration
 (get-nextstate a)))
 (set st.termination t))))
 (when (is-stop-action a)
 (dolist (st statuses)
 (when (not st.termination)
 (set st.configuration stop)
 (set st.termination t))))
 (when (is-decision-action a)
 (let ((branches (get-decision-branches a))
 (continuation (get-continuation tr a))
 (dolist (br branches)
 (set br.actions (append br.actions
 continuation.actions))
 (set statuses (append statuses
 (collect-reachable-statuses r statuses br))))))

Listing 3. Checker traversal of the state machine

The checker algorithm is exponential with respect to the
number of paths and regions. In our experience, the expo-
nential complexity has not proven to be a problem as sys-
tems are usually composed of a small set of coarse-grained
regions. Hierarchy can also be used to reduce the number
of regions if needed.

During the state machine traversal, configurations for
which the set of internal events is empty are marked as ma-
cro-configuration. The algorithm then considers all possible
external inputs (stored in *signals*) to drive the traversal
further recursively. For each status, the algorithm collects
all the statuses that are reachable trough the next step.

If the new statuses correspond to transient configura-
tions, the next steps are computed. Otherwise, the configu-
ration is a macro-configuration and the algorithm performs
the next traversal. Conditional branches are expanded so
that the algorithm can cover all possible combinations of
target configurations and sets of generated events. In prac-
tice, the transitions are first normalized and caching is used
to avoid the exponential blow up due to branching. The
checker algorithm can detect the following situations:

1. Non-determinism exists in the system when the number
of enabled transitions is larger than one within a region:

 (when ((length enabled-transitions) > 1)
 (error “found non-determinism”))

2. A deadlock occurs when a macro-configuration does not
have enabled-transitions for any external signal:

 (dolist (mc *macro-configs*)
 (let ((trs ()))
 (dolist (s *signals)
 (let ((status (make-status mc s)))
 (set trs (append trs
 (get-enabled-transitions sm status)
 (when (trs = ())
 (error “found deadlock”)))

3. An internal event is generated in one step but not con-
sumed by a trigger. The event is lost. This can be de-
tected by adding the following code to compute-step:

 (let ((triggers ())
 (trs (get-enabled-transitions sm status)))
 (dolist (tr trs)
 (set triggers (append triggers tr.triggers)))
 (dolist (ev status.events)
 (when (not (find ev triggers))
 (warning “internal event ev is lost”))))

4. Managing Region Interactions

4.1 Region Interactions

The composition of Figure 1 generates macro-
configurations that are inconsistent with the requirements.
The configurations 6, 7 and 8 in Figure 2 violate the system
consistency invariants. In our case study, releasing the lease
consists of three tasks:
1. The lease management region checks if the request ori-

ginates from the BTS that is currently holding the lease.
If the request is valid, the region releases the lease to the
paging controller (state PC).

123

2. The proxy region is responsible for monitoring inbound
traffic when the lease is released. If the request succeeds,
the proxy region enters the monitoring state MON.

3. The router region needs to update the routing tables by
sending an ARP request. If the ARP is sent successfully,
the router region enters the LREL state.
Each of these tasks can be described and implemented

independently of the other tasks. However, when the re-
gions are composed with each other, the combinations of
the branches in the different regions lead to inconsistent
states. In configuration 6, the lease was released in the LSM
region, but the proxy component failed to start monitoring
the network. Inbound data will not trigger the paging pro-
cedure. In configuration 7, the proxy is monitoring the net-
work traffic for inbound traffic, but the lease release opera-
tion failed in the LSM region. Incoming traffic will unne-
cessarily trigger the paging procedure. In configuration 8,
the lease has been released and the proxy is monitoring the
network. However, the routing table was not updated, and
inbound traffic will not be received by the MS.

The composition requires synchronization to prevent in-
consistencies. Figure 3 shows a version of the system
where the region synchronization logic was modified to
avoid inconsistent configurations. Figure 4 presents the

resulting woven state machine which shows that the unde-
sirable configurations are not reachable anymore.

