

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright 2012 ACM 978-1-4503-1092-5/12/03...$10.00.

Comprehensively Evaluating Conformance Error Rates
of Applying Aspect State Machines

Shaukat Ali
Certus Software V&V Center, Simula

Research Laboratory
P.O. Box 134, 1325, Lysaker, Norway

Department of Informatics, University of
Oslo, Oslo, Norway
shaukat@simula.no

Tao Yue
Certus Software V&V Center, Simula

Research Laboratory
P.O. Box 134, 1325, Lysaker, Norway

tao@simula.no

Zafar I. Malik
Academy of Educational Planning and

Management,
Ministry of Education, Islamabad, Pakistan

zafarimalik@acm.org

Abstract

Aspect Oriented Modeling (AOM) aims to provide enhanced
separation of concerns during the design phase and proclaims
many benefits (e.g., easier model evolution, reduced modeling
effort, and reduced modeling errors) over traditional modeling
paradigms such as object-oriented modeling. However, empirical
evaluations of these benefits is severely lacking in the AOM
community. In this paper, we empirically evaluate one of the
AOM profiles: AspectSM, via a controlled experiment to assess if
it can help in reducing modeling errors (referred as conformance
errors in this paper), which is one of the benefits offered by
AOM. AspectSM is a UML profile, which is developed to support
automated state-based robustness testing. With AspectSM,
crosscutting behaviors are modeled as aspect state machines using
the stereotypes defined in AspectSM. We evaluate the
conformance error rates of applying AspectSM from various
perspectives by conducting four activities: 1) identifying
modeling defects, 2) comprehending state machines, 3) modeling
state machines, and 4) weaving aspect state machines into base
state machines. For most of these activities, experimental results
show that the error rates while performing these four activities
using AspectSM are significantly lower than standard UML state
machine modeling approaches.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques] State diagrams, Object-oriented design methods
G.3 [Probability and Statistics] Experimental Design

General Terms Measurement, Design, Reliability, and
Experimentation

Keywords Aspect-oriented Modeling, Controlled Experiment,
Modeling Errors, UML State machines

1. Introduction
Aspects are increasingly being used in various software
development phases such as requirements, analysis, design,
development and testing. Aspect-oriented paradigm aims to
provide enhanced Separation of Concerns (SoC) and hence yield
several potential benefits such as enhanced modularization, easier
evolution, increased reusability, understandability, and
applicability. Aspect-Oriented Modeling (AOM) is a research
stream in this field and aims to support SoC during design

modeling and it also claims similar benefits. However, there is
very little empirical evidence of such benefits. Empirical studies
are required to support these benefits about AOM and better
understand its limitations.

While modeling behavior of industrial systems, such as using
UML state machines, it is important to not only model nominal
behavior but also robustness behavior which describes how the
system should react to abnormal environmental conditions. It is
needed to support, for example, model-based robustness testing of
embedded or communication systems, which is the aim of the
AspectSM profile [1]. It was developed to support model-based
robustness testing of video conference system of Cisco, Norway
[1]. However the approach is general enough to be used for other
embedded or communication systems. Using AspectSM,
crosscutting behavior can be modeled as aspect state machines, in
order to facilitate the use of AOM for the purpose of SoC and
therefore increase the readability, understandability, and
applicability.

Motivated by this, we report a controlled experiment to
comprehensively check whether AspectSM can help achieve
lower error rates when performing the following four modeling
activities: 1) identifying seeded defects, 2) comprehending state
machines, 3) modeling crosscutting behaviors, and 4) weaving
crosscutting behaviors (modeled as aspect state machines) to their
corresponding base state machines. AspectSM is compared with
standard UML state machines when crosscutting behavior is
modeled using different modeling approaches. The controlled
experiment was conducted with 25 fully trained, graduate students
taking a graduate course in “Advanced Software Architecture” at
the University Institute of Information Technology (UIIT) at the
Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi,
Pakistan.

Results of the experiment showed that AspectSM has
significantly lower error rates in terms of identifying modeling
defects than the standard UML state machine modeling approach.
Regarding comprehensibility, we observed that standard UML
state machines with hierarchy achieved significantly lower error
rates than aspect state machines. For the activity of modeling
crosscutting behaviors, we found that aspect state machines have
significantly lower error rates than standard UML state machines.
Finally, we observed that for weaving aspect state machines,
conformance error rate is on average less than 30%.

The rest of the paper is organized as follows: Section 2
describes the necessary background to understand the rest of the
paper. Section 3 provides details on our experiment planning, and
Section 4 reports on results and discussions. Section 5 presents
possible threats to validity and Section 6 compares existing,

155

related experiments in Aspect-oriented Programming (AOP) to
our experiment. Finally, we conclude our paper in Section 7.

2. Background
In this section, we provide a brief reminder of UML state
machines and an overview of aspect state machines in AspectSM,
the AOM mechanism being evaluated in our controlled
experiment.

2.1 UML State Machines

UML state machines enable modeling the dynamic behavior of a
class, subsystem, or system. State machines in general are
extensively used to model a variety of systems such as
communication [2] and control systems [3]. Due to the ability of
state machines to capture rich and detailed information, they have
been used for automatic code generation [4] and the automated
generation of test cases [5-7]. UML state machines provide many
advanced features such as concurrency and hierarchy, which aim
at supporting large-scale modeling. Concurrency enables the
modeling of concurrent behavior whereas state hierarchies capture
commonalities among states. A submachine state in a state
machine functions like a simple state, but is referring to another
state machine. A submachine can be reused in more than one state
machine and may refer to other submachines [8]. They can
therefore help reduce the structural complexity of state machines.
State machines developed using the hierarchical features of UML
will be referred to as hierarchical state machines in this paper and
the ones developed without using submachine states, with only
basic features of UML state machines, will be referred as flat state
machines.

