
An Exploratory Study of the Design Impact of
Language Features for Aspect-oriented Interfaces

Robert Dyer Hridesh Rajan
Iowa State University

{rdyer,hridesh}@iastate.edu

Yuanfang Cai
Drexel University

yfcai@cs.drexel.edu

Abstract
A variety of language features to modularize crosscutting
concerns have recently been discussed, e.g. open mod-
ules, annotation-based pointcuts, explicit join points, and
quantified-typed events. All of these ideas are essentially
a form of aspect-oriented interface between object-oriented
and crosscutting modules, but the representation of this in-
terface differs. While previous works have studied mainte-
nance of AO programs versus OO programs, an empirical
comparison of different AO interfaces to each other to in-
vestigate their benefits has not been performed. The main
contribution of this work is a rigorous empirical study that
evaluates the effectiveness of these proposals for AO inter-
faces towards software maintenance by applying them to 35
different releases of a software product line called Mobile-
Media and 50 different releases of a web application called
Health Watcher. Our comparative analysis using quantita-
tive metrics proposed by Chidamber and Kemerer shows the
strengths and weaknesses of these AO interface proposals.
Our change impact analysis shows the design stability pro-
vided by each of these recent proposals for AO interfaces.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features — Control
structures

General Terms Design, Human Factors, Languages

Keywords aspect-oriented, implicit invocation, empirical
study, AO interfaces, annotations, events, open modules

1. Introduction
There has been a large body of recent case studies on the
software engineering (SE) benefits of aspect-orientation [7,
8, 12, 13, 16]. These works compute standard SE metrics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

such as coupling and cohesion and compare aspect-oriented
(AO) designs to object-oriented (OO) designs or use the met-
rics to determine stability and fault-proneness of the sys-
tems. However, most of these works focus on comparing
AspectJ [15] to Java and do not compare different AO in-
terfaces with each other, leaving developers to wonder about
the benefits of one proposal over others.

This work fills that gap. It studies and compares different
proposals for aspect-oriented interfaces to study how they
impact code changes. For this, we consider a software prod-
uct line for handling multimedia on mobile devices, called
MobileMedia [8] and a web-based health application, called
Health Watcher [16, 20]. Similar to previous in-depth anal-
yses by Figueiredo et al. [8] and Greenwood et al. [11], we
present metrics such as coupling and cohesion as well as an
analysis of the change propagation across releases. However,
unlike those studies we consider not only OO and pattern-
based pointcuts (PCD) but also three other proposals for AO
interfaces: open modules [1] (OM), annotation-based point-
cuts [13] (@PCD), and quantified, typed events [19] (EVT).

Results and Contributions There were several inter-
esting results to come out of our case study. First, the
annotation-based pointcut and quantified, typed event ap-
proaches showed several benefits, in terms of change impact,
over the standard pattern-based pointcut approach.

• The @PCD releases have 18% fewer changed pointcuts
than the PCD releases, due to a lack of fragile pointcuts.

• The total number of changed event types in MobileMedia
is 74% fewer than the total number of changed pointcuts.

Second, the PCD and @PCD releases showed benefit
over EVT for certain design rules.

• For the EVT releases, we had to be aware of and manu-
ally maintain design rules related to encapsulating entire
types (e.g. to make an entire class synchronized). The
PCD, @PCD, and OM releases used pointcuts to auto-
matically maintain such design rules.

• Such design rules show cases where patterns do not ex-
hibit fragile pointcut behavior, as the pointcuts are ex-
pected to capture all methods in the advised types.

143

Additionally, the EVT releases showed some benefit over
the @PCD releases due to its ability to uniformly access
context information when announcing events.

In summary, the key contributions of the case study per-
formed in this work are:

• The first rigorous study of different language features for
four different AO interfaces on substantial case studies.

• A suite of tools to automate measuring change propaga-
tion for PCD, OM, @PCD, and EVT. This automation
reduces the chance for errors in our empirical study.

• A new set of 21 MobileMedia and 30 Health Watcher
releases using @PCD, OM, and EVT interfaces.

• A change propagation analysis, that shows the stabil-
ity gained from designs using annotation-based pointcuts
and quantified, typed events in the face of fragile point-
cuts [8, 19, 22].

Next we describe some prior studies on AO interfaces.
In Section 3 we introduce the studied language designs.
We then present our case study in Sections 4–7. Then we
conclude with discussion in Section 8 and future work.

2. Related Work

Language Feature Comparison Studies Figueiredo et
al. [8] studied the effects of evolving software product lines
(SPLs) using aspects. Similar to our study, they measure
change propagation and a set of standard metrics (such as
coupling and cohesion). Their study showed some of the
pros and cons to using AO language features when com-
pared to OO features. For example, their study showed that
changes affecting core features (such as changing a manda-
tory feature into an optional feature) are not well suited for
AO. However, their study was limited to only one AO inter-
face (pattern-based pointcuts) and as such does not general-
ize to other AO interfaces.

Hoffman and Eugster [12] studied the coupling, cohe-
sion and separation of concerns for several projects with
implementations in Java, AspectJ, and explicit join points
(EJPs). Their study focused solely on implementing excep-
tion handling with each AO interface. Similar to our study,
their study examines software engineering metrics and com-
pares each AO interface against each other. Our study how-
ever looks at a total of 4 AO interfaces and multiple types of
crosscutting behavior (instead of just exception handling) in
two distinct systems with a total of 68 AO releases.

Kiczales and Mezini [13] studied seven different AO in-
terfaces for improving separation of concerns in AspectJ-
like languages. These included standard method calls, ex-
plicit join points using annotation-based pointcuts and im-
plicit pattern-based pointcuts. They analyze each mechanism
based on locality, explicit/implicit and ease of evolution and
then provide guidelines on when each mechanism should be
used in practice. Our work is similar in the sense that we an-

alyze several language interfaces. Their work uses a simple
example for comparison while our work examines 7 releases
of the MobileMedia [8] software product line and 10 releases
of the Health Watcher [11, 20] web application.

Maintenance Studies Ferrari et al. [7] studied several SPLs
to determine the possible language features that led to faults
in those systems. Their results show that obliviousness was
a key cause of faults in those systems and that pattern-based
pointcuts are not necessarily the main cause of faults in AO
designs. Their study focused on determining the cause of
faults in AO systems while our study examines the effects of
several AO interfaces on software maintenance.

Kulesza et al. [16] investigated the effect of AO inter-
faces on software maintenance by measuring standard soft-
ware engineering metrics. They measured separation of con-
cerns, coupling, cohesion, and size and concluded that in the
presence of widely-scoped design changes, the AO designs
exhibited superior stability and reusability compared to OO
designs. In their study, they look at 2 releases of the Health
Watcher application. Our study on the other hand examines
10 releases of Health Watcher and 7 releases of MobileMe-
dia, giving us more variability to examine and allowing us
to analyze the effects of varying types of interfaces added
to a system. Their work also focuses solely on pattern-based
pointcuts, whereas we consider several AO interfaces.

3. Background
In this section, we give an overview of each studied AO in-
terface using an example based on a pattern occurring fre-
quently in one of our case study candidates, MobileMedia.