In the solution of Figure 3, an order of execution be-
tween the participating regions was selected. The lease
management region first determines whether it is able to
process the request. If so, it propagates the request to the
proxy region and enters a waiting state. The proxy region
evaluates its conditional expression. If successful, it propa-
gates the request to the router region and enters a waiting
state. Otherwise, it notifies the lease management region.
The router region sends back an acknowledgment if the
request is successful or a failure signal if it fails. If success-
ful, the LSM, PY and RTR regions will step into (PC, MON,
LREL). If unsuccessful, they will step back into (BTS, IDL,
ACT). The undesirable configurations are not reachable.
However, the solution is not satisfactory with respect to:
1. Information hiding. The data carried by the signals is

propagated from region to region. Each region has
access to the entire payload of the signal

2. Coupling. The synchronization signals tightly couple
the regions to each other. Adding a region to the inte-
ractions will require changes to the implementations of
the other participant regions.

3. Cohesion. A synchronization state was introduced in
two regions. These states do not correspond to logical
states of the feature implemented by the region. Logic
that was previously implemented in a single transition is
now split over three transitions.

4. Termination. The synchronization structure requires that
a LEASE_REL_OK or LEASE_REL_FAIL internal event
is always generated in one of the steps that follow the
regions entering a wait state or the system will enter a
partial deadlock (one region enters a deadlock, while the
others continue execution). It is the developer's respon-
sibility to detect and prevent these situations.

4.2 Interface Regions

We introduce a design pattern to address the information
hiding and coupling issues with the solution presented in
Figure 3. The pattern uses an interface region IF to mediate
between the interacting regions.

Figure 4. Flattened state machine generated from Figure 3

Figure 3. Interactions between the regions of a state machine

124

region IF {
 forstate S {
 [LSM::BTS && IMM::IDL
 && PY::IDL && RTR::ACT]
 input LEASE_REL_REQ(lr){
 gen LEASE_REL_LSM(lr.a);
 gen LEASE_REL_PY(lr.b);
 gen LEASE_REL_RTR(lr.c);
 nextstate Wait; } }
 forstate Wait {
 input LEASE_REL_COMMIT(){
 output LEASE_REL_RSP(OK);
 nextstate S; }
 input LEASE_REL_ABORT() {
 output LEASE_REL_RSP(ER);
 nextstate S; } } ... }

region LSM {
 forstate BTS {
 input LEASE_REL_LSM(a){
 if (c1) {
 gen LEASE_REL_LSM_OK();
 } else {
 gen LEASE_REL_LSM_FAIL();
 }
 nextstate Wait; } }
 forstate Wait {
 input LEASE_REL_COMMIT(){
 nextstate PC; }
 input LEASE_REL_ABORT() {
 nextstate BTS; } } .. }

region PY {
 forstate IDL {
 input LEASE_REL_PY(b){
 if (c2) {
 gen LEASE_REL_PY_OK();
 } else {
 gen LEASE_REL_PY_FAIL();
 }
 nextstate Wait; } }
 forstate Wait {
 input LEASE_REL_COMMIT(){
 nextstate MON; }
 input LEASE_REL_ABORT() {
 nextstate IDL; } } .. }

region RTR {
 forstate ACT {
 input LEASE_REL_RTR(c){
 if (c3) {
 gen LEASE_REL_RTR_OK();
 } else {
 gen LEASE_REL_RTR_FAIL();
 }
 nextstate Wait; } }
 forstate Wait {
 input LEASE_REL_COMMIT(){
 nextstate MON; }
 input LEASE_REL_ABORT() {
 nextstate IDL; } } .. }

gen LEASE_REL_COMMIT() when LEASE_REL_LSM_OK() && LEASE_REL_PY_OK() && LEASE_REL_RTR_OK();
gen LEASE_REL_ABORT() when LEASE_REL_LSM_FAIL() || LEASE_REL_PY_FAIL() || LEASE_REL_RTR_FAIL();

Listing 4. The lease release transition using an interface region

Listing 4 shows a textual representation of the lease
release transitions in the IF, LSM, PY and RTR regions. The
IF region interacts with the 3 other regions. However, The
LSM, PY and RTR regions do not interact directly with each
other. Listing 4 produces the same set of configurations as
the state machine of Figure 3.

The LSM, PY and RTR implementation regions follow
the same structure as the IF interface region. All regions
include a synchronization state Wait, which separates the
step that evaluates the conditionals from the step that ex-
ecutes the outcome of the transition. The interface region
propagates the request to all participating implementation
region, passing only the data that they need to proceed with
the execution. Next, the implementation regions execute
their decision step. The regions produce internal signals
that indicate the outcome of the local decision phase. Final-
ly, all regions execute the same global outcome.