2.2 Aspect State Machines

AspectSM is a UML profile described in [1], which supports the
modeling of a system robustness behavior, which is very common
type of crosscutting behavior in many types of systems. An
example of a robustness behavior for a communication system is
related to how the system should react, in various states, in the
presence of high packet loss. The system should be able to
recover lost packets and continue to behave normally in a
degraded mode. In the worst case, the system should go back to
the most recent state and not simply crash or show inappropriate
behavior. In a control system, one needs to model, for example,
how the system should react, in various states, when a sensor
breaks down. Though AspectSM was originally defined to
support scalable, model-based, robustness testing, including test
case and oracle generation, a fundamental question is whether it is
easier to model crosscutting concerns such as robustness with
AOM in general, and AspectSM in particular, than simply relying

on UML state machines to do it all. In AspectSM, the core
functionality of a system is modeled as one or more standard
UML state machines (called base state machines). Crosscutting
behavior of the system (e.g., robustness behavior) is modeled as
aspect state machines using the AspectSM profile. State machines
developed using this profile will be referred as aspect state
machines. A weaver [1] then automatically weaves aspect state
machines into base state machine to obtain a complete model, that
can for example be used for testing purposes. The AspectSM
profile specifies stereotypes for all features of AOM, in which the
concepts of Aspect, Joinpoint, Pointcut, Advice, and Introduction
[9] are the most important ones. Below, we briefly describe these
concepts along with how they are represented in the profile.
Figure 1 shows the metamodel representing and relating these
concepts. The complete discussion of the AspectSM profile can
be found in [1]. We can see from that description that proper
modeling requires the modeler to master AOM concepts and
mentally determine the end result of weaving; an exercise that
cannot be taken for granted and be a priori considered easier than
directly modeling crosscutting concerns in a state machine.
Investigating the benefits of AspectSM, and more generally
AOM, is the main purpose of our experiment.

2.2.1 Main Concepts in AspectSM

Aspect This concept describes a crosscutting concern, e.g., the
robustness behavior of a system in the presence of failures in its
environment (e.g., network failures in communication systems).
Using the AspectSM profile, we model each aspect as a UML 2.0
state machine augmented with stereotypes and attributes.
Joinpoint A Joinpoint is a model element selected by a Pointcut
(defined next) where an Advice or Introduction (additional
behavior) can be applied [9]. In the context of UML, all modeling
elements in UML can be possibly joinpoints. In UML state
machines, joinpoints can be, for example, State, Activity,
Constraint, Transition, Behavior, Trigger, and Event.
Pointcut A Pointcut selects one or more joinpoints, where Advice
or Introduction can be applied. A Pointcut can have at most one
Before advice, one Around advice and one After advice. In the
AspectSM profile, all pointcuts are expressed with the Object
Constraint Language (OCL) [8] on the UML 2.0 metamodel [8].
We decided to use the OCL to query joinpoints because the OCL
is the standard way to write constraints and queries on UML
models and can therefore be used to query jointpoints in UML
state machines. Also, several OCL evaluators are currently
available that can be used to evaluate OCL expressions such as
the IBM OCL evaluator [10], OCLE 2.0 [11], and EyeOCL [12].
Furthermore, writing pointcuts as OCL expressions does not
require the modeler to learn a notation that is not part of the UML

Figure 1. Conceptual domain model of the AspectSM profile

156

standard. In the literature, several alternatives are proposed to
write pointcuts [13-17] but all of them either rely on languages
(mostly based on wildcard characters to select joinpoints, for
instance, ‘*’ to select all joinpoints) or diagrammatic notations
which are not standard, thus forcing modelers to learn and apply
new notations or languages. Using the OCL, we can write precise
pointcuts to select jointpoints with similar properties. We do so by
selecting modeling elements (jointpoints) based on the properties
of UML metaclasses. This further gives us the flexibility to
specify precise pointcuts as any condition defined based on some
or all of the properties of a UML metaclass, e.g., a pointcut on the
Transition metaclass, selecting a subset of transitions in a base
state machine, which have triggers of type CallEvent and do not
have any guard.
Advice An Advice is one of the crosscutting behaviors of the
Aspect. The Advice is attached to Joinpoint(s) selected by the
Pointcut. In correspondence to AspectJ [18] concepts, an Advice
can be of type Before, After, or Around. A Before advice is
applied before Joinpoint(s), an After advice is applied after
Joinpoint(s), whereas an Around advice replaces Joinpoint(s). For
example, introducing guards on a set of transitions of a state
machine is an example of a Before advice on transitions
(Joinpoint).
Introduction An Introduction is similar to the inter-type
declaration concept in AspectJ [18]. Using Introduction in our
context, new modeling elements (e.g., state or transition) can be
introduced into a UML state machine.

2.2.2 Example of applying AspectSM

In this section, we present an example of the application of
AspectSM. An aspect state machine modeling crosscutting
behavior EmergencyStop is shown in Figure 2. This UML state
machine is stereotyped as <<Aspect>>, which means that it is an
aspect state machine. The <<Aspect>> stereotype has two
attributes: name and baseStateMachine, whose values are shown
in the note labeled as ‘1’ in Figure 2. The name attribute contains
the name of the aspect (EmergencyStop in this example), whereas
the baseStateMachine attribute holds the name of the base state
machine, on which this aspect will be woven, which is
ElevatorControl provided in [19] in this example.

The aspect state machine consists of two states: SelectedStates
and ElevatorStopped. SelectedStates is stereotyped as
<<Pointcut>>, which means that this state selects states from the
base state machine. There are two attributes of <<Pointcut>>,
whose values are shown in the note labeled as ‘2’ in Figure 2. The

name attribute indicates the name of the pointcut and type denotes
the type of the pointcut, which is All in this case meaning that we
are selecting all states of the base state machine. In AspectSM,
different types of pointcuts can defined, a complete list of other
types of pointcuts is presented in [1]. All the model elements
stereotyped as <<Introduction>> (one state, two transitions) will
be newly introduced elements in the base state machine during
weaving. This aspect introduces the ElevatorStopped state in the
base state machine, and selects all states of the base state
machines and introduces transitions from them to
ElevatorStopped with trigger EmergencyStopButtonPressed. In
addition this aspect introduces transitions from ElevatorStopped
to all the states selected by SelectedStates with trigger
EmergencyStopButtonReleased.

3. Experiment Planning
This section discusses planning of the experiment based on the
experiment reporting template defined by Wohlin et al. [20].

3.1 Goal, Research Questions and Hypotheses

The objective of our experiment is to assess the AspectSM profile
with respect to the modeling errors made by the subjects while
performing different modeling activities. Modeling errors are
assessed from four perspectives corresponding to four activities of
applying AspectSM: 1) errors made while inspecting state
machines to identify seeded defects, 2) errors made while
comprehending state machines via answering a comprehension
questionnaire, 3) errors made while designing state machines, and
4) errors made while weaving an aspect state machine into its
base state machine.