Let us consider the class FileScreen shown in Fig-
ure 1. This class represents a screen presented to a user for
manipulating a file. When the saveCommand is requested,
the class saves the data to the specified file name. When
the deleteCommand is requested, the file is deleted. The
screen is shown on a display, which can be updated to
show different screens.

An example requirement for such a class is to consistently
display error messages to the user. There may be multiple
screens that deal with I/O and all such screens should con-
sistently handle errors that occur during that I/O by showing
the I/O error screen. Note that in some cases, the design-
ers have decided no error should be displayed (for example,
when deleting a file and it was deleted by another user be-
tween the time of request and handling of the command).

3.1 Using Pattern-Based Pointcuts
The aspect ExceptionHandler shown in Figure 1 (lines
12–21) implements the requirement to consistently handle
all exceptions using pattern-based pointcuts. This aspect
contains an around advice (lines 15–20), which when trig-
gered will properly handle the exception. The named point-
cut savepc (lines 13–14) matches the execution of the
method save, which had to be created in order to have a

144

join point capable of being advised by the aspect. This is an
example of quantification failure [24]. Note the advice uses
the display variable, which is not exposed as context in
the pointcut and is instead accessed indirectly through avail-
able context (the receiver object, screen).

1 @interface FileSaveEvent { }
2 class FileScreen {
3 Display display;

5 void handleCommand (Command c) {
6 if (c == saveCommand) { save (); }
7 else if (c == deleteCommand) { .. }
8 }
9 @FileSaveEvent

10 void save () { /* open the file and save data */ }
11 }
12 aspect ExceptionHandler {
13 pointcut savepc(FileScreen screen):
14 execution(* FileScreen.save ()) && this(screen) {
15 around(FileScreen screen): savepc(screen) {
16 try { proceed (); }
17 catch (FileNotFoundException e) {
18 screen.display.ShowFileError (e);
19 }
20 }
21 }

Figure 1. An example usage of pattern-based pointcuts [15]

3.2 Using Quantified, Typed Events
Quantified, typed events [19] allow programmers to declare
named event types. An event type declaration p has a return
type, a name, and zero or more context variable declarations.
These context declarations specify the types and names
of reflective information communicated between announce-
ment of events of type p and handler methods. These decla-
rations are independent from the modules that announce or
handle these events. The event types thus provide an inter-
face that completely decouples subjects and observers. An
example event type declaration is shown in Figure 2 (line 1).
The event FileSaveEvent declares that events of this
type make one piece of context available: the display.

1 void event FileSaveEvent { Display display; }
2 class FileScreen {
3 Display display;

5 void handleCommand (Command c) {
6 if (c == saveCommand) {
7 announce FileSaveEvent(display) {
8 // open the file and save data
9 }

10 } else if (c == deleteCommand) { .. }
11 }
12 }
13 class ExceptionHandler {
14 void handler(FileSaveEvent next) {
15 try { next.invoke(); }
16 catch (FileNotFoundException e) {
17 next.display().ShowFileError (e);
18 }
19 }
20 when FileSaveEvent do handler;
21 }

Figure 2. An example usage of quantified, typed events [19]

The class FileScreen declares and announces an
event of type FileSaveEvent using an announce expres-
sion (lines 7–9). Arbitrary blocks can be declared as the body
of an announce expression, which avoids quantification fail-
ure. The event type FileSaveEvent declares one con-
text variable, thus the announce expression binds the field
display to the context variable named display (line 7).

Finally, the names of event declarations can be utilized
for quantification in a binding declaration. A binding dec-
laration, binding in short, associates a handler method to a
set of events identified by an event type. The binding (line
20) says to run the method handler when events of type
FileSaveEvent are announced. This allows quantifying
over all announcements of FileSaveEvent with a suc-
cinct binding declaration, without depending on the modules
that announce events. Use of event names in bindings sim-
plifies them and avoids coupling observers with subjects.

Each handler method takes an event closure as the first
argument. An event closure [19] contains code needed to run
other applicable handlers and the original event’s code. An
event closure is run by an invoke expression. The invoke
expression in the implementation of the handler method (line
15) causes other applicable handlers and the original event’s
code to run before handling any exceptions.

3.3 Using Annotation-based Pointcuts
When using pattern-based pointcuts, the code being advised
by aspects is completely oblivious to those aspects. One
approach that sacrifices some obliviousness, which is quite
similar looking to quantified, typed events, is to mark each
advised join point with an annotation [13]. The aspects then
match based on that annotation.

For example, consider the code shown in Figure 1. The
gray portions of the code represent what was changed
from the pattern-based implementation. An annotation
FileSaveEvent was created (line 1) and then used
to mark the advised join point method save (line 10).
The pointcut for the aspect (line 14) was modified to be-
come execution(@FileSaveEvent * *(..)) and
match based on that annotation instead of matching against
the string representation of the method name.

3.4 Using Open Modules
Open modules [1] declare which join points are exposed to
aspects via a module definition. This puts the burden onto the
module maintainer to maintain relationships between join
points in the base code and pointcuts matching those points.

Ongkingco et al. [17] proposed an extended version of
open modules and an implementation for AspectJ [15]. We
use their implementation’s syntax for this example. Figure 3
is an example module for our exception handling require-
ment. The figure omits the class FileScreen and aspect
ExceptionHandler, as they are identical to Figure 1.

The module ExHandle (lines 3–7) for the class
FileScreen (Figure 1, line 4) exposes one named join

145

1 /* class FileScreen and aspect ExceptionHandler
2 same as in Figure 1. */
3 module ExHandle {
4 class FileScreen;
5 expose :
6 ExceptionHandler.savepc(FileScreen);
7 }

Figure 3. Exception handling with open modules [1, 17]

point in that class: the pointcut savepc defined in the as-
pect ExceptionHandler (Figure 1, line 6). The module
states that the aspect is allowed to match this join point. If
the signature of the pointcut changes in the aspect, the main-
tainer of the module would be required to update the module
definition as well.

4. Case Study Overview
To evaluate the proposed AO interfaces studied here, we ex-
amined them in the context of two applications: an existing
software product-line application called MobileMedia [8]
and an existing web application called Health Watcher [11,
20]. Thus, both cases are already vetted.

This section describes our experimental setup, the tech-
nique used to generate new releases of the studied applica-
tions and the tools developed and used for the study.

4.1 Experimental Setup
In order to perform this case study, we created a total of 51
modified releases of the MobileMedia and Health Watcher
applications, modified 2 compilers to automatically compute
various software engineering metrics and created a tool for
automatically measuring change propagation. All artifacts
and tools are available for download1. An important advan-
tage of these tools was that they removed the manual, and
often error-prone, steps from our empirical study. In this sec-
tion, we describe each tool in detail.

4.1.1 New Code Artifacts
The OO and pattern-based pointcut code artifacts for this
study were re-used from previous work [8, 11, 20]. Since
the artifacts using annotation-based pointcuts, open modules
and quantified, typed events did not previously exist for
either application, we created them. When creating these
artifacts, our objective was to keep other variables such
as design strategy constant between all versions and only
change the crosscutting feature.