The outcomes are defined using gen statements: if all
three OK events are generated in the same step, the COM-
MIT outcomes will be executed in each region. If one of the
FAIL events is generated, the ABORT outcome is executed.
Gen statements are implemented through textual substitu-
tion of the triggers corresponding to the left hand side of
the gen statement by the expression on its right hand side.

Listing 4 shows the general case where each regions
produces different types of events. It is however not re-
quired that each region contributes to the mapping function
of the gen statement or that they produce distinct types of
events. The solution has the following advantages:
1. Information hiding. The interface region only propa-

gates the parameters that are required by each region.
Regions do not have access to data they do not need.

2. Coupling. The implementation regions do not interact or
dependent on each other directly. All dependencies are
between the interface regions and the implementation
regions.
However, interface regions do not address the cohesion

and termination issues highlighted in Section 4.1.

4.3 Transactional Regions

The management of region interactions is complicated by
the termination issue. The function that maps local events
to the different possible outcomes of the interaction needs
to be deterministic and free of deadlocks. The set of out-
comes needs to be complete: one of the outcomes must
always be selected before the end of the macro-step. The
synchronization states should never be part of a macro-
configuration. This property cannot be checked automati-
cally as the checker has no way of distinguishing synchro-
nization states from other states. This constraint compli-
cates maintenance and refinement of the system. During
maintenance tasks, branches can be introduced in the re-
gions that mistakenly omit to trigger decision events.

We therefore introduce a language construct to distin-
guish between state and transitions that correspond to ma-
cro-steps and states and transitions whose primary purpose
is synchronization. Listing 5 shows how the IF and LSM
regions are synchronized using the transaction construct. A
transaction is a statement that has a name and a set of out-
comes. In the example of Listing 5, the transaction lrel
spans over the regions IF and LSM. The outcomes of the
transactions are captured by a set of transitions with com-
plementary triggers. The transaction can only complete in
two ways: LEASE_REL_COMMIT is generated or
LEASE_REL_ABORT is generated, based on the mapping
function of the transaction expressed using a gen statement.

region IF {
 forstate S {
 [LSM::BTS]
 input LEASE_REL_REQ(lr){
 gen LEASE_REL_LSM(lr.a);
 transaction lrel {
 input LEASE_REL_COMMIT{
 output LEASE_REL_RSP1;
 nextstate S; }
 input LEASE_REL_ABORT {
 output LEASE_REL_RSP2;
 nextstate S; } } ... }

region LSM {
 forstate BTS {
 input LEASE_REL_LSM(a){
 if (c1) {
 gen LEASE_REL_LSM_OK; }
 else {
 gen LEASE_REL_LSM_FAIL;}
 transaction lrel {
 input LEASE_REL_COMMIT{
 nextstate PC; }
 input LEASE_REL_ABORT {
 nextstate BTS; } }..}

gen LEASE_REL_COMMIT() when LEASE_REL_LSM_OK();
gen LEASE_REL_ABORT() when LEASE_REL_LSM_FAIL();

Listing 5. Transaction between IF and LSM

125

A transaction contains a set of outcomes. An outcome
has the same syntax as the input part of a forstate, except
that it cannot be guarded. Transactions with the same name
in different regions need to have the same set of triggers for
their outcomes. Transactions have the following properties:
1. Determinism. There should not exist a status for which

the number of enabled outcomes is larger than 1.
2. Termination. One of the outcomes of a transaction is

always executed before the completion of the macro-
step in which the transaction started.
Transactions are implemented by translating the transac-

tion statements into synchronization states, and by translat-
ing the outcomes into transitions. The algorithm to perform
the translation is as follows. In each region:
1. Move the declarations used in the outcomes but de-

clared in the context of the transition to the scope of the
region and rename the declarations and references.

2. Generate a new synchronization state based on the name
of the transaction, and annotate it as a generated syn-
chronization state.

3. Replace the transaction statement by a nextstate action
that steps into the synchronization state.

4. Generate a forstate for the synchronization state and add
the outcomes of the transaction as input parts of the
forstate.
This transformation is performed before running the

checker. As the transaction outcomes are implemented as
transitions, the checker automatically ensures that the out-
comes are deterministic. The termination property is en-
forced by running the following code after the execution of
the checker:
(dolist (mc *macro-configs*)
 (when (contains-synchronization-state mc)
 (error “synch state in macro-configuration”)))

The check enforces that a synchronization state is never
part of a macro-configuration. Its incoming transitions and
outgoing transitions are always executed in the same ma-
cro-step. The transactional composition construct has the
following advantages:
1. Cohesion. Actions that are executed during the same

macro-step are syntactically located in the same transi-
tion. The notation avoids the need to introduce states
whose purpose is to coordinate with other regions.