Based on the above-mentioned objectives of our experiment,
we defined the following research questions:
RQ1: Does the use of AspectSM reduce errors while inspecting
aspect state machines (against their specifications) to identify
defects, when compared to hierarchical and flat state machines?

We compare aspect state machines with two different types of
state machines capturing crosscutting behavior: hierarchical and
flat state machines for this activity. None of the expected
differences between them can a priori be certain to be in a specific
direction. This therefore leads to the definition of two-tailed
hypotheses.

H1
0: Error rate in inspecting aspect state machines to detect

defects is the same as hierarchical state machines.

Figure 2. An aspect state machine for crosscutting behavior EmergencyStop

157

H2
0: Error rate in inspecting aspect state machines to detect

defects is the same as flat state machines.

RQ2: Does the use of AspectSM reduce errors in comprehending
aspect state machines when compared to hierarchical and flat state
machines?

Similar to the previous research question, we compare the
comprehensibility of AspectSM with the two different types of
state machines capturing crosscutting behavior (hierarchical and
flat state machines) based on the scores to answer a
comprehension questionnaire. We defined the following two-
tailed null hypotheses accordingly.

H3
0: The error rate in comprehending aspect state machines is the

same as hierarchical state machines.

H4
0: The error rate in comprehending aspect state machines is the

same as flat state machines.

RQ 3: Does the use of AspectSM reduce conformance errors of
designing aspect state machines with respect to reference state
machines, when compared to flat state machines and/or
hierarchical state machines?

We evaluate AspectSM from the perspective of how well it
can support the activity of modeling crosscutting behaviors by
measuring conformance error rates of aspect state machines
against their reference state machines. We further calculate
conformance error rates of using flat state machines and/or
hierarchical state machines to model the same crosscutting
behaviors against their respective reference state machines.
Finally, we compare the conformance error rates of aspect state
machines with the conformance error rates of the flat and/or
hierarchical state machines for the same crosscutting behaviors.
Since the differences in results can be in either direction, we
defined a two tailed null hypothesis as follows:

H5
0: Conformance error of aspect state machines is the same as

flat/hierarchical state machines.

RQ 4: To which extent do the woven state machines derived by
subjects conform to the reference state machines automatically
produced by our weaver?

This question calculates the errors made by the subjects to
weave aspect state machines into their corresponding base state
machine for the purpose of evaluating how well the subjects can
understand the aspect state machines through this weaving
activity. In our previous work [1], we developed a weaver for
AspectSM, which automatically weaves aspect state machines
into base state machines and produces a woven state machine. To
answer this research question, we compared woven state

machines developed by a subject with the woven state machines
automatically produced by our weaver.

3.2 Experiment Subjects

Our controlled experiment was conducted at the Pir Mehr Ali
Shah Arid Agriculture University, Rawalpindi, Pakistan. The
subjects in the experiment are 25 graduate students taking a
graduate course in ‘Advanced Software Architecture’ at the
University Institute of Information Technology (UIIT). Our
motivation was to find a group of subjects with adequate
background that could be trained to use our AOM approach over a
short period of time. Most practitioners have very little
knowledge of AOP and even less of AOM. Ensuring they have
the required background is also difficult. This is why we relied on
a group of mature graduate students.

The course is offered in the Master of Science program. The
students in this degree already hold a Bachelor in Computer
Science or Information Technology and have already been
exposed to the UML notation and extensions in the form of UML
profiles. On average, each student went through five development
and two modeling courses. Eighteen students (out of twenty-five)
have used the UML notation for their final year projects before
the experiment was conducted. Twenty students gained
experience in development work in IT companies or as teaching
staff in computer science.

The subjects were free to choose to participate or not into the
experiment and were told their choice would have no effect on
their course grades.

3.3 Material

In this section, we provide the material we used to conduct the
experiment.

3.3.1 Case Study Systems

Two case study systems were used for the experiment: elevator
control system (ECS) and automated teller machine (ATM).
Detailed description of ECS/ATM and the crosscutting behaviors
used in the experiment is presented in [21]. The complexity of the
state machines in terms of numbers of model elements of the two
case study systems is shown in Table 1. Below, we provide a brief
but necessary discussion of these two case study systems.
Elevator Control System The first system used for the
experiment is an elevator control system (ECS) that controls
movements of an elevator in a building. For our experiment, we
extended the specification of the elevator given in [19] with two
additional crosscutting behaviors so that the AspectSM profile
could be used to model them. These two crosscutting behaviors
are:
Emergency call behavior (Call) The behavior of an elevator,
when an emergency call is made.

Table 1. Complexity of the state machines
ASM HSM FSM Case Study Crosscutting

Behavior #S #T #P Total #S #T Total #S #T Total
Emergency Call 16 18 1 35 17 21 38 15 27 42 ECS
Emergency Stop 14 17 1 32 14 17 31 13 23 36
Cancel Transaction 7 15 2 24 - - - 6 15 21
Network Failure 8 16 2 26 - - - 7 22 29

ATM

Power Failure 8 15 2 25 - - - 7 21 28
Cancel Transaction - - - - - - - 6 15 21
Network Failure - - - - - - - 7 22 29

ATM

Power Failure - - - - - - - 7 21 28
ASM = Aspect State Machine, HSM = Hierarchical State Machine, FSM = Flat State Machine
#S = Number of states, #T = Number of transitions, #P = Number of pointcuts

158

Emergency stop behavior (Stop) the behavior of an elevator, when
the emergency stop button is pressed.
Automated Teller Machine The second system used for the
experiment is the popular automated teller machine (ATM)
system from [19].

“A bank has several (ATMs), which are geographically
distributed and connected via a wide area network to a central
server. Each ATM machine has a card reader, a cash dispenser, a
keyboard/display, and a receipt printer. By using the ATM
machine, a customer can withdraw cash from either a checking or
a saving account, query the balance of an account, or transfer
funds from one account to another. A transaction is initiated when
a customer inserts an ATM card into the card reader. Encoded on
the magnetic strip on the back of the card is recognized, the
system validates the ATM card to determine that the expiration
date has not passed, that the user-entered PIN matches the PIN
maintained by the system, and that the card is not lost or stolen.
The customer is allowed three attempts to enter the correct PIN;
the card is confiscated if the third attempt fails.”

