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Abstract
Software product lines (SPLs) are commonly developed us-
ing annotative approaches such as conditional compilation
that come with an inherent risk of constructing erroneous
products. For this reason, it is essential to be able to an-
alyze SPLs. However, as dataflow analysis techniques are
not able to deal with SPLs, developers must generate and
analyze all valid methods individually, which is expensive
for non-trivial SPLs. In this paper, we demonstrate how to
take any standard intraprocedural dataflow analysis and au-
tomatically turn it into a feature-sensitive dataflow analy-
sis in three different ways. All are capable of analyzing all
valid methods of an SPL without having to generate all of
them explicitly. We have implemented all analyses as exten-
sions of SOOT’s intraprocedural dataflow analysis frame-
work and experimentally evaluated their performance and
memory characteristics on four qualitatively different SPLs.
The results indicate that the feature-sensitive analyses are on
average 5.6 times faster than the brute force approach on our
SPLs, and that they have different time and space tradeoffs.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification; F.3.2 [Theory
of Computation]: Semantics of Programming Languages —
Program Analysis

General Terms Performance, Experimentation, Design

Keywords Dataflow Analysis, Software Product Lines.

1. Introduction
A software product line (SPL) is a set of software prod-
ucts that share common functionality and are generated from
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reusable assets. These assets specify common and variant
behavior targeted at a specific set of products, usually bring-
ing productivity and time-to-market improvements [7, 24].
Developers often implement variant behavior and associ-
ated features with conditional compilation constructs like
#ifdef [1, 16], mixing common, optional, and even alter-
native and conflicting behavior in the same code asset. In
these cases, assets are not valid programs or program ele-
ments in the underlying language. We can, however, use as-
sets to generate valid programs by evaluating the conditional
compilation constructs using preprocessing tools.

Since code assets might not be valid programs or program
elements, existing standard dataflow analyses, which are for
instance essential for supporting optimization [18] and main-
tenance [26] tasks, cannot be directly used to analyze code
assets. To analyze an SPL using intraprocedural analysis, de-
velopers then have to generate all possible methods and sep-
arately analyze each one with conventional single-program
dataflow analyses. In this case, generating and analyzing
each method can be expensive for non-trivial SPLs. Con-
sequently, interactive tools for single-program development
might not be usable for SPL development because they rely
on fast dataflow analyses and have to be able to quickly re-
spond when the programmer performs tasks such as code
refactoring [10]. Also, this is bad for maintenance tools [26]
that help developers understand and manage dependencies
between features.

To solve this problem and enable more efficient dataflow
analysis of SPLs, we propose three approaches for taking
any standard intraprocedural dataflow analysis and automat-
ically lifting it into a corresponding feature-sensitive analy-
sis that we can use to directly analyze code assets. The ap-
proaches analyze all configurations and thus avoid explic-
itly generating all possible methods of an SPL. Although we
focus on SPLs developed with conditional compilation con-
structs, our results apply to other similar annotative variabil-
ity mechanisms [16].

We evaluate our three feature-sensitive approaches (con-
secutive, simultaneous, and shared simultaneous) and com-
pare them with a brute force intraprocedural approach that
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generates and analyzes all possible methods individually.
We report on a number of performance and memory con-
sumption experiments using two dataflow analyses (definite
assignments and reaching definitions [23]) and four SPLs
from different domains, with qualitatively different numbers
of features, products, #ifdef statements, and other factors
that might impact performance and memory usage results.
We find that, for the analyses and SPLs used, when ana-
lyzing all configurations simultaneously (simultaneous ap-
proach), we reduce analysis time by a factor of up to more
than eight times on SPLs with intensive feature usage (in-
tensive #ifdef presence). For SPLs with low feature us-
age the simultaneous approach is only slightly faster than
the brute force approach. In addition, the former consumes
more memory when compared to the shared simultaneous
approach, which shares values corresponding to configura-
tions during the analysis.

We organize the rest of this paper as follows. Using a
concrete example, Section 2 discusses and motivates the
need for dataflow analysis of software product lines. Then,
we introduce conditional compilation and feature models.
After that, we briefly recall basic dataflow analysis concepts
and present the main contributions of this paper:

• a consecutive feature-sensitive approach that analyzes all
SPL configurations, one at a time and simultaneous and
shared simultaneous feature-sensitive approaches that
analyze all SPL configurations at the same time (Sec-
tion 5);
• an experimental prototype implementation of the three

above analyses; and
• empirical evidence of the superiority of our feature-

sensitive approaches; in particular the simultaneous and
shared simultaneous approaches, which are faster than
the consecutive one, but use more memory (Section 6).

2. Motivating Example
To better illustrate the issues we are addressing in this paper,
we now present a motivating example based on the Lampiro
SPL.1 Lampiro is an instant-messaging client developed in
Java ME and its features are implemented using #ifdefs.

Figure 1 shows a code snippet extracted from Lampiro
implemented in Java with the Antenna2 preprocessor. As
can be seen, if the GLIDER feature is not present (see the
#ifndef statement), the logo variable receives an image
instantiated by the createImage method, so it is initialized.
However, this variable is uninitialized if the GLIDER feature
is present in the product. Such mistakes—and others like
undeclared variables, unused variables, and null pointers—
commonly occur when using conditional compilation. In-
deed, despite their widespread usage to implement variabil-

1 http://lampiro.bluendo.com/
2 http://antenna.sourceforge.net/

Image logo;
...
//#ifndef GLIDER
...
logo = Image.createImage("/icons/lampiro_icon.png");
...
//#endif
...
UILabel uimg = new UILabel(logo);

Figure 1. Uninitialized variable when GLIDER is present.

ity in SPLs, #ifdefs pollute the code, lack separation of
concerns, and make maintenance tasks harder [8, 20, 21, 27].