2. Termination. The semantics of transactions automatical-
ly detect partial deadlocks that would not be reported
otherwise.

5. Case Study: Implementation

We evaluate the transactional composition by comparing
three implementations of an industrial telecommunication
component using modularity metrics. The first version of
the system is a monolithic implementation. The second
version uses classic regions to encapsulate the features of
the system. The third version uses interface regions and
transactional region composition.

5.1 Monolithic Implementation

The monolithic implementation was performed by a third
party using a commercial modeling tool. The state machine
is composed of a single region of 3 states: Init, Idle, and
Active, corresponding to the idle mode feature. The states
of the other features are encoded using flags. The model is
structured according to the basic scenarios described in
Section 2.3. The modeling tool used did not support regions
or another mechanism to modularize features. The features
described in Section 2.2 are therefore not modularized.

A typical transition in the monolithic implementation is
represented in Listing 6. The actions corresponding to the
different features have been annotated with a color code
that corresponds to different features. The transition checks
and updates the state of the LSM feature using the itsLea-
seState flag at lines 3, 16 and 32. The state of the proxy
feature is encoded using the g_proxyEnabledFlag at lines
20, 24, 36, 41, 45, 48 and 53. The state of the router feature
is encoded using the g_simIpSs at line 9, the g_MipFlag at
line 11 and the flags passed to the sendFaARP function at
lines 14 and 30.

The transition has a complex control flow based on con-
ditional expression over the return values of operations and
flags that encode the state of the features. The implementa-
tions of the features are clearly tangled. It is hard to deter-
mine that the transition always sends a location update re-
sponse back to the BTS. The router feature is not modula-
rized and the three versions of the router feature are imple-
mented within the transition.

5.2 Region-Based Implementation

The region-based implementation implements the same
behavior as the monolithic implementation using regions. It
was obtained through successive refactoring of the mono-
lithic implementation. Each feature is implemented as a
separate region. The states of the features are encoded us-
ing symbolic states rather than flags. The interactions be-
tween the regions are managed as in Figure 3. For each
scenario that cuts across multiple regions, an order of ex-
ecution was selected between the regions. Each region at-
tempts to execute the request. If successful, it propagates
the request to the next region and enters a synchronization
state. Eventually, all regions handle the request successfully
or a failure signal is generated.

5.3 Transactional Implementation

The transaction-based implementation was obtained by
further refactoring of the region-based implementation. It
uses interface regions to decouple the regions from each
other and transactional composition to manage the syn-
chronization between regions. Listing 7 shows the transi-
tions of the interface, lease management, proxy and router
regions that interact to implement the lease release request.

126

1.forstate Idle {
2. input M_LSM_MSS_LEASE_RELEASE_REQ(hdr_in, lrel) {
3. if (itsLeaseState == BTS) {
4. if (Ignore23bitAndCompare(lrel.BSId, g_BSID)) {
5. switch (lrel.ReasonCode) {
6. case Lease_Hold_Timer_expiration : {
7. g_rc = sendProxyMonitorDataInd(lrel.SsIp);
8. if (g_rc == MOB_OK) {
9. switch (g_simIpSs) {
10. case false : {
11. if (g_MipFlag == MIP) {
12. g_rc = sendFaLLC(); }
13. else {
14. g_rc = sendFaARP(ARP_WAIT_ONE); }
15. if (g_rc == MOB_OK) {
16. itsLeaseState = PC;
17. if (! timeStampIsOld(lrel.TimeStamp)) {
18. g_timestamp = lrel.TimeStamp; }
19. reset (T_LEASE_DURATION());
20. g_proxyEnabledFlag = true;
21. sendLeaseReleaseResponse(g_MacAddr, OK); }
22. nextstate -;
23. else {
24. g_proxyEnabledFlag = false;
25. sendLeaseReleaseResponse(g_MacAddr, FAIL);
26. nextstate -; } }
27. case true : {
28. g_rc = checkVlanIdInUseAndRouterIp();
29. if (g_rc == MOB_OK) {
30. g_rc = sendFaARP(ARP_RSP_WAIT);
31. if (g_rc == MOB_OK) {
32. itsLeaseState = PC;
33. if (! timeStampIsOld(lrel.TimeStamp)) {
34. g_timestamp = lrel.TimeStamp; }
35. reset (T_LEASE_DURATION());
36. g_proxyEnabledFlag = true;
37. sendLeaseReleaseResponse(g_MacAddr, OK);
38. nextstate -; }
39. else {
40. sendLeaseReleaseResponse(lrel.MacAddress,FAIL);
41. sendProxyIdleModeRelease();
42. stop; } }
43. else {
44. sendLeaseReleaseResponse(lrel.MacAddress,FAIL);
45. sendProxyIdleModeRelease();
46. stop; } } }
47. else {
48. g_proxyEnabledFlag = false;
49. sendLeaseReleaseResponse(g_MacAddr, FAIL);
50. nextstate -; } }
51. case Idle_Mode_System_Timer_Expiration_at_BS : {
52. sendLeaseReleaseResponse(lrel.MacAddress,FAIL);
53. sendProxyIdleModeRelease();
54. stop; } }
55. else {
56. sendLeaseReleaseResponse(lrel.MacAddress, FAIL);
57. nextstate -; } }
58. else {
59. sendLeaseReleaseResponse(lrel.MacAddress, FAIL);
60. nextstate -; } } }