The following crosscutting behaviors were defined for ATM.

Cancel Transaction A customer may cancel a transaction at any
time except when the ATM is closed down or not idle. Whenever
a cancel request is made, the transaction is terminated and then
the card is ejected.
Network Failure An important robustness behavior of ATM is the
behavior in the presence of network failure. Whenever network
connection fails during the operation of ATM except when it is
closed down, it saves the current transaction in its local memory
and then tries to recover the network connection. If the network
connection is established, the saved transaction is loaded and
ATM continues the transaction. Otherwise, it will simply be
closed down.
Power Failure Another robustness behavior of ATM is that in the
case of power failure it starts its Uninterruptable Power Supply
(UPS) and continues the operation.

3.3.2 Design Defect Classification

To answer RQ1 (Section 3.1), the experiment subjects were asked
to identify defects seeded in state machines through checking the
conformance of the state machines against their corresponding
specifications (Section 3.4).

To systematically inspect state machines for various types of
defects, a classification of different types of design defects is
required. The classification we used in the experiment is given
below and was adapted from Binder’s book [6]. It was provided to
the subjects of the experiment as part of the answer sheet (Section
3.3.5) to systematically collect their answers.

Incorrect Transition (IT) A transition that comes from or leads
to a wrong state or the transition has wrong guard, trigger, and/or
events.
Missing Transition (MT) According to the specification of a
state machine, there is a transition missing.
Extra Transition (ET) A transition is subsumed by another
transition in a state machine. Such a transition is redundant in the
sense that removing it still keeps the state machine in
conformance to its specification.
Missing State (MS) A state that should be modeled in a state
machine according to its specification but is missing.
Incorrect State (IS) A state is incorrect if it has a wrong state
invariant, do, entry and/or exit activities.

Extra State (ES) A state is subsumed by another state. This state
is considered as an extra state in the sense that removing it still
keeps the state machine in conformance to its specification.

3.3.3 Seeded Defects

It is important to note that to answer RQ1, we were interested in
studying errors made by the subjects while inspecting crosscutting
behaviors to detect defects; therefore we seeded defects only in
the crosscutting behaviors. Different types of defects were
selected after we carefully examined the base and aspect state
machines and identified possible independent defects. This
resulted in three types of defects for the first crosscutting behavior
(Call): missing transition (MT), incorrect transition (IT), and
incorrect state (IS), and a missing transition (MT) for the second
crosscutting behavior (Stop). Table 2 shows the distribution of
these defects that were seeded in the compared state machines.

Because aspects model crosscutting behavior, it is expected
that one defect in an aspect often corresponds to several defects in
the corresponding hierarchical state machine. Similarly, because
hierarchical states factor out common behavior, one defect in a
hierarchical state machine often leads to several defects in its
corresponding flat state machine. As a result, different numbers of
defects were seeded in the three state machines in order to
conceptually correspond to equivalent defects.

3.3.4 Comprehension Questionnaire

For RQ2, we want to evaluate how error prone it is to
comprehend various types of state machines. To this effect, a
comprehension questionnaire was designed to evaluate, in a
repeatable and objective way, the extent to which a subject can
understand the state machines. For example, questions concern
what scenario is triggered when an event happens in a certain
state. The subjects were asked the same ten questions on two
crosscutting behaviors together for all three types of state
machines. The subjects had to answer each question by inspecting
the state machines assigned to them and error scores were
computed by accounting for partially correct answers. For
example, if the answer to a question entailed to list four
transitions, then wrongly pointing out each transition contributed
0.25 to the full mark of the question.

3.3.5 Answer Sheets

There were four answer sheets developed for the experiment. The
first answer sheet (for RQ1) was developed to collect information
about classes of defects that were identified by each subject, the
number of defects in each class, and the location of identified
defects. A table was provided to subjects for each crosscutting
behavior. The rows of the table were labeled with each defect
class, whereas the columns featured two pieces of information
about defects: number of defects identified in each class and
location of each identified defect. The second answer sheet (for
RQ2) was designed to collect answers to the comprehension
questionnaire. The third answer sheet (for RQ3) was developed to
collect answers for two groups modeling crosscutting behaviors:

Table 2. Distribution of seeded defects in state machines
Call Stop Approach
MT IT IS MT

Aspect 1 1 1 1
Hierarchical 4 2 1 1
Flat 11 9 1 10

159

one for the group using standard UML state machines to directly
model crosscutting behaviors on the base state machine and the
second for the group modeling crosscutting behaviors using
aspect state machines. The answer sheet was designed so that
subjects can provide their solution one after another and provide
time required to model each crosscutting behavior. The fourth
answer sheet (for RQ4) was developed to collect woven state
machines from subjects. The answer sheet contained a base state
machine and three aspect state machines corresponding to the
three crosscutting behaviors (Section 3.3) of the ATM system.
The answer sheet was designed such that the subjects can provide
their solutions one after another and provide time they spent to
weave each aspect state machine into the base state machine.

3.4 Design

The design of our experiment is summarized in Table 3. Our
experiment design consists of three rounds. For the first round, we
divided the subjects into three groups: Group1, Group2, and
Group 3. Given the number of subjects, this led respectively to 8,
8, and 9 subjects in each group. In the first round, there were two
tasks. In each task, each group was given a different type of state
machines (Aspect, Hierarchical, or Flat). During the training
sessions (Section 3.6), each subject was equally trained to
understand all three different types of state machines. The
subjects were also given a modeling assignment, after the training
sessions, for them to practice before the actual experiment tasks.
This assignment was marked by the first author of this paper and
grades were used to form blocks (i.e., groups of students of
equivalent skills). The experiment groups were then formed
through randomization and blocking to obtain three comparable
groups with similar proportions of students from each skill block.