Thus, to maintain this kind of SPL, it is important to ana-
lyze its code and determine whether developers are introduc-
ing errors. For instance, consider the case where a developer
is supposed to change the value of a variable that belongs
to feature A. An analysis could be useful to warn of another
feature, B, using the same variable just modified. Such fea-
ture dependency information is a signal to investigate fea-
ture B, to make sure that the modification did not introduce
any problems in it. We proposed an idea to provide informa-
tion about this kind of feature dependency [26]. This was our
original motivation for adapting dataflow analysis for SPLs.

To capture these dependencies and consequently prob-
lems like uninitialized variables in SPLs, we need dataflow
analyses to work on sets of SPL assets, like the ones us-
ing conditional compilation. However, programmers must
resort to generating all possible methods and separately an-
alyzing each one by using the conventional single-program
dataflow analysis. Depending on the size of the SPL, this can
be costly, which may be a problem for interactive tools that
analyze SPL code, for example. As we shall see in Section 6,
we are able to decrease such costs.

3. Conditional Compilation
In this section, we briefly introduce the #ifdef construction
and feature models. We use a simplified ifdef construction
the syntax of which is:

S ::= "ifdef" "(" φ ")" S
φ ::= f ∈ F | ¬φ | φ ∧ φ

S is a Java Statement and φ is a propositional logic
formula over feature names where f is drawn from a finite
alphabet of feature names, F. We further eliminate #elif
and #else branches by turning them into the normalized
syntactic ifdef form listed in BNF above.

A configuration, c ⊆ F, is a set of enabled features.
A propositional logic formula, φ, gives rise to the set of
configurations, [[φ]] ⊆ 2F, for which the formula is satisfied.
For instance, given F = {A,B,C}, the formula, φ = A ∧
(B ∨ C) corresponds to the following set of configurations:
[[A ∧ (B ∨ C)]] = {{A,B}, {A,C}, {A,B,C}} ⊆ 2F.
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(a) Lattice for sign analysis.

` ∈ L
↓
S `′ = fS(`)
↓

`′ ∈ L
(b) Effect of transfer function, fS .

Figure 2. Lattice and transfer function.

To yield only valid configurations, sets of configura-
tions are usually further restricted by a so-called feature
model [13]. Conceptually, a feature model is just a proposi-
tional logic formula. Here is an example of a feature model
with alphabet F = {Car, Air, Basic, Turbo}:

ψFM = Car ∧ (Basic↔ ¬Turbo) ∧ (Air→ Turbo)

corresponding to the following set of valid configurations:

[[ψFM]] = {{Car, Basic}, {Car, Turbo}, {Car, Air, Turbo}} ⊆ 2F

4. Dataflow Analysis
A Dataflow Analysis [18] is comprised of three constituents:
1) a control-flow graph (on which the analysis is performed);
2) a lattice (representing values of interest for the analy-
sis); and 3) transfer functions (that simulate execution at
compile-time). In the following, we briefly recall each of the
constituents of the conventional (feature-oblivious) single-
program dataflow analysis and how they may be combined
to analyze an input program.

Control-Flow Graph: The control-flow graph (CFG) is
the abstraction of an input program on which a dataflow
analysis runs. A CFG is a directed graph where the nodes
are the statements of the input program and the edges rep-
resent flow of control according to the semantics of the pro-
gramming language. An analysis may be intraprocedural or
interprocedural, depending on how functions are handled in
the CFG. Here, we only consider intraprocedural analyses.

Lattice: The information calculated by a dataflow anal-
ysis is arranged in a lattice, L = (D,v) where D is a set
of elements and v is a partial-order on the elements [23].
Lattices are usually described diagrammatically using Hasse
Diagrams which use the convention that x @ y if and only
if x is depicted below y in the diagram (according to the
lines of the diagram). Figure 2(a) depicts such a diagram of
a lattice for analyzing the sign of an integer. Each element
of the lattice captures information of interest to the analysis;
e.g., “+” represents the fact that a value is always positive,
“0/+” that a value is always zero-or-positive. A lattice has
two special elements; ⊥ at the bottom of the lattice usually
means “not analyzed yet” whereas> at the top of the lattice
usually means “analysis doesn’t know”. The partial order
induces a least upper bound operator, t, on the lattice ele-
ments [23] which is used to combine information during the

analysis, when control-flows meet. For instance,⊥ t 0 = 0,
0 t + = 0/+, and - t 0/+ = >.

Transfer Functions: Each statement, S, will have an as-
sociated transfer function, fS : L → L, which simulates
the execution of S at compile-time (with respect to what is
being analyzed). Figure 2(b) illustrates the effect of execut-
ing transfer function fS . Lattice element, `, flows into the
statement node, the transfer function computes `′ = fS(`),
and the result, `′, flows out of the node. Here are the transfer
functions for two assignment statements for analysing the
sign of variable x using the sign lattice in Figure 2(a):

fx=0(`) = 0 fx++(`) =

8>>><>>>:
> ` ∈ {-/+, -/0,>}
+ ` ∈ {0, +, 0/+}
-/0 ` = -

⊥ ` =⊥

The transfer function, fx=0, is the constant zero function
capturing the fact that x will always have the value zero after
execution of the statement x=0. The transfer function, fx++,
simulates execution of x++; e.g., if x was negative (` = -)
prior to execution, we know that its value after execution
will always be negative-or-zero (`′ = -/0). In order for a
dataflow analysis to be well-defined, all transfer functions
have to obey a monotonicity property [23].