For example, starting with release 4 of the Health Watcher
releases for AspectJ, an observer pattern aspect library was
used. This library was re-used in the annotation-based point-
cut, open modules and Ptolemy releases despite the fact that
Ptolemy’s quantified, typed events actually make this library
unnecessary (the events implement the observer pattern di-
rectly, so no library is needed). Removing this library how-

1 Tools/artifacts download:
http://ptolemy.cs.iastate.edu/design-study/

ever would change the base and aspect components in the
system and introduce extra variables into the analysis. Leav-
ing it in place meant the only difference between the Ptolemy
and other releases was the quantification mechanism used
for implementing crosscutting behavior.

Creating Annotation-based Pointcut Releases Using the
pattern-based pointcut releases as a starting point, we im-
plemented all 7 releases of MobileMedia and all 10 releases
of Health Watcher using an annotation-based pointcut syn-
tax [13]. We modified each pointcut in every aspect to match
based on a new annotation and for each join point in the
base code which matched the original pointcut, we anno-
tated the method with the new annotation. The names of the
annotations were chosen based on properties of the code, fol-
lowing the guidelines of Kiczales and Mezini [13]. The re-
sults were verified by comparing the weaving logs produced
by the standard AspectJ compiler (ajc) for both the origi-
nal pattern-based pointcut releases and the new annotation-
based pointcut releases.

Creating Open Module Releases To study the effect of
open modules [1], we implemented all 7 MobileMedia and
all 10 Health Watcher releases using the AspectJ-based im-
plementation of open modules [17]. Starting with the first re-
lease, we made a copy of the pattern-based pointcut release
and then created module definitions.

For each subsequent release, we copied the pattern-based
pointcut release and then copied and updated the module
definition(s) from the previous open modules release. Mod-
ules were updated to reflect changes in the base code and,
where appropriate, new modules were added. Modules were
created to follow the package structure of the system, fol-
lowing the recommendation of Ongkingco et al. [17].

Creating Quantified, Typed Event Releases For each quan-
tified, typed event [19] release we started with the pattern-
based pointcut release as a template, creating one handler
class for each aspect. For each advice body in an aspect, a
new handler method was added to the handler class. Event
types were created and event announcement added to emu-
late the pattern-based pointcut-advice semantics.

Note that since the initial work on Ptolemy [19], the
language has been extended to include support for inter-type
declarations. The syntax is identical to that of AspectJ and
the implementation was directly borrowed from the ABC
AspectJ compiler [2] and added to the Ptolemy compiler, as
the research version of the Ptolemy compiler is also based
on the JastAdd [5] extensible compiler framework.

4.1.2 Automation of Empirical Evaluation
Evaluating the benefits of the studied designs using standard
software engineering metrics and change propagation by
hand can be tedious and error-prone. To solve this problem,
we built several tools to automatically measure these metrics
and allow for consistency. These included several modified

146

http://ptolemy.cs.iastate.edu/design-study/

compilers and tools for measuring change propagation. Our
tool support builds on the open-source ABC [2] AspectJ
compiler. The ABC compiler was used for two reasons:
it has a JastAdd [5] extensible frontend available which
simplifies extensions and it contains support for the only
known implementation of open modules. The use of ABC
was also driven by the fact that the research version of
the Ptolemy compiler is also JastAdd-based and our tool
extensions could be re-used for both compilers (giving us
automated tool support for every studied language design).

Measuring Change Propagation To measure change prop-
agation, a JastAdd module was created to serialize the parsed
AST into an XML format. Since every compiler used in our
study is based on the JastAdd extensible compiler, the new
functionality was shared as a reusable module between these
compilers. This also ensured that change propagation mea-
surement was done consistently.

A separate tool was created that takes two of these XML
files as input, representing two versions of the same code
tree, and compares the two trees to determine which compo-
nents are new, were removed, or have changed. We consid-
ered a renamed component (including moving it to another
package) as a change (instead of a remove and an add) and
manually identified such renames in a separate XML file to
aid the tool.

The tool is capable of determining changes at the granu-
larity of classes, aspects, event types, annotations, and point-
cuts. The results were then manually verified against diffs of
the MobileMedia code releases for Java and AspectJ to en-
sure the accuracy of the tool.

Measuring Software Engineering Metrics To measure the
metrics suite proposed by Chidamber and Kemerer [4] for
coupling and cohesion, we created another JastAdd module
which measures and reports these metrics. This module was
shared and used in each compiler in our study.

Chidamber and Kemerer propose that a component is
coupled to another component if it accesses a field or calls a
method from the other component. They also propose a class
is cohesive if the operations of the class operate on similar
attributes of the class.

We used the previous results from Figueiredo et al. [8]
as a guide for our implementation, comparing the values for
the OO and pattern-based pointcut MobileMedia releases to
their previously published results. No extension was neces-
sary for the annotation-based pointcuts, as the existing OO
and pattern-based pointcut metrics apply directly. The met-
rics suite was extended to support open modules and quan-
tified, typed events in a straight-forward manner, similar to
the pattern-based pointcut extensions.

For open modules releases, modules are treated like
classes and join point exposures treated similar to an aspect
pointcut. For quantified, typed events, event type declara-
tions are treated like a class with context access considered

a field of the event type. Announcing an event is treated like
a method call.

4.2 Threats to Validity
In this section we discuss internal and external threats to the
validity of our case study.

4.2.1 Internal Validity
To reduce the risk of bias when selecting languages for study,
we first decided the focus of the study to be examining
the effect of AO interfaces for minimizing pointcut fragility
and change propagation. Then we categorized existing AO
interfaces by how they achieve quantification.

In the first category, quantification is controlled solely by
aspects and pattern-based pointcuts was the most relevant
choice in this category as it is used in industry and also
highly researched. In the second category, quantification is
controlled solely by the base code. In this category, there
were two candidates: aspect-aware interfaces [14] and open
modules [1]. We picked open modules because an imple-
mentation was available for it. In the third category, quantifi-
cation is controlled by an intermediary between base compo-
nents and aspects. There were several candidates: XPIs [24],
annotation-based pointcuts, implicit invocation with implicit
announcements [21] and quantified, typed events [19]. We
picked quantified, typed events due to our familiarity with
its compiler infrastructure and also picked annotation-based
pointcuts as the language was not developed by the authors
and compiler support was readily available.

The code artifacts created for this study were the Mobile-
Media and Health Watcher (releases for annotation-based
pointcuts (@PCD), open modules (OM), and quantified,
typed events (EVT). To reduce the risks associated with cre-
ating these artifacts, we attempted to keep other variables
constant (such as design strategy used) and only vary the
quantification mechanism used.

We reduced the risk associated with creating the EVT,
@PCD, and OM releases by first basing them off the ex-
isting pattern-based pointcut releases (which were not cre-
ated by any of the authors). Next, we used recommendations
by experts in each respective language in their published
work [13, 17, 19] to modify the pattern-based pointcut re-
leases and create the releases for the new AO interfaces.