As shown in Table 3, for R1T1 (Round 1 Task 2), each group
was asked to sequentially identify defects in the state machines
modeling two crosscutting behaviors: Emergency call and
Emergency stop. Group 1 was given state machines modeled
using AspectSM. The subjects in Group 1 were given one base
state machine and one aspect state machine (ASM) modeling
Emergency Call and one ASM for the Emergency Stop
crosscutting behavior. Group 2 was given one hierarchical state
machine (HSM) for Emergency Call and one HSM for
Emergency Stop. Similarly, Group 3 was given one flat state
machine (FSM) for Emergency Call and one FSM for Emergency
Stop. Seeded defects for each type of state machines (Aspect,
Hierarchical, and Flat) are presented in Table 2. For R1T1, we
used a between-subjects design, which offers several advantages.
First, a between-subjects design counterbalances learning effects
since each subject is exposed to just one type of treatment (e.g.,

the Aspect approach) and one task (e.g., one crosscutting
behavior) and thus the performance of subjects is not influenced
with the experience gained while working with other treatments
with the same crosscutting behavior. Second, between-subjects
design counterbalances fatigued effect, which is common while
working with several treatments for many tasks.

In R1T2, the three groups divided for R1T1 were rotated for
pedagogical reasons so that each group can experience difference
types of state machines. For example, Group 1 in R1T2 was given
flat state machines instead of the aspect state machines which is
the case in R1T1.

In R2T1, the subjects were divided into two groups: one group
(the FSM group) was asked to use flat state machines to design
crosscutting behavior and the other (the ASM group) was asked to
apply ASM. Both groups were asked to model the same set of
crosscutting behaviors, based on the same base state machine
specifying the core behavior of the ATM system. The ASM group
was asked to model crosscutting behaviors as aspect state
machines, whereas the FSM group was asked to model
crosscutting behaviors directly on the base state machine. Notice
that in this round, 20 subjects participated in the experiment;
therefore we have 10 subjects per group. Again in this round, we
used a between-subjects design because of the same reasons as we
discussed previously.

In R3T1, there was just one group of subjects and they were
asked to sequentially perform three tasks by weaving one aspect
state machine at a time and provide the time they spent to each
weaving activity. The three tasks were to weave the following
three aspect state machines: Cancel transaction, Network failure,
and Power failure. A brief description of these aspect state
machines is provided in Section 3.3.1. In this round, 15 subjects
participated in the experiment.

Note that in Table 3 for different rounds, different number of
subjects participated. This is due to the reason that each round
was conducted on a separate day and some subjects couldn’t
participate, for instance, due to practical reasons such as clashes
with courses and exams.

3.5 Dependent Variables

Error Rate in Identifying Defects (ERID) This variable
calculates the percentage of seeded defects not identified by a
subject and is calculated as:

Number of unidentified defects by a subject / Total
number of seeded defects

Error rate of answering comprehension questionnaire (ERC)
This calculates the error rate of answering the comprehension
questionnaire and is calculated as:

Table 3. Design of the experiment

Group 1 Group 2 Group 3 Round Task Task Type Case
Study

Crosscutting behavior
Approach Data points Approach Data points Approach Data points

Emergency call ASM 8 HSM 8 FSM 9 R1T1 Identify Defects
Emergency stop ASM 8 HSM 8 FSM 9

1

R1T2 Comprehend state machines

ECS

Emergency call and stop FSM 9 ASM 8 HSM 8
Cancel transaction ASM 10 FSM 10 - -

Network failure ASM 10 FSM 10 - -
2 R2T1 Model crosscutting

behaviors
ATM

Power failure ASM 10 FSM 10 - -
Cancel transaction - 15 - - - -

Network failure - 15 - - - -
3 R3T1 Weave crosscutting

behaviors
ATM

Power failure - 15 - - - -
ASM: Aspect state machine, FSM: Flat state machine, and HSM: Hierarchical state machine
R1T1: Round 1 Task 1, R1T2: Round 1 Task 2, R2T1: Round 2 Task 1, and R3T1: Round 3 Task 1

160

Sum of the scores of the wrong answers of the questions
/ Total number of questions (i.e. 10)

In the formula above, the score for each answer was
calculated based on the marking procedure discussed in Section
3.3.4 and 10 is the total number of the questions in the
questionnaire.
Conformance error of state machine (CERSM) This variable
measures the conformance error of a subject’s state machine by
comparing it with a reference state machine. It is determined by
the conformance error of states and transitions-two main
modeling elements of a state machine. Note that, since we have
two sets of results with respect to two different treatments (for
R2T1): flat state machines and aspect state machines, two sets of
measures were designed to evaluate the completeness of two
different types of state machines derived by the subjects given
different treatments.

The formula for CERT (i.e., conformance error in transitions)
shown in Table 4, calculates the conformance error of a subject’s
state machine by looking at the transitions of the subject’s
solution with the reference solution (this holds for each group)
that do not match. Matching of transitions is determined by
looking at whether the source and target states of a transition
match to the source and target states of any transition in the
reference model. Three model elements constituting a transition
(i.e., guard, trigger, and effect) are further assessed to evaluate the
conformance error of a transition. Matching of the trigger, guard,
and effect of a transition is determined whether their names are

the same or similar to the corresponding elements of the matched
transition in the reference state machine. The conformance error
of a transition is calculated based on the proportion of the trigger,
guard, and effect of the transition that do not match with the
reference solution. For instance, if only the guard and trigger of a
transition do not match with a transition in the reference solution,
then this means that the transition conformance error is 66% (2/3)
to the reference transition. In other words, 33% (1/3) of modeling
elements of the transition are missing. For flat state machines, we
compare only the guard, trigger, and effect of a transition; while
for aspect state machines, in addition we also check whether
required stereotypes are applied to transitions. This is so because
AspectSM requires applying stereotypes on states and transitions
in aspect state machines (Section 2.2). For each transition k in a
subject’s solution, we check if its guard, trigger, or effect is
missing with respect to the matched transition in the reference
solution (Table 5). For each missing guard, trigger, and effect, we
assign value 1 to the corresponding variable (Eguard_k, Etrigger_k or
Eeffect_k), otherwise 0.

Similarly, we calculate CERS as shown in Table 4, whereas
Table 5 shows the measures needed for the calculation. Since
state and transition are two main types of model elements of a
UML state machine, the overall conformance error (CERSM) of
the state machine is therefore calculated based on the
conformance error of states and transitions, as shown in Table 4.
A simpler way to do so is to just simply take average of CERT
and CERS. However, the numbers of states and transitions in a

Table 4. Conformance error rate measures for a state machine diagram
Category Measure Formula Formula

CERS ES CERSM
CERT ET

Nt_r is the total number of the transitions in the reference model. Ns_r is the total number of the states in the reference model.