Analysis: Figure 3 shows how to combine the control-
flow graph, lattice, and transfer functions to perform dataflow
analysis on a tiny example program.
First (cf. Figure 3(a)), a control-flow graph is built from the
program and annotated with program points (which are the
entry and exit points of the statement nodes). In our example,
there are four such program points which we label with
the letters a to d. Second (cf. Figure 3(b)), the annotated
CFG is turned into a whole-program transfer function, T :
L4 → L4, which works on four copies of the lattice, L,
since we have four program points (a to d). The entry point,
a, is assigned an initialization value which depends on the
analysis (here, a =⊥). For each program point, we simulate
the effect of the program using transfer functions (e.g., b =
fx=0(a)) and the least-upper bound operator for combining
flows (e.g., c = b t d). Third (cf. Figure 3(c)), we use
the Fixed-Point Theorem [23] to compute the fixed-point of
the function, T , by computing T i(⊥) for increasing values
of i (depicted in the columns of the figure), until nothing
changes. As seen in Figure 3(c), we reach the fixed-point in
five iterations (since T 4(⊥) = T 5(⊥)) and the least-fixed
point, and hence the result of the analysis, is: a =⊥, b =
0, c = 0/+, d = + (which is the unique least fixed-point of
T ). From this we can deduce that the value of the variable
x is always zero at program point b, it is zero-or-positive
at point c, and positive at point d. (Note that, in practice,
the fixed-point computation is often performed using more
efficient iteration strategies.)
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x = 0;

x++;

a 

b 

c 

d 

(a) CFG

T


a
b
c
d

 =


⊥

fx=0(a)
b t d
fx++(c)


(b) Whole-program transfer function, T .

a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ 0 0 0 0 0
c ⊥ ⊥ 0 0 0/+ 0/+
d ⊥ ⊥ ⊥ + + +

T 0(⊥) T 1(⊥) T 2(⊥) T 3(⊥) T 4(⊥)=T 5(⊥)
(c) Fixed-point iteration.

Figure 3. Combining CFG, lattice, and transfer functions to perform dataflow analysis (as a fixed-point iteration).

void m() {

  int x = 0;

  ifdef (A) x++; 

  ifdef (B) x--;

} 

(a) Example SPL method

c={A} : c={B} : c={A,B} :

int x=0;
x++;

int x=0;
x--;

int x=0;
x++;
x--;

(b) and its three distinct method variants
(configurations: {A}, {B}, and {A,B}).

Figure 4. A tiny example of an SPL method along with its
three distinct method variants.

5. Dataflow Analyses for SPLs
In Section 2 we claimed that analyzing SPLs is important
and that the naive brute force approach can be costly. In
this section, we show how to take any feature-oblivious
intraprocedural dataflow analysis and automatically turn it
into a feature-sensitive analysis.

We present four different ways of performing intrapro-
cedural dataflow analysis for software product lines (sum-
marized in Figure 6). The four analyses calculate the same
information, but in qualitatively different ways. To illustrate
the principles, we use a deliberately simple example analy-
sis; sign analysis of one variable, x, and use it to analyze an
intentionally simple program (cf. Figure 4(a)) that increases
and decreases a variable, depending on the features enabled.

The program uses features F = {A,B} and we as-
sume it has a feature model ψFM = A ∨ B which trans-
lates into the following set of valid configurations: [[ψFM]] =
{{A}, {B}, {A,B}}.

A1: Brute Force Analysis (Feature-Oblivious)
A software product line may be analyzed intraprocedurally
by building all possible methods and analyzing them one by
one using a conventional dataflow analysis as described in
the previous section. A method with n features will give rise
to 2n possible end-product methods (minus those invalidated
by the feature model). For our tiny example program that
has two features, A and B, we have to build and analyze the
three distinct methods as illustrated in Figure 4(b).

A2: Consecutive Feature-Sensitive Analysis
We can avoid explicitly building all methods individually by
making a dataflow analysis feature-sensitive. Now, we show
how to take any single-program dataflow analysis and au-

tomatically turn it into a feature-sensitive analysis, capable
of analyzing all possible method variants. Firstly, we con-
sider the consecutive analysis, named this way because we
analyze each of the possible configurations one at a time.
We render it feature-sensitive by instrumenting the CFG
with sufficient information for the transfer functions to know
whether a given statement is to be executed or not in each
configuration.

Control-Flow Graph: For each node in the CFG, we
associate the set of configurations, [[φ]], for which the node’s
corresponding statement is executed. We refer to this process
as CFG instrumentation. Here is the instrumented CFG for
our tiny method of Figure 4(a):

↓
[[true]]: int x=0;

↓
[[A]]: x++;

↓
[[B]]: x--;

↓

We label each node with “[[φ]]: S” where S is the state-
ment and [[φ]] is the configuration set associated with the
statement. Unconditionally executed statements (e.g., int
x=0;) are associated with the set of all configurations,
[[true]]. Statements that are nested inside several ifdefs
will have the intersection of the configuration sets. For in-
stance, statement S in “ifdef (φ1) ifdef (φ2) S” will
be associated with the set of configurations [[φ1]] ∩ [[φ2]] ≡
[[φ1 ∧ φ2]].

Lattice: Analyzing the configurations consecutively does
not change the lattice, so the lattice of this feature-sensitive
analysis is the same as that of the feature-oblivious analysis.

Transfer Functions: All we have to do in the feature-
sensitive transfer function is use the associated configuration
set, [[φ]], to figure out whether or not to execute the feature-
oblivious transfer function, fS , in a given configuration,
c; i.e., deciding c ∈ [[φ]] (cf. Figure 6). Since the lifting
only either applies the feature-oblivious transfer function or
copies the lattice value, the lifted transfer function is also
always monotone.

Analysis: In order to analyze a program using A2, all
we need to do is to combine the CFG, lattice, and transfer
functions as explained in Section 4. Figure 5(b) shows the
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c = {A} : c = {B} : c = {A,B} :

⊥ ⊥ ⊥
↓ ↓ ↓

int x=0; int x=0; int x=0;

↓ ↓ ↓
0 0 0
↓ ↓ ↓

x++; x--; x++;

↓ ↓ ↓
+ - +

↓
x--;

↓
0/+

(a) Using the feature-oblivious analysis,A1.

c = {A} : c = {B} : c = {A,B} :

⊥ ⊥ ⊥
↓ ↓ ↓

[[true]]: int x=0; [[true]]: int x=0; [[true]]: int x=0;

↓ ↓ ↓
0 0 0
↓ ↓ ↓

[[A]]: x++; [[A]]: x++; [[A]]: x++;

↓ ↓ ↓
+ 0 +
↓ ↓ ↓

[[B]]: x--; [[B]]: x--; [[B]]: x--;

↓ ↓ ↓
+ - 0/+

(b) Using the consecutive analysis,A2.