For example, we followed the guidelines given by the
implementers of the open modules implementation used to
create one module definition for each package [17]. We
also followed a naming scheme proposed by Kiczales and
Mezini [13] when generating annotations for the @PCD
releases, which was shown to offer design stability.

4.2.2 External Validity
The main concern regarding external validity that we identi-
fied is the studied systems may not faithfully represent soft-
ware in industry. This risk is reduced since the applications
are implemented in both Java and AspectJ, which is a rep-

147

resentative approach in the AO domain. Further, MobileMe-
dia is a software-product line comprised of 8 releases based
on industry-strength technologies for mobile systems, such
as the Java Mobile Information Device Profile (MIDP) and
Mobile Media API (MMAPI). Additionally, this system has
been studied extensively [7–9, 11].

Similarly, Health Watcher is a real-world application used
for reporting health complaints. This system uses several
industrial strength technologies/techniques, such as persis-
tence mechanisms, remote invocation (RMI), concurrency,
JDBC, etc.

5. Case Study: MobileMedia
This section contains our first studied project, a software
product-line application called MobileMedia [8]. Mobile-
Media is an extension of MobilePhoto [25], which was de-
veloped to study the effect of AO designs on software prod-
uct lines (SPL). MobileMedia is an SPL for applications that
manipulate photos, music, and videos on mobile devices.
MobileMedia extends MobilePhoto to add new mandatory,
optional and alternative features.

5.1 Change Propagation Analysis
A key benefit of a modular software design is in its ability to
hide design decisions that are likely to change [18]. Thus, we
consider the number of changed components as a result of a
changed design decision to be an important comparator for a
software design. To quantify this, similar to Figueiredo et
al. [8], we measured the number of added, removed, and
changed components in each system for each release.

5.1.1 Component Changes
The changes to base components are shown in Figure 4. This
table includes the pure Java releases (OO), pattern-based
pointcut releases (PCD), annotation-based pointcut releases
(@PCD), open modules releases (OM), and the quantified,
typed event releases (EVT). This table considers Java classes
and interfaces, aspects, and open modules.

Note that the declarations of annotations and event types
are not included in the counts for this table, as they are
measured separately and considered in the next section to
give a direct comparison to pointcuts.

Components Added For all releases, new components
added in the pattern-based pointcut (PCD) releases were also
added to the annotation-based pointcut (@PCD), open mod-
ules (OM), and quantified, typed event (EVT) releases. Note
that the @PCD values are identical to the PCD values.

In R2, R6, R7, and R8, the number of added components
differs for the open modules (OM) releases compared to
PCD (marked in bold) due to the addition of modules in each
of those releases. All aspects and base components in the
OM releases are identical to the PCD releases.

In R4, the releases with pointcuts (PCD, @PCD, and
OM) added an aspect that only handles precedence. This

R2 R3 R4 R5 R6 R7 R8 Total

C
om

po
ne

nt
s

A
dd

ed

OO 9 1 0 5 7 10 6 38
OM 17 2 3 6 11 17 22 78
PCD 13 2 3 6 8 14 16 62

@PCD 13 2 3 6 8 14 16 62
EVT 13 2 2 6 8 14 16 61

Differences to PCD marked in BOLD blue

R
em

ov
ed

OO 0 0 0 0 0 1 1 2
OM 1 0 0 0 0 1 0 2
PCD 1 0 0 0 0 1 0 2

@PCD 1 0 0 0 0 1 0 2
EVT 1 0 0 0 0 1 0 2

C
ha

ng
ed

OO 5 8 5 8 6 19 17 68
OM 5 14 6 13 6 34 26 104
PCD 5 10 2 10 5 27 18 77

@PCD 5 8 2 11 7 27 20 80
EVT 5 9 1 8 5 25 20 73

Figure 4. Base components change propagation in Mobile-
Media for each release

aspect was not added in the quantified, typed event release,
as precedence in that release is controlled by the order of
registering handler classes. This registration occurs inside
the main class.

Components Removed In all 7 changed releases (R2–R8),
the AO releases all have the same components removed. In
R2, the PCD release removed a class BaseThread and
in R8 the OO release removed the class SplashScreen.
Since we did not implement either of the OO or PCD re-
leases, we simply mimicked these changes in the @PCD,
OM, and EVT releases.

Components Changed The difference between the com-
ponents changed for the pattern-based pointcuts (PCD) and
open modules (OM) releases is due entirely to changes in
the modules, as once again all aspects and base components
in the OM releases are identical to the PCD releases. Start-
ing with R3, each release modified modules from the prior
release due to changes in the aspects.

In R3, the PCD release changes two more components
(UtilAspectEH and ControllerAspectEH) than the
@PCD release due to the fragility of the pointcuts in those
components. However, in R5, R6, and R8 the @PCD re-
leases change more base components than the PCD releases,
despite avoiding the fragile pointcut problem with existing
pointcuts. This is due to the need to annotate the base code
with new annotations.

The difference in changes for R3 between @PCD and
EVT was due to a changed event type requiring a change
in the signature of the handler method.

For R4 however, the difference in values represents two
important differences in the AO interfaces. First, the changed
component in EVT was due to adding a precedence declara-
tion to a handler (in @PCD this was a new aspect, not a
changed aspect). Second, the two changed components in
PCD and @PCD were from refactoring base code to expose

148

join points. EVT did not need to perform such refactorings
as it allows arbitrary statements as event announcements.

Of the remaining 7 changes that occurred in @PCD and
not EVT, 3 were due to updating the precedence aspect,
1 was due to exposing join points and the remaining 3
were from changes in context (which for EVT shows up as
changes in the event types).

5.1.2 Quantification Mechanism Changes
The change propagation results are shown in Figure 5. The
table lists the number of pointcuts added, changed, or re-
moved for the open modules (OM), annotation-based point-
cut (@PCD), and pattern-based pointcut (PCD) releases.
The number of annotations added, changed or removed are
shown for the @PCD releases and the number of event types
added, changed, or removed are shown for the EVT releases.

R2 R3 R4 R5 R6 R7 R8 Total

A
dd

OM 87 19 18 6 21 53 58 262
PCD 64 12 13 4 15 39 43 190

@PCD 64 12 13 4 15 39 43 190

R
em

ov
e Differences to PCD marked in BOLD blue

OM 0 0 0 0 2 12 11 25
PCD 0 0 0 0 1 6 8 15

@PCD 0 0 0 0 1 6 8 15

C
ha

ng
e

OM 0 10 0 29 2 104 9 154
PCD 0 9 0 18 2 74 4 107

@PCD 0 4 0 13 2 65 4 88

R2 R3 R4 R5 R6 R7 R8 Total

A
dd

@PCD 24 7 1 2 6 11 5 56
EVT 16 4 0 2 6 5 3 36
Differences to EVT marked in BOLD red

R
em

@PCD 0 0 0 0 1 0 0 1
EVT 0 0 0 0 0 0 0 0

C
h @PCD 0 1 0 0 0 0 0 1

EVT 0 2 0 1 0 12 1 16

Pointcuts

Events/Anns

Figure 5. AO interfaces change propagation in MobileMe-
dia for each release

Pointcuts The pointcuts added, removed, and changed were
measured for all releases with pointcuts (PCD, @PCD, and
OM) and there are two sets of comparisons to note. First,
the OM releases have more pointcuts added and changed
in almost every release (marked in bold) when compared
to the PCD releases. This is due to the additional pointcuts
contained in the module definitions.