Table 5. Collected state machine diagram data
Measure Specification

ESname_k Missing name of the kth state in a subject’s state machine diagram
ESstereotype_k Missing stereotype of the kth state in a subject ’s aspect state machine diagram
Eguard_k Missing guard of the kth transition in a subject ’s state machine diagram
Etrigger_k Missing trigger of the kth transition in a subject ’s state machine diagram
Eeffect_k Missing effect of the kth transition in a subject’s state machine diagram
ETstereotype_k Missing stereotype of the kth transition in a subject’s aspect state machine diagram

For a standard state machine:

ES

For an aspect state machine:

For a standard state machine:

ET

For an aspect state machine:

ESname_k, ESstereotype_k , Eguard_k, Etrigger_k, Eeffect_k, and ETstereotype_k are Boolean measures that take value 0 and 1 only.
‘n’ refers to the number of matched states or transitions.

161

solution might be different, so taking average of them is unfair.
So, to be fair in the calculation and considering each modeling
element (state or transition) having same weight, we calculate the
overall conformance error based on the proportions of states and
transitions in a state machines. To achieve this, first we obtain the
overall conformance error of transitions by multiplying CERT
with the total number of the transitions in the reference model
(Nt_r). Similarly, we calculate overall completeness of states by
multiplying CERS with the total number of the states Ns_r.
Finally, we take sum of both and divide it with the sum of the
numbers of states and transitions in the reference state machine.

3.6 Procedure (Training)

The subjects were trained by the first author of this paper. Two
three-hour sessions were given on the following topics: 1) Recap
of UML state machines since subjects were already familiar with
this topic preceding the training (Section 3.2), 2) Introduction to
the Object Constraint Language (OCL), 3) Introduction to aspect-
oriented software development (AOSD), and 4) Aspect-oriented
modeling (AOM) using the AspectSM profile. Each topic was
accompanied with several examples and interactive class
assignments. As previously discussed, the subjects were given a
home assignments after the training sessions to practice the three
state machine modeling approaches and groups were later formed
based on the grades of this assignment.

4. Results and Discussion
We analyze and present our experiment results in this section.
Descriptive statistics and statistical tests are presented in Section
4.1 and Section 4.2, respectively. The discussion of results is
provided in Section 4.3.

4.1 Descriptive Statistics

We report descriptive statistics for each dependent variable
designed to answer each research question in Table 7. Descriptive
statistics for each variable is characterized using their minimum,
maximum, median, mean and standard deviation.

Recall from Section 3.5 that ERID aims to measure the
percentage of defects not identified by the subjects in R1T1. We
see that on average ERID for ASM is 19%, which is much lower
than HSM and FSM, which are 74% and 81%, respectively.
Regarding ERC (the variable that measures the error rate of
answering the comprehensive questionnaire in R1T2), mean ERC
for HSM is 1.44, which is lower than both ASM and FSM, which
are 3.61 and 5.5, respectively.

To answer RQ2 and RQ3, variables CERT, CERS, and
CERSM were designed to measure the conformance errors for
ASM and FSM. As shown in Table 7, for R2T1, mean CERT for
FSM (37%) is higher than ASM (23%). Mean CERS is 13% and
19% for FSM and ASM, respectively. Total conformance error
rates (CERSM) for FSM and ASM are 36% and 22%,
respectively. For R3T1, CERT for FSM is 31% and CERS is very
low (i.e., 5%). Total mean conformance error (CERSM) is 29%.

4.2 Statistical Tests

In this section, we check whether the differences observed in the
previous section are statistically significant to determine if we can
reject the null hypotheses stated in Section 3.1. For all the
statistical tests reported in this section, we used a significance
level of α=0.05.

To check if, overall, there exist significant differences among
the three approaches under investigation for round 1, we
performed the Kruskal–Wallis one-way analysis of variance [22]
on ERID and ERC. We performed this test since our samples are
not normal as we checked with the Shapiro–Wilk W test [22]. We

Table 7. Descriptive statistics for measures

Round Task Measure Approach Min Median Max Mean Std
ASM 0 0 1 0.19 0.32
HSM 0 0.83 1 0.74 0.34

R1T1 ERID

FSM 0.1 0.9 1 0.81 0.25
ASM 1 3.5 6.25 3.61 2.08
HSM 0 1.5 3.5 1.44 1.24

1

R1T2 ERC

FSM 2.25 6.13 8.5 5.5 2.45
FSM 0 0.33 1 0.37 0.28 CERT
ASM 0 0.13 1 0.23 0.30
FSM 0 0 1 0.13 0.34 CERS
ASM 0 0.25 0.5 0.19 0.18
FSM 0 0.33 0.89 0.36 0.24

2 R2T1

CERSM
ASM 0 0.15 0.8 0.22 0.21

CERT FSM 0 0.34 0.84 0.31 0.28
CERS FSM 0 0 0.5 0.05 0.15

3 R3T1

CERSM FSM 0 0.32 0.78 0.29 0.26

Table 6. Statistical tests for measures

Round Task Measure Approach Mean difference p-value (α = 0.05)
ASM vs HSM -0.56 0.0011
ASM vs FSM -0.62 0.0001

R1T1 ERID

HSM vs FSM -0.06 0.8590
ASM vs HSM 2.17 0.0419
ASM vs FSM -1.89 0.0821

1

R1T2 ERC

HSM vs FSM -4.06 0.0038
CERT ASM vs FSM -0.05 0.0237
CERS ASM vs FSM 0.07 0.0127

2 R2T1

CERSM ASM vs FSM -0.14 0.0368

162

obtained p-values of 0.0001 and 0.0047 for ERID and ERC
respectively, which are less than 0.05 hence are significant (Table
8). This encouraged us to perform a pairwise comparison of the
distributions obtained for the three state machines using Mann–
Whitney U for ERID and ERC. It doesn’t assume normally
distributed samples as it is our case as the results of the Shapiro–
Wilk W test [22] showed. Pairwise p-values and mean differences
across pairs for each measure are reported in Table 6. Bold p-
values highlight statistically significant results. The mean
differences between pairs of approaches indicate the direction in
which the result is significant. For instance, in row 1, for measure
ERID, between ASM vs HSM, the mean difference is negative
and p-value is less than 0.05 (our selected significance level).
This means that ERID for ASM is significantly lower than HSM.