∀c ∈ {{A}, {B}, {A,B}} :

({A} 7→⊥, {B} 7→⊥, {A,B} 7→⊥)
↓

[[true]]: int x=0;

↓
({A} 7→ 0, {B} 7→ 0, {A,B} 7→ 0)

↓
[[A]]: x++;

↓
({A} 7→ +, {B} 7→ 0, {A,B} 7→ +)

↓
[[B]]: x--;

↓
({A} 7→ +, {B} 7→ -, {A,B} 7→ 0/+)

(c) Using the simultaneous analysis,A3.

∀c ∈ [[ψFM]] :

([[ψFM]] 7→⊥)
↓

[[true]]: int x=0;

↓
([[ψFM]] 7→ 0)

↓
[[A]]: x++;

↓
([[ψFM ∧ A]] 7→ +, [[ψFM ∧ ¬A]] 7→ 0)

↓
[[B]]: x--;

↓
({{A}} 7→ +, {{B}} 7→ -, {{A,B}} 7→ 0/+)

(d) Using the shared simultaneous analysis,A4.

Figure 5. Results of using the four analyses on our tiny example program m (that increases and decreases variable, x).

result of analyzing the increase-decrease method using this
consecutive feature-sensitive analysis. As can be seen, the
consecutive feature-sensitive analysis needs one fixed-point
computation for each configuration. A1 and A2 compute
the same information (the same fixed-point solution); the
only difference is whether the applicability of statements,
c ∈ [[φ]], is evaluated before or after compilation.

A3: Simultaneous Feature-Sensitive Analysis
Another approach is to analyze all configurations simulta-
neously by using a lifted lattice that maintains one lattice
element per valid configuration. As opposed to the con-
secutive analysis, the simultaneous analysis needs only one
fixed-point computation. Again, this analysis will be feature-
sensitive and it can also be automatically derived from the
feature-oblivious analysis.

Control-Flow Graph: The CFG of A3 is the same as
that of A2 as it already includes the necessary information
for deciding whether or not to simulate execution of a con-
ditional statement.

Lattice: As explained, we lift the feature-oblivious lat-
tice, L, such that it has one element per valid configuration:

L3 = [[ψFM]]→ L

Note that whenever L is a lattice, then so is [[ψFM]] → L
(which is isomorphic to L|[[ψFM]]|). An example element of
this lattice is:

({A} 7→ +, {B} 7→ -, {A,B} 7→ 0/+) ∈ [[ψFM]]→ L

which corresponds to the information that: for configuration
{A}, we know that the value of x is positive (+); for {B},
we know x is negative (-); and for {A,B}, we know it is
zero-or-positive (0/+).

Transfer Functions: We lift the transfer functions cor-
respondingly so they work on elements of the lifted lattice
in a point-wise manner. The feature-oblivious transfer func-
tions are applied only on the configurations for which the
statement is executed. As an example, consider the statement
“ifdef (A) x++;” where the effect of the lifted trans-
fer function on the lattice element ({A} 7→ 0, {B} 7→
0, {A,B} 7→ 0) is:

({A} 7→ 0, {B} 7→ 0, {A,B} 7→ 0)
↓

[[A]]: x++;

↓
({A} 7→ +, {B} 7→ 0, {A,B} 7→ +)
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The transfer function of the feature-oblivious analysis is
applied to each of the configurations for which the ifdef
formula A is satisfied. Since [[A]] = {{A}, {A,B}}, this
means that the function is applied to the lattice values of
the configurations {A} and {A,B} with resulting value:
fx++(0) = +. The configuration {B}, on the other hand,
does not satisfy the formula ({B} 6∈ [[A]]), so its value is left
unchanged with value 0. Figure 6 depicts and summarizes
the effect of the lifted transfer function on the lifted lattice.

Since the feature-sensitive transfer function on [[ψFM]] →
L only applies monotone transfer functions on L in a point-
wise manner, it is itself monotone. This guarantees the exis-
tence of a unique and computable solution.

Analysis: Again, we simply combine the lifted CFG,
lifted lattice, and lifted transfer functions to achieve our
feature-sensitive simultaneous configuration analysis. Fig-
ure 5(c) shows the result of analyzing the increase-decrease
method using the simultaneous feature-sensitive analysis.
From this we can read off the information about the sign
of the variable x at different program points, for each of the
valid configurations. For instance, at the end of the program
in configuration {B}, we can see that x is always negative.
Compared toA2, this analysis only has one fixed-point itera-
tion and thus potentially saves the overhead involved. How-
ever, it requires the maximum number of fixed-point itera-
tions that are performed in any configuration of A2 in order
to reach its fixed-point because of the pointwise lifted lat-
tice. Again, it is fairly obvious that A2 and A3 compute the
same information; the only difference being that A2 does
one fixed-point iteration per valid configuration whereas A3
computes the same information in one iteration in a point-
wise manner.

A4: Shared Simultaneous Feature-Sensitive Analysis
Using the lifted lattice of the simultaneous analysis, it is pos-
sible to lazily share lattice values corresponding to configu-
rations that are indistinguishable in the program being ana-
lyzed.

Control-Flow Graph: The CFG ofA4 is the same as that
of A3.

Lattice: To accomodate the sharing, the lifted lattice of
A4 will, instead of mapping configurations to base lattice
values, map sets of configurations to base lattice values:

L4 = 2[[ψFM]] ↪→ L

This allows A4 lattice values to share base lattice values
for configurations that have not yet been distinguished by
the analysis. For instance, the lifted lattice value of A3,
({A} 7→ `, {B} 7→ `, {A,B} 7→ `), can now be represented
by ([[A∨B]] 7→ `) where the three configurations, [[A∨B]] =
{{A}, {B}, {A,B}}, share the base lattice value, `.