The second comparison is between the PCD and @PCD
releases. In three releases, the @PCD releases have fewer
changed pointcuts. This occurred due to the gained stabil-
ity from using the annotation-matching pointcut syntax. In
total, the @PCD releases have almost 18% fewer changed
pointcuts compared to the PCD releases.

Annotations and Events The annotations for the @PCD
releases and the event types for the EVT releases are similar
in that both mark join points in the base code for aspect code
to advise. The change propagation of these two mechanisms

is also similar. The differences between them (marked in
bold) occur for several reasons.

The event types in EVT contain typed context declara-
tions, while annotations do not contain any context. As such,
when types in the base code (used as context) change, any
event type referencing those types must also be updated.
This is why the annotations have no changes in any @PCD
release (the change in R3 was a renamed annotation) and the
EVT releases have several changes.

In R2, the difference in the number of added event types
and annotations is due to EVT’s lack of quantification fail-
ure. For example, the @PCD release had to create an anno-
tation to mark a join point for use in a within pointcut due
to quantification failure. The EVT release was also able to
re-use more event types than the @PCD release, saving the
addition of 7 event types.

Pointcuts vs Annotations/Events In R7 a mandatory feature
was turned into two alternative features, leading to changes
in the base components which propagated to the event types
and event handlers for the EVT release. 10 of the 12 resulting
event type changes were due to the renaming of base com-
ponents passed as context in those events types. Consider on
the other hand the PCD release which required changing 38
of the 74 pointcuts due to the fragility of those pointcuts.

In R8, several new alternate features were added to the
system. The EVT release was able to re-use several exist-
ing event types, leading to the addition of only 3 new event
types. Similarly, the @PCD release only required the ad-
dition of 5 new annotations. The PCD release however re-
quired adding 43 new pointcuts to the system.

In general, note that the total number of added event types
and annotations are 81% and 70% fewer, respectively, than
the total number of added pointcuts for PCD releases. Also
note that the total number of changed event types is 85%
fewer than the total number of changed pointcuts in the PCD
releases and 82% fewer than the total pointcuts changed in
the @PCD releases.

5.1.3 Summary
In summary, for some releases quantified, typed events
showed an improved ability to withstand changes in com-
ponents. In particular, for releases where significant refac-
toring in the base components took place, the EVT designs
were able to reduce the impact of these changes in the base
code from the handlers. Additionally,

• the total number of added event types and annotations
are less than a third the number of pointcuts added in the
PCD releases, showing that event types and annotations
are re-used by multiple pointcuts,

• the total number of changed event types is 85% fewer
than the total number of changed pointcuts in the PCD
releases and 82% fewer than the total pointcuts changed
in the @PCD releases,

149

• the @PCD releases have almost 18% fewer changed
pointcuts compared to the PCD releases due to the lack
of fragile pointcuts, and

• the EVT and @PCD releases were both able to efficiently
re-use events/annotations leading to fewer additions in
releases adding alternate features.

5.2 Software Engineering Metrics
As previously discussed, the main difference between most
AO interfaces and quantified, typed events is that the de-
pendency between components that announce events is ex-
plicitly stated using announce expressions that name event
types. With most AO interfaces, this dependency is implic-
itly defined by the language semantics. Explicitly naming
event types or annotations introduces coupling. The main
goal of this section is to study the change in coupling be-
tween components. In order to perform this evaluation, we
used a subset of the metrics suite proposed by Chidamber
and Kemerer [4], Fenton and Pfleeger [6], and subsequently
refined by Garcia et al. [8, 10].

R2 R3 R4 R5 R6 R7 R8

C
B

C

OO 32 40 40 65 80 103 131
OM 35 50 59 94 121 159 217
PCD 35 50 59 94 121 159 217

@PCD 82 106 122 161 200 255 332
EVT 74 100 120 159 203 271 371

LC
O

O

OO 123 194 224 241 296 311 365
OM 147 244 266 259 369 502 534
PCD 147 244 266 259 369 502 534

@PCD 147 244 266 259 369 502 534
EVT 123 162 171 257 365 426 539

Figure 6. Coupling and Cohesion for MobileMedia

Coupling Coupling between components (CBC) [4] is
a measurement of coupling. A component is coupled to
another component if it accesses a field or calls a method
on it. Figure 6 shows the results of our measurements.

The @PCD and EVT releases all have upwards of twice
as much explicit coupling in the system compared to the
PCD and OM releases. This is due to the explicit marking
of join points (with annotations and event type announce-
ments). However, realize that the added coupling is not cou-
pling between aspects and base code but rather aspects to
event types and base code to event types. Thus, this coupling
only creates a maintenance issue if an event type changes
(such as in R7).

Cohesion Lack of cohesion in operations [4] (LCOO) is
a measurement of cohesion of the classes in the system,
based on how similar operations use attributes of the class.
If methods of a class operate on the same attributes, the class
is said to be cohesive and has a lower LCOO value. LCOO
for all releases was measured and is shown in Figure 6. Note
that the PCD, @PCD, and OM releases all have the same
values due to having the same methods/fields in classes and
ITDs/advice in aspects.

In general, quantified, typed events have more cohesion
(indicated by lower LCOO) than the pointcut-based ap-
proaches. This is mostly due to the lack of needing to refac-
tor the base code to expose join points to the aspect code.
Such refactored code often only works on a small sub-set of
the fields in the class, making the class less cohesive.

R2 R3 R4 R5 R6 R7 R8

LO
C

OO 1159 1314 1363 1555 2051 2523 3016
OM 1337 1570 1700 1928 2474 3207 3999
PCD 1276 1494 1613 1834 2364 3068 3806

@PCD 1452 1723 1852 2094 2664 3461 4257
EVT 1427 1669 1781 2050 2646 3398 4254

N
O

C

OO 24 25 25 30 37 46 51
OM 31 33 36 42 53 69 91
PCD 27 29 32 38 46 59 75

@PCD 51 60 64 72 85 109 130
EVT 47 53 56 64 78 96 115

N
O

A

OO 62 71 74 75 106 132 165
OM 82 99 108 112 149 187 237
PCD 62 72 76 77 110 139 177

@PCD 62 72 76 77 110 139 177
EVT 71 92 96 101 144 175 217

N
O

O

OO 124 140 143 160 200 239 271
OM 143 169 179 197 247 308 369
PCD 143 169 179 197 247 308 369

@PCD 143 169 179 197 247 308 369
EVT 142 167 177 196 245 302 378

Figure 7. The measured size metrics for MobileMedia

Size Metrics Figure 7 shows the number of components
(NOC) and total lines of code (LOC) for each release. The
number of components includes classes and interfaces for all
releases. For the PCD, @PCD, and OM releases it also in-
cludes aspects. For OM it includes modules, @PCD includes
annotations and EVT includes event types.