Listing 6. Lease Release - Monolithic implementation

First, the IF interface region defines the preconditions
for processing the lease release request based on the state of
the participant regions. Second, the request is propagated to
the participant regions. Finally, the interface region sends
back a response to the environment based on the outcome
of the transaction. The region IF declares the outcomes of
the transaction in terms of two types of exceptions:
LEASE_RELEASE_FAIL and LEASE_RELEASE_EXIT.
LEASE_RELEASE_PROCEED is executed when the
LEASE_RELEASE_OK signal is generated and none of the
exceptions are generated in the same step. The exception
outcomes cover the cases where one exception is generated

1. gen LEASE_RELEASE_PROCEED() when LEASE_RELEASE_OK()
2. && ! LEASE_RELEASE_FAIL && ! LEASE_RELEASE_EXIT;
3. region IF {
4. forstate Idle {
5. [LSM::BTS && PROXY::Idle && ROUTER::Idle]
6. input M_LSM_MSS_LEASE_RELEASE_REQ(hdr_in, lrel) {
7. gen LEASE_RELEASE_LSM (lrel.BSId, lrel.ReasonCode,..
8. gen LEASE_RELEASE_PROXY (lrel.SsIp);
9. gen LEASE_RELEASE_ROUTER ();
10. transaction lrelease {
11. input LEASE_RELEASE_PROCEED() {
12. sendLeaseReleaseResponse(lrel.MacAddress, OK);
13. nextstate Idle; }
14. input LEASE_RELEASE_FAIL()&& !LEASE_RELEASE_EXIT {
15. sendLeaseReleaseResponse(lrel.MacAddress, FAIL);
16. nextstate Idle; }
17. input LEASE_RELEASE_EXIT() {
18. sendLeaseReleaseResponse(lrel.MacAddress, FAIL);
19. nextstate Idle; } }
20. [! (LSM::BTS && PROXY::Idle && ROUTER::Idle)]
21. input M_LSM_MSS_LEASE_RELEASE_REQ(hdr_in, lrel) {
22. sendLeaseReleaseResponse(lrel.MacAddress, FAIL);
23. nextstate Idle; } } } }
24.region LSM {
25. forstate BTS {
26. input LEASE_RELEASE_LSM(BSId, ReasonCode,TimeStamp){
27. if (Ignore23bitAndCompare(BSId, g_BSID)) {
28 switch (lrel.ReasonCode) {
29. case Lease_Hold_Timer_expiration : {
30. gen LEASE_RELEASE_OK (); }
31. case Idle_Mode_System_Timer_Expiration_at_BS : {
32. gen LEASE_RELEASE_EXIT (); }
33. else {
34. gen LEASE_RELEASE_FAIL(); }
35. transaction lrelease {
36. input LEASE_RELEASE_PROCEED () {
37. if (! timeStampIsOld(lrel.TimeStamp)) {
38. g_timestamp = lrel.TimeStamp; }
39. reset (T_LEASE_DURATION());
40. nextstate PC; }
41. input LEASE_RELEASE_FAIL() && !LEASE_RELEASE_EXIT{
42. nextstate BTS; }
43. input LEASE_RELEASE_EXIT () {
44. stop; } } } }.. }
45.region PROXY {
46. forstate Idle {
47. input LEASE_RELEASE_PROXY (SsIp) {
48. g_rc = sendProxyMonitorDataInd(lrel.SsIp);
49. if (g_rc != MOB_OK) {
50. gen LEASE_RELEASE_FAIL(); }
51. transaction lrelease {
52. input LEASE_RELEASE_PROCEED() {
53. nextstate MON; }
54. input LEASE_RELEASE_FAIL() && !LEASE_RELEASE_EXIT{
55. nextstate Idle; }
56. input LEASE_RELEASE_EXIT() {
57. sendProxyIdleModeRelease();
58. nextstate Idle; } } } } .. }
59.region SIP_ROUTER {
60. forstate Idle {
61. input LEASE_RELEASE_ROUTER () {
62. g_rc = checkVlanIdInUseAndRouterIp();
63. if (g_rc == MOB_OK) {
64. g_rc = sendFaARP(ARP_RSP_WAIT);
65. if (g_rc != MOB_OK) {
66. gen LEASE_RELEASE_EXIT(); } }
67. else {
68. gen LEASE_RELEASE_EXIT(); }
69. transaction lrelease {
70. input LEASE_RELEASE_PROCEED() {
71. nextstate LREL; }
72. input LEASE_RELEASE_FAIL || LEASE_RELEASE_EXIT {
73. nextstate Idle; } } } } .. }