Transfer Functions: The transfer functions of A4 work
by lazily splitting sets of configurations, [[ψ]], in two disjoint
parts, depending on the feature constraint, φ, attached with

CFG Lattice Transfer Functions

A1:

c6∈[[φ]]: c∈[[φ]]:

↓ ↓
skip S

↓ ↓
L

c6∈[[φ]]: c∈[[φ]]:

` `
↓ ↓

skip S

↓ ↓
`′ = ` `′ = fS(`)

A2:

↓
[[φ]]: S

↓
L2 = L

`
↓

[[φ]]: S

↓

`′ =

(
` c ∈ [[¬φ]]

fS(`) c ∈ [[φ]]

A3:

↓
[[φ]]: S

↓

L3 =

[[ψFM]]→ L

(c 7→ `, ...)
↓

[[φ]]: S

↓

(c 7→
(
` c ∈ [[¬φ]]

fS(`) c ∈ [[φ]]
, ...)

A4:

↓
[[φ]]: S

↓

L4 =

2[[ψFM]] ↪→ L

([[ψ]] 7→ `, ...)
↓

[[φ]]: S

↓
([[ψ ∧ φ]] 7→ fS(`),
[[ψ ∧ ¬φ]] 7→ `, ...)

Figure 6. Summary of dataflow analyses for SPLs.

the statement in question: A set of configurations for which
the transfer function should be applied, [[ψ ∧ φ]]; and a set of
configurations for which the transfer function should not be
applied, [[ψ ∧ ¬φ]]; i.e.:

([[ψ]] 7→ `, ...)
↓

[[φ]]: S

↓
([[ψ ∧ φ]] 7→ fS(`), [[ψ ∧ ¬φ]] 7→ `, ...)

Note that [[ψ ∧ φ]] ∪· [[ψ ∧ ¬φ]] = [[(ψ ∧ φ) ∨ (ψ ∧ ¬φ)]] =
[[ψ ∧ (φ ∨ ¬φ)]] = [[ψ ∧ true]] = [[ψ]]. In cases where
[[ψ]] would be split into “nothing”, ∅, and “everything”, [[ψ]]
(which happens whenever ψ ∧ φ ≡ false or ψ ∧ ¬φ ≡
false), we eliminate the false constituents in order to ensure
a canonical (minimal and finite) representation. It is also
possible to join lattice values that are equal. However, this
might compromise performance (in exchange for memory
gains) due to the equality comparisons needed to determine
if joins are possible.

Analysis: As always for the analysis, we simply combine
the CFG, lattice, and transfer functions to achieve our shared
simultaneous analysis. Figure 5(d) shows how this analysis
will analyze our tiny program example from earlier. (For leg-
ibility, the last line of the figure is written with the expanded
sets of configurations rather than with formula notation.)A3
and A4 compute the same information; A4 just represents
the same information more compactly using sharing.
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tasks(A1) = |[[ψFM]]| · compile + |[[ψFM]]| · analyzeA1

tasks(A2) = compile + instrument + |[[ψFM]]| · analyzeA2

tasks(A3) = compile + instrument + analyzeA3

tasks(A4) = compile + instrument + analyzeA4

Figure 7. Overall tasks performed by each of the analyses.

Other Analysis Approaches
A couple of variations of the feature-sensitive analyses are
possible. One could retain the instrumented CFG calculated
in A2 and A3, but then specialize [12] the CFG prior to
analysis for every configuration by resolving all conditional
statements relative to the current configuration. This ap-
proach would be a variation of A2 with a higher cost due
to CFG specialization, but which in turn saves by making
membership decisions only once per CFG node. Another
approach would be to transform ifdefs into normal ifs
and turn feature names into static booleans [4, 25] which
could then be resolved by techniques such as partial eval-
uation [12] prior to analysis. We do not explore this idea
in the paper, but rather focus on the different ways of au-
tomatically transforming a feature-oblivious analysis into a
feature-sensitive one, while staying within the framework of
dataflow analysis.

Asymptotic complexity (TIME and SPACE)
We now consider and compare the asymptotic complexity
of A2, A3, and A4 in terms of first overall tasks, then
performance, and finally memory consumption.

Total Time (including compilation): Figure 7 considers
the overall tasks performed for each SPL method analyzed in
each of the analyses. Apart from A3 vs. A4, they all differ
substantially in the number of times each of the tasks are
performed. Not surprisingly, A1 needs to do a lot of (brute
force) compilation. The rest require only one compilation,
but pay the price of instrumentation to annotate the CFG
with feature constraints. However, this is cheap in practice.
A2 performs the analysis (i.e., the fixed-point computation)
for every valid configuration whereas A3 and A4 only do
this once. We return to these considerations, in practice,
when we discuss our experimental results (cf. Section 6).

Performance of Analyses (TIME): The asymptotic time
complexity of the A2 analysis is:

TIME(A2) = O(|[[ψFM]]| · |G| · T2 · h(L2))

where |G| is the size of the control-flow graph (which for
the intraprocedural analysis is linear in the number of state-
ments in the method analyzed, ignoring exceptions); T2 is
the execution time of a transfer function on the L2 lattice;
and h(L2) is the height of the L2 lattice. In total, we need
to analyze |[[ψFM]]| method variants. For each of these, we
execute O(|G|) different transfer functions, each of which

takes execution time, T2, and can be executed a worst-case
maximum of h(L2) number of times.

Analogously, we can quantify the asymptotic time com-
plexity of A3:

TIME(A3) = O(|G| · T3 · h(L3))

which is similar toA2, except that we do not need to analyze
|[[ψFM]]| times and that the numbers are parameterized by the
A3 lattice and transfer functions. For the height of the lattice
L3, we have:

h(L3) = h([[ψFM]]→ L2) = h(L|[[ψFM]]|
2 )

=
P

c∈[[ψFM]]

h(L2) = |[[ψFM]]| · h(L2)

Note, however, that this is a purely theoretically worst case
that does not naturally arise in practice because of the point-
wise nature of A3. Since all configurations are independent,
the penalty for A3 will not be the sum, but rather only the
maximum number of fixed-point iterations of A2. In prac-
tice, we have not observed any significant cost on behalf of
A3 from this effect, as we will see in Section 6. The remain-
ing speed factor between A2 and A3 thus boils down to:

A2 : A3 = |[[ψFM]]| · T2 : T3

In theory, we would not expect any difference in the speed
of the two analyses;A2 makes a sequence of n analyses and
A3 makes one analysis in which each step costs n. However,
as we will see in Section 6,A3 has better cache performance
than A2, since statement nodes only have to be retrieved
and evaluated once per transfer function in A3, instead of
once per configuration as in A2. Apart from data, also the
fixed-point iteration code only runs once instead of once per
configuration.