Lines of code were measured using a tool2 that ignores
comment and whitespace lines. All other lines were included
and every component from NOC was included.

Number of operations (NOO) was measured as the to-
tal number of methods in classes, introduced methods in as-
pects, advice bodies in aspects and handler methods in event
handlers. Number of attributes (NOA) was measured as the
total number of fields in classes or aspects (including inter-
type declared fields) and the number of context variables in
quantified, typed events.

As one would expect from creating so many events and
annotations, the lines of code and number of components is
higher for both @PCD and EVT. The number of attributes
is also higher for EVT due to counting event type context
variables as attributes.

Summary In summary, our results show the total coupling
is higher in the annotation-based pointcut and quantified,
typed event releases due to the interface added between base
components and aspects. The increased coupling is a trade-
off for the stability gained by the interface between aspect
and base code, as the previous section clearly demonstrates.

2 Retrieved from: http://reasoning.com/downloads.html

150

http://reasoning.com/downloads.html

6. Case Study: Health Watcher
This section contains our second studied project, a web-
based application called Health Watcher [11, 16, 20]. Health
Watcher is an application for users to file health complaints.
The system was initially developed in 2001 and has under-
gone 9 releases to add new features and fix previous bugs.

6.1 Change Propagation Analysis
As stated in the previous case study, we consider the number
of changed components as a result of a change in a design
decision to be an important comparator for a software de-
sign. This section performs our analysis on Health Watcher.

6.1.1 Component Changes
The changes to base components are shown in Figure 8.
This table includes the Java releases (OO), pattern-based
pointcut releases (PCD), annotation-based pointcut releases
(@PCD), open modules releases (OM), and the quantified,
typed event releases (EVT). This table considers Java class-
es/interfaces, aspects, and open modules.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total

C
om

po
ne

nt
s

A
dd

ed

OO 88 4 12 2 3 4 4 4 12 5 138
OM 106 12 16 4 0 4 4 2 12 6 166
PCD 101 11 16 3 0 4 4 2 12 6 159

@PCD 101 11 16 3 0 4 4 2 12 6 159
EVT 100 10 16 3 0 4 4 2 12 6 157

Differences to PCD marked in BOLD blue

R
em

ov
ed

OO 0 0 0 0 1 0 0 0 0 2 3
OM 0 0 0 0 0 0 0 0 0 1 1
PCD 0 0 0 0 0 0 0 0 0 1 1

@PCD 0 0 0 0 0 0 0 0 0 1 1
EVT 0 0 0 0 0 0 0 0 0 1 1

C
ha

ng
ed

OO 0 22 6 15 16 2 27 3 23 48 162
OM 0 27 9 9 1 3 27 5 23 55 159
PCD 0 25 8 7 1 2 27 3 22 52 147

@PCD 0 26 8 29 1 2 27 3 23 55 174
EVT 0 26 8 32 1 2 27 3 23 54 176

Figure 8. Base components change propagation in Health
Watcher for each release

Components Added For all releases, new components
added in the pattern-based pointcut (PCD) releases were also
added to the annotation-based pointcut (@PCD), open mod-
ules (OM), and quantified, typed event (EVT) releases. Note
that the @PCD values are identical to the PCD values (as
annotations are considered separately in Figure 9).

In R1, R2, and R4, the number of added components
differs for the open modules (OM) releases compared to
PCD (marked in bold) due to the addition of modules in each
of those releases. All aspects and base components in the
OM releases are identical to the PCD releases.

In R1, an aspect that only contains a declare parents
statement was not added in the EVT release. This statement
failed to compile with the abc based intertype declarations
implementation. Instead, we manually modified the base
classes to add the Serializable interface to the 2 types. This

particular aspect did not change in the PCD releases, thus our
work-around did not cause problems in later EVT releases.

In R2, the releases with pointcuts (PCD, @PCD, and
OM) added an aspect that only handles precedence. This
aspect was not added in the quantified, typed event release,
as precedence in that release is controlled by the order of
registering handler classes. This registration occurs inside
the main class or using annotations in the handler classes.

Components Removed Similar to MobileMedia, in all 9
changed Health Watcher releases (R2–R10), the AO releases
all have the same components removed.

Components Changed Unlike MobileMedia where the
difference between the components changed for the pattern-
based pointcuts (PCD) and open modules (OM) releases was
due entirely to changes in the modules, in Health Watcher
some of the aspects also were modified in order to give
anonymous pointcuts names (for the modules to reference).

Also unlike MobileMedia, the components changed for
@PCD and EVT are more in Health Watcher for R4 than
the PCD release due to needing to add annotations and event
announcements in base code. This was because fewer base
components changed in the PCD release but over 20 had to
be modified to add annotations and event announcement.

6.1.2 Quantification Mechanism Changes
The change propagation results in terms of modularization
techniques are shown in Figure 9. The table lists the number
of pointcuts added, changed, or removed for the open mod-
ules (OM), annotation-based pointcut (@PCD), and pattern-
based pointcut (PCD) releases. The number of annotations
added, changed or removed are shown for the @PCD re-
leases. It also lists the number of event types added, changed,
or removed for EVT.

Pointcuts Again, the pointcuts added, removed, and
changed were measured for all releases with pointcuts (PCD,
@PCD, and OM). Once again, the OM releases have more
pointcuts added and changed compared to the PCD releases,
as the module definitions also contain named pointcuts.

Unlike the MobileMedia case study, Health Watcher had
relatively stable pointcuts. As such, the only benefit ob-
served in the @PCD releases occurred in R2, where 3 fewer
pointcuts were changed.

Annotations and Events Unlike the MobileMedia case
study, annotations and event types in Health Watcher per-
form roughly the same in all releases, with the exception of
R3. In this release, there were several (4) events that had to
be duplicated: once with a void return type and once with a
non-void return type. This was due to the advice being ap-
plied to multiple methods (with differing return types). The
PCD releases simply marked all methods with the same an-
notation and the aspect was able to advise them all, without
regard to the return type. This problem also accounts for the
extra events in R1 and R2.

151

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total

A
dd

OM 57 16 36 16 0 0 0 6 0 30 161
PCD 28 11 12 10 0 0 0 6 0 20 87

@PCD 28 11 12 10 0 0 0 6 0 20 87

R
em

ov
e Differences to PCD marked in BOLD blue

OM 0 0 0 0 0 0 0 6 6 0 12
PCD 0 0 0 0 0 0 0 4 4 0 8

@PCD 0 0 0 0 0 0 0 4 4 0 8

C
ha

ng
e

OM 0 4 0 0 0 0 1 2 6 3 16
PCD 0 4 0 0 0 0 1 0 5 3 13

@PCD 0 1 0 0 0 0 1 0 5 3 10

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total

A
dd

@PCD 13 2 2 4 0 0 1 0 0 6 28
EVT 14 4 9 5 0 0 0 0 0 10 42

Differences to EVT marked in BOLD red

R
em

@PCD 0 0 0 0 0 0 0 0 0 0 0
EVT 0 0 0 0 0 0 0 0 0 0 0

C
h @PCD 0 0 0 0 0 0 0 0 0 0 0

EVT 0 1 0 0 0 0 0 0 0 0 1

Pointcuts

Events/Anns

Figure 9. AO interfaces change propagation in Health
Watcher for each release

Pointcuts vs Annotations/Events In general, note that the
total number of added event types and annotations are 52%
and 68% fewer, respectively, than the total number of added
pointcuts for PCD releases. This result is similar to the
MobileMedia results.