Listing 7. Lease Release - Transactional implementation

but not the other and the case where both are generated in
the same step.

127

6 Case Study Results

6.1 Metrics

The metrics used to evaluate the approach include:
 Lines of code of an entity or a feature of the system.
 Number of transitions and number of states of a region
 Coupling between transitions: the coupling index be-

tween transition i and transition j is 1 when transitions
i and j access a shared variable or interact through an
internal signal or a guard, 0 otherwise.

 Concern diffusion over transitions: the diffusion index
between concern i and transition j is 1 if the transition
implements part of concern i, 0 otherwise. The diffu-
sion of a concern is the sum of its diffusion index with
all transitions, divided by the number of transitions. It
reflects the amount of scattering of its implementation.

6.2 Results

Table 1 compares the size of the 3 implementation in terms
of lines of code (LOC), number of regions, number of
states and number of transitions. All three implementations
are about the same size in terms of lines of code. The
region-based implementation is slightly smaller, due to the
elimination of replication through the modularization of the
features. This reduction is partly compensated by the
additional structure of the new regions, states and
transitions defined in the system. The transactional
implementation is slightly larger is size, due to the interface
region.

The region-based implementation contains many more
states and transitions than the monolithic one. This is due to
two factors. First, most of the basic scenarios introduce
transitions in multiple regions. Second, the interactions
between regions introduce many synchronization states.
The synchronization causes behavior that is logically
executed during the same macro-step to be split over
multiple transitions.

The transactional implementation eliminates the waiting
states and allows the behavior of one macro-step to be
syntactically represented as a single cohesive transition.
Compared to the region-based implementation, the
transactions eliminate 45 states and 54 transitions. The
transactional implementation is more structured than the
monolithic one, but avoids the scattering of behavior over a
large number of transitions by maintaining behavior that is
executed in the same macro-step in the same transition. The
transactional implementation is more cohesive than the
region-based implementation.

 LOC Regions States Transitions
Monolithic 2709 1 3 30

Region-based 2679 10 76 122
Transactional 2739 11 32 81

Table 1. Size of the three implementations

Figure 5. DSM’s for the 3 implementations

Monolithic

Region-based

Transactional

128

av.diff

scenario
max.diff
scenario

av.diff
features

max.diff
features

Monolithic 5.3% 6.7% 28.7% 60.0%
Region-based 6.8% 22.3% 10.0% 19.0%
Transactional 6.3% 16.2% 8.2% 18.5%

Table 2. Diffusion of the scenarios and features
Figure 5 compares the design structure matrices (DSM)

[4] for the three implementations. The axes correspond to
transitions of the state machine. The value of a matrix entry
represents the coupling index between these transitions.
The transitions are grouped according to the basic scenarios
or the region they are part of by boxes along the diagonal.

The DSM of the monolithic implementation shows that
the transitions that implement a scenario are tightly coupled
with transitions that implement other scenarios. The
scenarios cannot be implemented independently of each
other.