Memory Consumption of Analyses (SPACE): The asymp-
totic space complexity of the analyses A2 and A3 is simply
proportional to the amount of data occupied by the lattice
values:

SPACE(A2) = O(|G| · log(|L2|))
SPACE(A3) = O(|G| · log(|L3|))

Comparing the two, we can derive that:

log(|L3|) = log(|[[ψFM]]→ L2|) = log(|L|[[ψFM]]|
2 |)

= log(|L2||[[ψFM]]|) = |[[ψFM]]| · log(|L2|)

which thus means that the difference is:

SPACE(A3) = |[[ψFM]]| · SPACE(A2)

This relationship is also evident when comparing Figures
5(b) and 5(c). AlthoughA3 requires n = |[[ψFM]]| times more
memory to run, it is always possible to cut the A3 lattice
into k slices of n/k columns (i.e., analyze n/k number of
configurations at a time). This provides a way of combining
the time and space characteristics of A2 and A3 (and A4).
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Benchmark LOC |F| |2Flocal | #methods cc%

Graph PL 1,350 18 29 = 512 135 (964) 82%
MobileMedia08 5,700 14 27 = 128 285 (821) 45%
Lampiro 45,000 11 22 = 4 1,949 (1,980) 1.5%
BerkeleyDB 84,000 42 28 = 256 3,605 (7,446) 40%

Figure 8. Size metrics for our four SPL benchmarks.

6. Evaluation
We first present our study settings and then present our
results in terms of total analysis time, performance, and
memory consumption.

6.1 Study settings
To validate the ideas, we have implemented and evaluated
the performance and memory characteristics of two ubiq-
uitous intraprocedural dataflow analyses; namely reaching
definitions and definite assignments (both of which are im-
plemented using SOOT’s interprocedural dataflow analysis
framework for analyzing Java programs [28]).

We have subsequently lifted them into consecutive, si-
multaneous, and shared simultaneous feature-sensitive anal-
yses for SPLs. Since we are using intraprocedural analyses
which analyze one method at a time, we can use the local set
of configurations, Flocal, local to each method which signif-
icantly reduces the size of the lattices we work with. How-
ever, instead of using the set of valid configurations, [[ψFM]],
we use the set of all feature combinations, 2Flocal . Restricting
to valid configurations only would make all feature-sensitive
analyses faster.

We have chosen four qualitatively different SPL bench-
marks, summarized in Figure 8. Graph PL (GPL) is a prod-
uct line of small size with intensive feature usage [16] for
desktop applications. MobileMedia08 is a product line
of small size and moderate feature usage [9] for mobile
applications for dealing with multi-media. Lampiro is a
product line with low feature usage for instant-messaging
clients [14]. Last but not least, BerkeleyDB is a product line
for databases [16] of moderate feature usage. The table pre-
sented in Figure 8 summarizes: LOC, is the number of lines
of code; |F|, is the number of features in the SPL; |2Flocal |, is
the maximum number of configurations of any one method
in the SPL; #methods, is the number of methods (with the
total number of different method variants, in parentheses);
and cc%, is the percentage of methods with conditional com-
pilation (ifdef) feature usage. Methods completely encom-
passed by ifdefs are also counted.

The histograms in Figure 9 illustrate the distribution of
the number of configurations per method for each of the
SPLs. MobileMedia08 (depicted in Figure 9(b)), for in-
stance, has 157 methods without features, 78 methods with
one feature (i.e., 21 ∗ 78 = 156 different method variants),
37 methods with two features (i.e., 22 ∗ 37 = 148 differ-
ent method variants) etc, and one method with seven fea-
tures (i.e., 27 ∗ 1 = 128 different method variants). The area

shown in the histograms is thus directly proportional to the
number of method variants possible. As can be seen, the four
benchmark SPLs have qualitatively different feature usage
profiles.

Our analyses currently interface with CIDE (Colored
IDE) [16] for retrieving the conditional compilation state-
ments. CIDE is a tool that enables developers to annotate
feature code using background colors rather than ifdefs
directives, reducing code pollution and improving compre-
hensibility. Conceptually, CIDE uses a restricted form of
ifdefs for which only conjunction of features is permitted.

Our analyses assume that each line never has two parts
with different CIDE colorings (i.e., different formulae). This
is a fair assumption as lines with multiple configurations
could be accomodated by inserting appropriate line breaks.

We have executed the analyses on a 64-bit machine with a
Intel R© CoreTM i7 920 CPU running at a 2.6 GHz frequency
with 8 GB of memory and 8MB L2 cache on a Linux Ubuntu
2.6.32-30-generic operating system.

6.2 Results and Discussion
We now present the results3 obtained from our empirical
study. We first present and discuss our results pertaining to
the total time, then the performance of the analysis only, and
finally, memory consumption. All times given are averages
over ten runs with the highest and lowest number removed.

Total Time (including compilation): Figure 10 plots the
total time (including compilation) of the reaching definitions
analysis on each of our four benchmarks. For the feature-
oblivious brute force analysis, A1, the total time is shown
in black whereas the feature-sensitive analyses,A2,A3, and
A4, are plotted in dark gray, light gray, and white, respec-
tively. All times comprise the tasks outlined in Figure 7. The
compilation time given for A1 is the average of the slowest
configuration to compile (c = 2F) and the fastest configura-
tion to compile (c = ∅) times the number of configurations
to be compiled. We have to do this estimation because sev-
eral configurations, although valid according to the feature
model, generate code that does not compile. Also, since the
CIDE API does not currently provide an efficient way of get-
ting the color of a line, we omit the time of this calculation
from the CFG instrumentation time.