6.1.3 Summary
In summary, the Health Watcher case study showed similar
results to the MobileMedia case study. The noticeable differ-
ences between the studies were due to the fact that the Health
Watcher study tended to simply add new aspects and avoid
changing existing aspects and base code as much as possible
while the MobileMedia study made significant modifications
(in order to change mandatory features into optional ones).

6.2 Software Engineering Metrics
The software engineering metrics for Health Watcher fol-
lowed the same trends as for Mobile Media and thus were
omitted for space reasons.

7. Key Observations
We observed several key benefits to the studied designs.
These benefits are described in detail in this section.

7.1 Inter-Type Declarations
A static feature of AspectJ that allows adding fields/methods
to other classes is inter-type declarations (ITDs) [15]. This
feature was recently added to the Ptolemy language (with
the same syntax as AspectJ) and thus available for all studied
AO interfaces.

In MobileMedia, ITDs are used mostly for two purposes:
to add additional data (fields) to existing types (and manipu-

late that new data) and to provide alternate implementations
of features. ITDs first show up in R3 and are heavily used in
later releases which contain alternate features. For example
in R8, ITDs are defined in 12 out of the 22 aspects (54%).

In Health Watcher, ITDs are used to add methods for
timestamping complaints, starting the remote server for RMI
and to implement a singleton pattern. In the system, a total
of 3 out of 26 aspects (11.5%) contain ITDs.

7.2 Declare Parents
Similar to ITDs, type hierarchies in the base components can
be extended in a modular manner using AspectJ’s declare
parents. This feature seems well suited to help handle alter-
nate features in a system, but was not heavily used by the
current design of the MobileMedia product-line.

In MobileMedia, only R8 contains declare parents state-
ments to extend two type hierarchies by adding a new super-
class to the base components. For the PCD, @PCD, and OM
releases these effects were modular. For the EVT releases,
the base components had to be modified (due to a compiler
bug) and these changes were non-modular, but not invasive.

In Health Watcher, declare parents statements appear in 6
out of 26 (23%) aspects. The statements are used in several
places to place marker interfaces onto a set of types, which
are then advised by the pointcut patterns. This was a useful
pattern in this system and while Ptolemy supports declare
parents statements, the lack of a pattern form of quantifica-
tion meant that these marker interfaces were not useful in
those releases.

7.3 Quantification Support
Quantified, typed events give the programmer the ability to
add event announcement for any arbitrary statement in the
base components. The pattern and annotation-based point-
cut approaches can only advise join points available in the
provided pointcut language, such as method executions or
calls. This often results in what Sullivan et al. called quan-
tification failure [24] and is caused by incompleteness in the
language’s event model. Quantification failure occurs when
the event model does not implicitly announce some kinds of
events and hence does not provide pointcut definitions that
select such events [24].

In MobileMedia, we observed several instances of quan-
tification failure. For example, in R2 the aspects needed to
advise a while loop and similarly in R3 the aspects needed
to advise a for loop. To accommodate this, all pointcut-based
releases (PCD, @PCD, OM) refactor the base components,
for example moving these loops into newly added methods.
By R8, a total of 5 refactorings were made to expose join
points. This accounts for approximately 5% of the advised
join points. The EVT releases did not suffer from this prob-
lem and thus these refactorings were not necessary.

In Health Watcher, we observed a different form of quan-
tification failure. However, this time the failure was in the
EVT releases and related to the handling of design rules

152

that encapsulate entire types. As previously mentioned, the
PCD releases used declare parents statements to add marker
interfaces to several types. The aspects then used pattern
pointcuts to target all method executions in sub-types of that
marker interface. This was used for things such as making
all methods in a class synchronized. Figure 10 shows the
implementation for this design rule in PCD, which uses the
marker interface SynchronizedClasses on two types
and around advice to wrap the execution of all methods in
those types in a synchronized statement.

1 private interface SynchronizedClasses {};
2 declare parents: EmployeeRepositoryArray ||
3 ComplaintRepositoryArray implements SynchronizedClasses;
4 Object around(Object o): this(o) &&
5 execution(* SynchronizedClasses+.*(..)) {
6 synchronized(o) { return proceed(o); }
7 }

Figure 10. Pattern-based pointcut version of a design rule to
encapsulate 2 types and make all their methods synchronized

For the EVT releases, we had to manually track this de-
sign rule across the releases. This meant that if the types in-
volved added new methods we would need to remember the
design rule and ensure those new methods also announced
the proper event. For the Health Watcher example, this main-
tenance scenario did not occur (as the types involved did not
evolve across releases) but it is important to note that we still
had to be aware of the design rules and check them in each
release - something the PCD releases did not require.

7.4 Fragile Pointcut Problem
As mentioned by Figueiredo et al. [8], the pattern-based
pointcut releases of MobileMedia suffer from a fragile point-
cut problem [8, 19, 22]. This could be observed in R7, where
a mandatory feature PHOTO is generalized into two alterna-
tive features PHOTO or MUSIC. This required modifying
many pointcuts previously relying on an implicit matching
of signatures in the base components.

The renaming of the base components itself is not a prob-
lem in the EVT releases and in fact requires no modification
of events or handlers; the handlers will match on the event
type which remains unchanged. If the event type is renamed
(for example, to remain consistently named to the base com-
ponents) then all handlers and events for that event type must
be updated accordingly. The key difference in these two sce-
narios is that in the PCD case, the developer must be aware
of which pointcuts matched the given join point (which can
be aided with tools such as AJDT) while in the EVT case,
the compiler will specify type errors for every publisher and
subscriber for that event type, eliminating fragile pointcuts.

Since @PCD releases are structurally similar to the EVT
releases, they also benefited from a lack of fragile pointcuts.
Similarly, the OM releases also benefited from a lack of
fragile pointcuts.

Fragile pointcuts were observed in releases 3, 5, and 7.
In total, 19 out of the 107 pointcuts changed (18%) across

all releases were due to fragile pointcuts. This problem has
already been demonstrated in small examples, however, its
appearance in PCD releases of MobileMedia presents real
evidence that it could affect maintenance of PCD systems.
The ability of EVT, @PCD, and OM to mitigate these risks
shows that such problems, when they occur in practice, can
be solved using these different AO interfaces.

7.5 Access to Context Information
AspectJ provides means to access context information from
advised join points [15]. The type of information available
to advice however is limited by the language, such as the
receiver object, method arguments, etc. In MobileMedia and
Health Watcher, there were several instances where this lack
of flexible availability to context added complexity to the
system. For example, the exception handling aspects needed
access to a field in the controller class being advised. Thus,
the field needed marked public, a getter method added, or the
aspect marked as privileged. Either way, the aspect becomes
coupled to the interface of the advised class. This was a
problem for all pointcut-based releases (PCD, @PCD, OM).