The DSM for the region-based implementation is much
sparser than the monolithic matrix, due to the large number
of additional synchronization transitions. The number of
coupling dependencies between regions is relatively small-
er than the coupling dependencies between basic scenarios.
However, there are still an important number of dependen-
cies between regions, corresponding to guards and internal
signal dependencies.

Finally, the DSM for the transactional implementation is
denser than the region-based DSM, due to elimination of
synchronization states. The DSM does not contain depen-
dencies between the regions that implement the features of
the system. All dependencies are concentrated on the inter-
face region, at the top of the matrix.

Table 2 shows the average and maximum diffusions for
the scenarios and the features of the three implementations
of the system. A diffusion value of 5% means that the im-
plementation of a scenario or a feature spreads over 5% of
the transitions of the state machine. The average value
indicates the average diffusion for all concerns. The maxi-
mum value indicates the diffusion of the concern that has
the highest diffusion.

The results of Table 2 indicate that the implementations
of the features are less scattered in the region-based and
transactional implementations than in the monolithic im-
plementation. The modularization of the features increases
the diffusion of the scenarios, but in an acceptable manner.
Compared to the region-based implementation, the transac-
tional implementation reduces the diffusion of both the
scenarios and the features. This is due to the transactional
composition, which eliminate synchronization transitions.

6.3 Discussion

Our case study presents an example of a system that can be
decomposed and understood in two complementary man-
ners. When the basic scenarios are used as the primary de-
composition, the reaction of the system to an external event

is easy to understand: all the conditions to evaluate and
actions to be performed are located in the body of one or
two transitions. However, these scenarios cannot be imple-
mented independently as they interact in complex ways
trough shared variables and flags. The solution is also more
rigid, as the features implemented by the system are scat-
tered all over the transitions that implement the scenarios.

Feature-based decomposition increases flexibility. Dif-
ferent versions of the system that support different combi-
nations of features can be delivered. In the case study, the
isolation of the simple, nomadic and mobile IP router fea-
tures allowed us to reduce the memory footprint of a ses-
sion by 15%, by only loading the features required by the
subscriber. The solution also gains in modularity, as the
features can be implemented independently of each other
using an interface region.

However, the interactions between the features can be
hard to manage. The transactional composition semantics
alleviate this problem by requiring that all features that
interact within a basic-scenario share a common set of out-
comes. The composition semantics ensure that synchroni-
zation problems within transactions will be detected.

The decomposition into features also makes the basic
reaction of the system to an external event harder to under-
stand. The actions executed in response to an event are
scattered over the different regions. Yet, the reaction of the
system can be understood in terms of a sequence of transac-
tions in the interface region. The transactions provide a
high-level, yet precise, view of the execution of each basic
scenario and its possible outcomes.

The semantics of the transactional composition are more
complex then the semantics used to perform a scenario-
based decomposition. However, the transactional composi-
tion does not need to be understood by all developers. One
of the main objectives of the decomposition by feature is to
allow each feature to be implemented, tested and main-
tained by a different team. The team implementing a fea-
ture only needs to know about the outcomes defined in the
interface region. It is then the role of the integration team to
understand the interactions between the features and define
the guards and the mapping between the events generated
locally and the global outcomes.

The use of interface regions and transactions does not
preclude the use of classic synchronization mechanisms.
The decision to isolate features into regions and use inter-
face regions should be guided by the need to enable the
independent activation of a feature or the need to enable the
independent development of the feature.

7 Related Work

Transactional region composition can be seen as a form of
symmetric AOP [6]. Each region provides a view of the
behavior of the system, seen from the perspective of a fea-
ture. Interface regions define design rules [4] or crosscut-
ting interfaces [7]. They define the preconditions, triggers
and post-conditions for transitions of the participating re-

129

gions. Transactions define an interface that cuts across the
decomposition into features, and enables the system to sup-
port a decomposition into features and a decomposition into
scenarios simultaneously.

In [8], Mussbacher considers the modularization and
management of features within scenarios. The main de-
composition is defined using scenarios but the language
provides support to modularize features. Our approach uses
features as the primary decomposition while providing lan-
guage support to capture the essence of scenarios using
transactions.