We see that the feature-sensitive analyses, A2, A3, and
A4 are all faster than the brute-force approach, A1, ex-
cept on Lampiro where they are all fairly equal. If we
take the best gain factors of the feature-sensitive analyses
(Graph PL: 14; MobileMedia08: 4.8; Lampiro: 1.0; and
BerkeleyDB: 2.6), for each benchmark, they give an av-
erage speed-up of 5.6 when compared to A1. Continuing
the comparison to A1, A3 (in general, the fastest) does
the same analysis but takes 12% of the time on Graph
PL, 21% on MobileMedia08, 105% on Lampiro, and 39%

3 All results including equivalence proofs are available at: http://twiki.
cin.ufpe.br/twiki/bin/view/SPG/EmergentAndDFA
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Figure 9. Histogram showing the distribution of number of configurations per methods.
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Figure 10. The total time (including compilation) of RD: A1 (black) vs. A2 (dark gray) vs. A3 (light gray) vs. A4 (white).

on BerkeleyDB which translates into a gain factors of re-
spectively: 8.3, 4.8, 1.0, and 2.6. So, A3 is anywhere from
slightly to slightly more than eight times faster than A1.

The reason for this is compilation overhead that A1 has
to “pay” for each different method variant (see Figure 7).
When considering A2, A3, and A4, the compilation time is
an overhead we only have to pay once, even if many analyses
are performed. In the following, we will thus focus on the
times of the analyses themselves without compilation time.

Performance of Analyses (TIME): Figure 11 plots the
relative difference between the speed of the A2, A3, and
A4 feature-sensitive analyses (using reaching definitions).
We observe that the A3 is generally the fastest. Com-
pared to A2, it spends only 62% of the time on GPL,
46% on MobileMedia08, 100% on Lampiro, and 72% on
BerkeleyDB. Figure 12 shows the numbers for the definite
assignments analysis. Again, A3 is, in general, the fastest.
Compared to A2, it spends only 47% of the time on GPL,
56% on MobileMedia08, and 199% on Lampiro, and 65%
on BerkeleyDB. However, A4 is fastest on GPL for both
analyses because there are many sets of configurations that
are indistinguishable by #ifdefs. In general, A4 is slower
than A3 due to many comparisons it has to perform during
the analyses to split sets of configurations.

The analysis time is virtually the same for all four anal-
yses, A1, A2, A3, and A4 for Lampiro, except in Fig-
ure 12(c). This is because it has limited feature usage (only

1.5% of the methods have features and the average number
of configurations per method is only 1.02), and thus most of
the cost is the time of the analysis itself without any over-
head from features. We take this as indication that the over-
head of our approaches is almost nothing for SPLs with low
feature usage and that it does not matter much which of the
feature-sensitive analyses are used in such cases.

Recall that A3 in principle has to do as many fixed-
point iterations as are needed for the slowest converging con-
figuration, unnecessarily reiterating already converged con-
figurations. Our data, however, indicates that this is not a
problem in practice. For example, in the reaching defini-
tions analysis, A3 only executes as little as 0.22% more
unlifted transfer functions than A2 on BerkeleyDB; only
0.05% more on GPL; and virtually 0% more on Lampiro and
MobileMedia08.

As for caching, the first data column, normal cache of
Figure 13, shows the relative difference between the number
of cache misses in A2 vs A3. As expected, A2 incurs quite
a lot more cache misses than A3, making the former com-
paratively slower since data has to be re-fetched on every
configuration. To further substantiate this claim, we instru-
mented both A2 and A3 with instructions to fill up the L2
cache (traversing an 8MB array) prior to transfer function
execution. The second data column, full cache, reveals that
this indeed hurtsA2 more thanA3. We take this as evidence
that A3 has better cache properties than A2.

21



0

100

200

300

A2
100%

A3
62%

A4
24%

msec

(a) Graph PL

0

50

100

150

200

A2
100%

A3
46%

A4
87%

msec

(b) MobileMedia08

0

1000

2000

3000

4000

5000

A2
100%

A3
100%

A4
99%

msec

(c) Lampiro

0

500

1000

1500

2000

2500

A2
100%

A3
72%

A4
127%

msec

(d) BerkeleyDB

Figure 11. The analysis time of reaching definitions: A2 (dark gray) vs. A3 (light gray) vs. A4 (white).

0

20

40

60

80

100

A2
100%

A3
47%

A4
16%

msec

(a) Graph PL

0

20

40

60

80

100

A2
100%

A3
56%

A4
86%

msec

(b) MobileMedia08

0

100

200

300

A2
100%

A3
199%

A4
264%

msec

(c) Lampiro

0

150

300

450

600

750

A2
100%

A3
65%

A4
133%

msec

(d) BerkeleyDB

Figure 12. The analysis time of definite assignments: A2 (dark gray) vs. A3 (light gray) vs. A4 (white).

Benchmark A2 :A3 A2 :A3
(normal cache) (full cache)

Graph PL + 4 % + 13 %
MobileMedia08 + 36 % + 45 %
Lampiro + 12 % + 18 %
BerkeleyDB + 21 % + 29 %

Figure 13. Cache misses in A2 vs A3.

We thus have evidence that, in general, A3 seems to
be the fastest. If we average the speed ratio over the two
analyses on the four benchmarks, A3 outperforms A2 in
using only about 56% of the time to calculate the same
information.

Memory Consumption of Analyses (SPACE): Figure 14
lists the space consumption by the maximum memory con-
suming method (wrt. A3). Our experimental data confirms
that A3 requires almost |2Flocal | times more memory than A2
since it has to keep all configurations in memory during its
fixed-point computation. This does, however, not appear to
be a problem in practice for intraprocedural analysis as it
only needs to keep data for one method in memory at a time.
Indeed, this has not been a problem on any of our four bench-
marks. The shared analysisA4 may reduce space usage any-
where between a factor of one to 15, depending on the SPL.