This was also a key difference between the @PCD and
EVT releases. While the @PCD releases provided similar
benefits in terms of preventing fragile pointcuts, in terms of
context exposure the annotations were not a sufficiently ex-
pressive quantification mechanism when compared to EVT.

8. Discussion
It is important to note that our measurements of the open
module releases are all based on the AspectJ-based imple-
mentation of open modules [17] (which to our knowledge
is the only open modules implementation available). Thus,
some of the measured differences we see are due not neces-
sarily to open modules as an AO interface but instead due to
this specific implementation.

The use of named pointcuts in this implementation re-
quired copying the full pointcut signature to the module defi-
nition. This has the effect of requiring updating two locations
(the original pointcut definition and the module) if that sig-
nature changes. The pointcut signatures change any time the
exposed context types changed. Any difference in the num-
ber of changed pointcuts between the PCD and OM releases
of Figure 5 and Figure 9 are a result of this problem.

Specifically, for MobileMedia this was a large problem in
two releases (5 and 7) as a number of base components were
renamed. This renaming caused multiple pointcuts to change
and that effect was duplicated in the module definitions.
This problem does not necessarily manifest itself in Open
Modules, as originally defined by Aldrich but is an artifact
of this specific implementation.

9. Conclusion and Future Work
Finding a good separation of concerns is an important prob-
lem. It is vital for improving the reliability and evolution

153

of software systems. New modularization techniques en-
able improved separation of concerns. Their invention and
refinement is thus equally important for maintaining intel-
lectual control on the growing complexity of software sys-
tems. Pattern-based [15] and annotation-based [13] point-
cuts, open modules [1, 17], and quantified, typed events [19]
are examples of such modularization mechanisms.

In this paper, we presented a rigorous evaluation of these
AO interfaces on two already well-substantiated case stud-
ies [8, 20]. The results of our change propagation and anal-
ysis using standard design metrics [4, 6, 10] show that
annotation-based pointcuts and quantified, typed events help
limit the impact of change, at the cost of increased explicit
coupling. This coupling however is generally not a problem
as it is to interface-like entities (annotations and event types),
not between base components and/or aspects.

Despite the similarites, quantified, typed events have sev-
eral benefits over annotation-based pointcuts. Event types
are flexible and do not suffer from quantification failure. Ad-
ditionally, the uniform access to context information avoided
the need to break encapsulation by exposing fields to make
them available to the aspects.

In the future we plan to perform a net options value anal-
ysis [3, 23] to investigate the trade-off between the higher
coupling of the annotation-based pointcut and quantified,
typed event releases and the stability provided by their in-
terfaces between aspect and base code.
Acknowledgments This work was supported in part by the
NSF grant CCF-10-17334. Mehdi Bagherzadeh and Youssef
Hanna provided useful comments and discussion.

References
[1] J. Aldrich. Open Modules: Modular reasoning about advice.

In ECOOP ’05, pages 144–168, 2005.

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhotak, O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. abc: an extensible AspectJ compiler. In AOSD,
pages 87–98, 2005.

[3] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The
Power of Modularity. MIT Press, 2000.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE TSE, 20(6):476–493, 1994.

[5] T. Ekman and G. Hedin. The JastAdd system — modular
extensible compiler construction. Sci. Comput. Program., 69
(1-3):14–26, 2007.

[6] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. Course Technology, 1998.

[7] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E. Figueiredo,
N. Cacho, F. Lopes, N. Temudo, L. Silva, S. Soares,
A. Rashid, P. Masiero, T. Batista, and J. Maldonado. An ex-
ploratory study of fault-proneness in evolving aspect-oriented
programs. In ICSE’10, pages 65–74, 2010.

[8] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Cas-

tor Filho, and F. Dantas. Evolving software product lines with
aspects: an empirical study on design stability. In ICSE, 2008.

[9] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhāo, A. Garcia,
and C. M. F. Rubira. Exceptions and aspects: The devil is in
the details. In FSE, 2006.

[10] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lu-
cena, and A. von Staa. Modularizing design patterns with as-
pects: a quantitative study. In AOSD, pages 3–14, 2005.

[11] P. Greenwood, T. T. Bartolomei, E. Figueiredo, M. Dósea,
A. F. Garcia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba,
U. Kulesza, and A. Rashid. On the impact of aspectual
decompositions on design stability: An empirical study. In
ECOOP, pages 176–200, 2007.

[12] K. J. Hoffman and P. Eugster. Towards reusable components
with aspects: an empirical study on modularity and oblivious-
ness. In 30th International Conference on Software Engineer-
ing (ICSE), pages 91–100, 2008.

[13] G. Kiczales and M. Mezini. Separation of concerns with
procedures, annotations, advice and pointcuts. In ECOOP ’05,
pages 195–213, 2005.

[14] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In 27th international conference on
Software engineering (ICSE), pages 49–58, 2005.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In ECOOP, 2001.

[16] U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho, A. von Staa,
and C. Lucena. Quantifying the effects of aspect-oriented pro-
gramming: A maintenance study. In International Conference
on Software Maintenance (ICSM), pages 223–233, 2006.

[17] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren,
O. de Moor, and G. Sittampalam. Adding Open Modules to
AspectJ. In AOSD ’06, pages 39–50, 2006.

[18] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, 15(12):
1053–8, December 1972.

[19] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP, 2008.

[20] S. Soares, E. Laureano, and P. Borba. Implementing distri-
bution and persistence aspects with AspectJ. In 17th con-
ference on Object-oriented programming, systems, languages,
and applications (OOPSLA), pages 174–190, 2002.

[21] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. Types and
modularity for implicit invocation with implicit announce-
ment. TOSEM ’10, 20(1), 2007.

[22] M. Störzer and C. Koppen. PCDiff: Attacking the fragile
pointcut problem. In European Interactive Workshop on As-
pects in Software, September 2004.

[23] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The
structure and value of modularity in software design. In
ESEC/FSE, 2001.

[24] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari. Modular aspect-oriented design
with XPIs. ACM TOSEM, 20(2), 2009.

[25] T. Young. Using AspectJ to build a software product line for
mobile devices. Master’s thesis, UBC, 2005.

154

	Introduction
	Related Work
	Background
	Using Pattern-Based Pointcuts
	Using Quantified, Typed Events
	Using Annotation-based Pointcuts
	Using Open Modules

	Case Study Overview
	Experimental Setup
	New Code Artifacts
	Automation of Empirical Evaluation

	Threats to Validity
	Internal Validity
	External Validity

	Case Study: MobileMedia
	Change Propagation Analysis
	Component Changes
	Quantification Mechanism Changes
	Summary

	Software Engineering Metrics

	Case Study: Health Watcher
	Change Propagation Analysis
	Component Changes
	Quantification Mechanism Changes
	Summary

	Software Engineering Metrics

	Key Observations
	Inter-Type Declarations
	Declare Parents
	Quantification Support
	Fragile Pointcut Problem
	Access to Context Information

	Discussion
	Conclusion and Future Work