For CERT, CERS, and CERSM, since we have two treatments,
we performed the Wilcoxon signed-rank test [22], which is non-
parametric equivalent of t-test. We performed this test because
our samples are not normally distributed as we checked with the
Shapiro–Wilk W test [22]. Again, bold values highlights that the
results are significant and mean differences indicate the direction
in which the results are significant.

4.3 Discussion

The above results showed that (Section 4.1 and Section 4.2),
aspect state machines have significantly lower error rates than flat
and hierarchical ones in terms of ERID given our selected α
(0.05) and sample size (Table 3). This indicates that for the
activity of identifying defects, the subjects given ASM made
fewer errors than the subjects inspecting FSM and HSM. This can
be explained from the fact that ASM is much simpler than HSM
and FSM in terms of number of modeling elements (Table 1) and
therefore the subjects with ASM had high possibility to identify
defects. We did not observe significant difference between HSM
and FSM in terms of ERID.

In terms of ERC, we observed that HSM achieved statistically
lower error rate than ASM and FSM. The mean error rate of ASM
is lower than FSM, though no significant differences were
observed. Recall that, answering the comprehensive questionnaire
requires the subjects to comprehensively comprehend the given
state machines. For Aspect state machines, the subjects were
required to understand for example Pointcut specifications
(written in OCL) in order to correctly answer the comprehensive
questions. A plausible explanation is that due to insufficient
training given to the subjects on understanding OCL expressions
(as part of the training given to AspectSM (Section 3.6)), the
solutions of the subjects with ASM exhibit more errors as
compared with HSM.

Recall that for the activity of modeling crosscutting behaviors
using state machines (R2T1) we have only two treatments: ASM
and FSM. For CERT (transitions), we found that ASM has
significantly lower error rate than FSM, whereas for CERS
(states), FSM has significantly lower error rate than ASM. The
reason why significant differences were observed for transitions
(CERT) (in favor of ASM) instead of states is that (as shown in
Table 1) the aspect state machines contain comparable number of
states as the flat state machines modeling the same set of
crosscutting behaviors. Aspect state machines additionally require
applying stereotypes, which is not the case for flat state machines.
Therefore, more modeling effort is required to apply AspectSM
and actually for this specific set of crosscutting behaviors, more
states were required to be modeled in aspect state machines than
flat state machines. Hence in such case, aspect state machines are
more error-prone. Regarding CERT (transitions), ASM achieved

significantly lower error rate than FSM. This is because
AspectSM helped to reduce the number of transitions in aspect
state machines (Table 1) for the three crosscutting behaviors. It is
worth noticing that with more complicated crosscutting behaviors,
one can expect that AspectSM will reduce the number of states in
aspect state machines and therefore lower error rate for states in
aspect state machine can be expected. Total conformance error
rate (CERSM) is significantly lower in ASM than FSM (Table 6).
Again this is due to the fact that ASM are much simpler that FSM
in terms of total number of modeling elements (states and
transitions).

In round 3, recall that we didn’t have multiple treatments as
the subjects were required to weave aspect state machines into a
base state machine. We observed that on average CERT
(transitions) is 31%, CERS (states) is 5%, whereas CERSM is
29%, as shown in Table 7. Notice that CERT is much higher than
CERS. This is due to the fact that the subjects had to weave more
transitions in the base state machine than states (Table 1). We
assume that more training will further reduce these percentages of
weaving errors. However, it is important to note that the errors
made by the subjects may be for example, accidentally missing
modeling a transition and not due to the actual understandability
of aspect state machines. This might happen during the weaving
process when many model elements, especially transitions, have
to be added to the base state machine. It is very important to
notice that the subjects were asked to weave state machines,
which is an indirect way to study how the subjects understand
aspect state machines; weaving aspect state machines to their base
state machines requires the subjects to understand both state
machines and how their composition takes place. Of course, the
weaving process can be automated but the objective of this task is
to test the understandability of AspectSM. Using our automated
weaver [1], a correct woven state machine can be automatically
derived from aspect state machines and their base state machine.

5. Threats to Validity
Below, we discuss the threats to validity of our controlled
experiment based on template in [20].

As with most controlled experiments in software engineering,
our main conclusion validity threat is related to the sample size on
which we base our analysis. We designed and conducted the
experiment to maximize the number of observations within time
constraints. For instance, in round 3, we combined observations
from three different crosscutting behaviors.
Through our experiment design, we have tried to minimize the
chances of other factors being confounded with our primary
independent variable: the use of aspect state machines. For
example, blocking was used based on assignment marks to form
the groups of subjects. Furthermore, we used a between-subjects
design, i.e., each subject is exposed to one type of approach once
to counterbalance the learning effects [26], i.e., since each subject
is exposed to just one type of treatment (e.g., the Aspect
approach) and one task (e.g., one crosscutting behavior) and thus
the performance of subjects is not influenced with the experience
gained while working with other treatments with the same
crosscutting behavior.

One possible construct validity threat in our experiment is that

Table 8. Kruskal–Wallis test results for ERID and ERC

Round Task Measure p-value (α= 0.05)
1 R1T1 ERID 0.0001
 R1T2 ERC 0.0047

163

we were not able to investigate all features of aspect-orientation
(such as all types of basic advice) in this experiment due to the
nature of our crosscutting concerns. The other concern is that the
conformance error rate measures for a state machine (CERSM)
can be interpreted in various ways, depending on the application
domain or one’s subjective opinion. However we made the effort
to devise a set of objective metrics to measure conformance error
rates by comparing with reference models, such that subjective
perceptions and application specific measurement can be reduced
to a minimum and hence the comparison of models across
different case studies (perhaps with different application
domains), derived by different subjects (e.g., experts, students) is
possible. In addition, these metrics are general so that they are
reusable and can be applied to multiple experiments. By doing so,
we can therefore make sure that we don’t introduce bias (beside
the actual choice of those metrics) to the evaluation results which
might be a threat to validity.