The work presented in this paper builds on a large body
of research in the area of Aspect-Oriented Modeling [9]. In
[10], Elrad identifies the similarities between aspect-
oriented compositions and orthogonal regions and proposes
to model aspect-oriented composition using internal signals
between orthogonal regions. In [11], Mahoney proposes a
notation to decouple regions by extracting internal signals
from statecharts using an aspect-oriented notation. Zhang
[12] introduces an aspect-oriented notation to modularize
crosscutting concerns across different regions of UML state
machines. Protocol modeling [13] proposes a semantic for
the orthogonal composition of behaviors using a state ma-
chine-based notation based on CSP. Neither of these ap-
proaches achieves complete independence between the
regions. The AOM approaches use small examples to illu-
strate the proposed syntax and do not address the issue of
scalability and maintenance of large systems. Neither of the
proposed approaches is evaluated quantitatively.

8 Conclusions

We show through an industrial case study that orthogonal
regions can be used to modularize the features of a complex
system. However, the interactions between the features of
the system require a large amount of synchronization be-
tween the regions. The synchronization tightly couples the
regions to each other and reduces the cohesion of each re-
gion. We therefore introduce a notion of interface region
that decouples the regions from each other. We also intro-
duce a transactional composition operator that reduces the
diffusion of behavior caused by synchronization and facili-
tates the detection and management of feature interactions.
We evaluate the approach by comparing a monolithic im-
plementation of a real-world telecom system to a region-
based implementation and a transactional implementation
using size, coupling and diffusion metrics. Our results show
that the transactional implementation is more modular and
more cohesive than the monolithic and region-based im-
plementations and that it supports the independent imple-
mentation and deployment of features.

References

[1] Bouma, L.G., Griffeth, N. and Kimbler, N. 2000. Fea-
ture Interactions in Telecommunications Systems.
Computer Networks 32:4.

[2] Harel, D. 1987. Statecharts: A visual formalism for
complex systems, Science of Computer Programming,
Volume 8, Issue 3. 231-274.

[3] Harel, D. and Naamad, A. 1996. The STATEMATE
Semantics of Statecharts, ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), Vo-
lume 5, Issue 4. 293-333.

[4] Baldwin, C. and Clark, K. 2000. Design Rules vol I,
The Power of Modularity. MIT Press.

[5] Garcia, A et al. 2005. Modularizing design patterns
with aspects: a quantitative study. In Proceedings of
the 4th international conference on Aspect-oriented
software development, Chicago, USA. 3-14.

[6] Tarr, P., Ossher, H., Harrison, W. and Sutton, S. 1999.
N Degrees of Separation: Multi-Dimensional Separa-
tion of Concerns. In proceedings of the 21st interna-
tional conference on Software engineering. Los An-
geles, USA. 107-119.

[7] Kiczales, G. and Mezini, 2005. M. Aspect-oriented
programming and modular reasoning. In proceedings
of the 27th international conference on software engi-
neering, St Louis, USA. 49-58.

[8] Mussbacher, G., Amyot, D., Weigert, T. and Cottenier,
T. 2009. Feature Interactions in Aspect-Oriented Sce-
nario Models. In proceedings of the 10th International
Conference on Feature Interactions in Software and
Communication Systems, Lisbon, Portugal. 75-90.

[9] Kienzle J. et al. Report of the 14th International Work-
shop on Aspect-Oriented Modeling. In Models in
Software Engineering, LNCS 6002, 98-103.

[10] Elrad, T., Aldawud, O. and Bader, A. 2002. Aspect-
Oriented Modeling: Bridging the Gap between Imple-
mentation and Design. In proceedings of the 1st confe-
rence on Generative Programming and Component
Engineering, Pittsburgh, USA, LNCS 2487. 189-201.

[11] Mahoney, M., Bader, A., Aldawud, O. and Elrad, T.:
2004. Using Aspects to Abstract and Modularize State-
charts. The 5th Aspect-Oriented Modeling Workshop
in Conjunction with the UML 2004 conference. Lisbon,
Portugal.

[12] Zhang, G., Hölzl, M. and Knapp, A. 2007. Enhancing
UML State Machines with Aspects. In proceedings of
the 10th International Conference on Model Driven En-
gineering Languages and Systems. Nashville, USA.
LNCS 4735. 529-543.

[13] McNeile, A. and Roubtsova, E. 2010. Aspect-Oriented
Development Using Protocol Modeling. In A Common
Case Study for Aspect-Oriented Modeling Approaches,
Transactions on Aspect Oriented Software Develop-
ment, Volume 7. LNCS 6210. 115-150.

130

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