7. Related Work
Data-Flow Analysis: The idea of making dataflow analy-
sis sensitive to statements that may or may not be executed
is related to path-sensitive dataflow analysis. Such analyses
compute different analysis information along different ex-

ecution paths aiming to improve precision by disregarding
spurious information from infeasible paths [5] or to optimize
frequently executed paths [2]. Earlier, disabling infeasible
dead statements has been exploited to improve the precision
of constant propagation [29] by essentially running a dead-
code analysis capable of tagging statements as executable or
non-executable during constant propagation analysis.

Predicated dataflow analysis [22] introduced the idea of
using propositional logic predicates over runtime values to
derive so-called optimistic dataflow values guarded by pred-
icates. Such analyses are capable of producing multiple anal-
ysis versions and keeping them distinct during analysis much
like our A3 and A4 analyses. However, their predicates are
over dynamic state rather than SPL feature constraints for
which everything is statically decidable.

The novelty in our paper is the application of the dataflow
analysis framework to the domain of SPLs giving rise to the
concept of feature-sensitive analyses that take conditionally
compiled code and feature models into consideration so as
to analyze not one program, but an entire SPL family of
programs.

Analysis of SPLs: In SPLs, there are features whose
presence or absence do not influence the test outcomes,
which makes many feature combinations unnecessary for a
particular test. This idea of selecting only relevant features
for a given test case was proposed in a recent work [11].
It uses dataflow analysis to recover a list of features that
are reachable from a given test case. The unreachable fea-
tures are discarded, decreasing the number of combinations
to test. In contrast, we defined and demonstrated how to au-
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Benchmark Max. memory consuming method |2Flocal | A2 A3 (A2:A3) A4 (A3:A4)

Graph PL Vertex.display() 29 = 512 37 KB 9.9 MB (1:281) 1.4 MB (7.2:1)
MobileMedia08 MediaController.handleCommand() 26 = 64 93 KB 4.8 MB (1:53) 2.5 MB (1.9:1)
Lampiro InfTree.clinit() 20 = 1 12 MB 12 MB (1:1) 12 MB (1:1)
BerkeleyDB DbRunAction.main() 27 = 128 212 KB 20 MB (1:96) 1.3 MB (15:1)

Figure 14. Maximum memory consumption of lattice information during analysis (A2 vs. A3 vs. A4).

tomatically make any conventional dataflow analysis able to
analyze SPLs in a feature-sensitive way. Thus, our feature-
sensitive idea might be used in such a work (testing). For
example, it might further reduce the time spent figuring out
which relevant feature combinations to test.

We recently proposed the concept of emergent inter-
faces [26]. These interfaces emerge on demand to give sup-
port for specific SPL maintenance and thus help develop-
ers understand and manage dependencies between features.
Feature dependencies such as assigning a value to a variable
used by another feature, have to be generated by feature-
sensitive analyses. Thus, our present work may be used to
generate emergent interfaces to support SPL maintenance.
Our analyses are more efficient than the brute force ap-
proach, which is important to improve the performance dur-
ing the computation of emergent interfaces.

Lifting for SPLs: Researchers already lifted automated
analysis and processing such as for parsing [17], model
checking [6], monitoring [19], type checking [3], and ver-
ification [4, 25]. Kaestner et al. [17] provides a variability-
aware parser which is capable of parsing code without pre-
processing it. The parser also performs instrumentation as
we do, but on tokens, instead of statements. When the parser
reaches a token instrumented with feature A, it splits into
branches. Then, one parser assumes that feature A is se-
lected and another assumes that A is not. So, the former
consumes the token and the latter skips it. To avoid parsing
tokens repeatedly (like a parenthesis instrumented with no
feature), the branches are joined. This approach is similar to
our shared simultaneous analysis A4, where we lazily split
sets of configurations. However, we do not perform join. On
the one hand, we could join lattices of different configura-
tions that are exactly the same in favor of memory usage.
On the other hand, we would increase the performance over-
head, since we need to verify the equality of lattices for each
statement and potentially for many configurations.

Classen et al. [6] shows that behavioral models offer little
means to relate different products and their respective behav-
ioral descriptions. To minimize this limitation, they present
a transition system to describe the combined behavior of
an entire SPL. Additionally, they provide a model checking
technique supported by a tool capable of verifying proper-
ties for all the products of an SPL once. Like our work, they
claim that checking all product combinations at once instead
of each product separately is faster. Their model checking al-
gorithm was on average 3.5 times faster than verifying prod-
ucts separately.

Safe composition: Safe composition (SC) relates to the
safe generation and verification of properties for SPL as-
sets providing guarantees that the product derivation process
generates products with properties that are obeyed [3, 15].
Safe composition may help in finding problems like unde-
clared variables. We complement safe composition, since
when using our feature-sensitive idea, we are able to catch
any errors expressible as a dataflow analysis (e.g., uninitial-
ized variables and null pointers).

8. Conclusion
In this paper, we presented three approaches for taking any
standard one-program dataflow analysis and automatically
lifting it into a feature-sensitive analysis capable of ana-
lyzing all configurations of an SPL. To evaluate these ap-
proaches, we took two intraprocedural dataflow analyses and
made them feature-sensitive. Experimental evaluation shows
that the feature-sensitive approaches are faster than the naive
brute-force approach. For SPLs with low feature usage, they
are only slightly faster than the naive approach. For SPLs
with high feature usage, the simultaneous feature-sensitive
analysis (A3), in particular, is up to more than eight times
faster than the existing alternative (A1).

We also conclude that our three approaches have different
performance and memory consumption characteristics. The
simultaneous feature-sensitive analysis (A3) is, in general,
the fastest. On the other hand, in terms of memory consump-
tion, A4 performs better than A3. However, this does not
show up as a problem in practice for intraprocedural analy-
sis on the benchmarks we used.
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