External validity threat is the most commonly found threat in
any controlled experiment. Due to time constraints, case studies
and tasks are usually small. As we see in Table 1, our models are
of reasonable size. Such numbers are at least representatives of
the state machines of classes and small components. However,
because crosscutting concerns are expected to have an even
higher impact on large models, we expect the use of AspectSM to
be even more beneficial in such cases. One may also question the
use of students as subjects for the experiment. Our motivation was
to find a group of subjects with adequate background that could
be trained to use AspectSM over a short period of time. Most
practitioners have very little knowledge of AOP or AOM in
general, and significant training would therefore be required. This
is why relying on a group of experienced graduate students with
the right educational background (Section 2) seemed to be the
better option. In addition, some studies are reported in [23-25],
where the performance of trained software engineering students
for various tasks was compared with professional developers. The
differences in performance were not statistically significant when
compared to junior and intermediate developers, thus leading to
the conclusion that there is no evidence that students trained for
the tasks at hand may not be used as subjects in place of
professionals.

6. Related Work
Most experimentation in Aspect-Oriented Software Development
(AOSD) has been conducted to evaluate AOP when compared to
Object-Oriented Programming (OOP) in terms of development
time, errors in development, and performing maintenance tasks.
An initial search on IEEE resulted in 169 papers on AOM;
however, none of them reported any controlled experiment to
evaluate AOM approaches. A controlled experiment [26] was
performed in industry settings to measure effort and errors using
aspect-oriented programming for applying different maintenance
tasks related to the tracing crosscutting concern, i.e., the use of
logging to record execution of a program. The results showed that
aspect-orientation resulted in reducing both development effort
and number of errors.

Another experiment is reported in [27], which compares
aspect-orientation (AspectJ) with a more traditional approach
(Java) in terms of development time for crosscutting concerns. A
similar experiment is reported in [28] focusing on development
time to perform debugging and change activities on object-
oriented programs using AspectJ. Both of these experiments
revealed mixed results, i.e., aspect-orientation has positive impact

on development time only for certain tasks. For instance, AOP
seems to be more beneficial when the crosscutting concern is
more separable from the core behavior.

An exploratory study is reported in [29] to assess if AOP has
any impact on software maintenance tasks. Eleven software
professionals were asked to perform different maintenance tasks
using Java and AspectJ. The results of the experiment revealed
that AOP performed slightly better than OOP, but there were no
statistically significant results observed. Another exploratory
study is reported in [30] to measure fault-proneness with AOP.
Three evolving AOP programs were used and data about different
faults made during their development were collected. The
experiment revealed two major findings: 1) Most of the faults
were due to lack of compatibility between aspect and base code,
2) The presence of faults in AOP features such as Pointcuts,
Advice, and inter-type declarations was as likely as for normal
programming features. The results turned out to be statistically
significant.

An experiment is reported in [31], where two software
development processes based on a same aspect modeling
approach (i.e., the Theme approach [32]) are compared to
determine their impacts on maintenance tasks such as adding new
functionality or improving existing functionality. The first process
(aspectual process) involves generating AOP code in AspectJ
from Theme models, whereas the second process (hybrid process)
involves generating object-oriented code in Java from Theme
models. Maintenance tasks are measured based on metrics such as
size, coupling, cohesion, and separation of concerns. The results
showed that on average the aspectual process took lesser time
than the hybrid process.

An exploratory study is reported in [33], which aims to assess
if aspects can help reducing effort on resolving conflicts that can
occur during model compositions. To do so, they compared AOM
with non-AOM in terms of effort to resolve conflicts and number
of conflicts resolved on six releases of a software product line.
The results of the study showed that aspects improved
modularization and hence helped better localize conflicts, which
in turn resulted in reducing the effort involved in resolving
conflicts.

Our controlled experiment is different from the above
experiments from several perspectives. First, our controlled
experiment focused on the design of the software development
life cycle and aspect-oriented modeling. Most of the experiments
in the literature have focused on comparing AOP with OOP. We
evaluated the errors in modeling made by subjects when doing
different kinds of AOM tasks, i.e., defect identification,
answering comprehension questionnaire, designing aspect state
machines, and weaving aspect state machines.

7. Conclusion and Future Work
Aspect-oriented Modeling (AOM) has received lots of attention in
the recent years, but unfortunately it lacks empirical evaluations
to support its proclaimed benefits such as reduced modeling errors
and reduced modeling effort. In this paper, we presented a
controlled experiment, to assess conformance error rates of an
AOM profile: AspectSM. This profile is developed to support
state-based robustness testing at Cisco, Norway. However, it is
general enough to be applied in any situation where state-based
robustness testing is required. Using AspectSM, robustness
crosscutting behaviors are modeled as stereotyped state machines
termed as aspect state machines. Conformance error rates of
applying AspectSM are assessed from four different perspectives

164

by conducting four modeling activities: 1) identifying modeling
defects, 2) comprehending state machines, 3) modeling
crosscutting behaviors, and 4) weaving crosscutting behaviors.
Results of the experiment show that for most of the activities, the
subjects who were given treatment AspectSM achieved
significantly lower error rates than the ones given standard UML
state machines.

In the future, we are planning to conduct similar controlled
experiments to assess if AspectSM supports other benefits
declared by AOM such as higher maintainability and
changeability of models. We also plan to empirically compare
AspectSM with other similar AOM profiles that support modeling
crosscutting behaviors on UML state machines. In addition, we
plan to compare AspectSM with domain specific languages for
AOM that can be used to achieve the similar objective as
AspectSM.

8. References
[1] Ali, S., Briand, L. C. and Hemmati, H. Modeling Robustness Behavior

Using Aspect-Oriented Modeling to Support Robustness Testing of
Industrial Systems. Systems and Software Modeling (SOSYM)(2011).

[2] Weigert, T. and Reed, R. Specifying Telecommunications Systems with
UML. Kluwer Academic Publishers, 2003.

[3] Drusinsky, D. Modeling and Verification using UML Statecharts: A
Working Guide to Reactive System Design, Runtime Monitoring and
Execution-based Model Checking. Newnes, 2006.

[4] SmartState, http://www.smartstatestudio.com/, 2010
[5] Utting, M. and Legeard, B. Practical Model-Based Testing: A Tools

Approach. Morgan-Kaufmann, 2007.
[6] Binder, R. V. Testing object-oriented systems: models, patterns, and

tools. Addison-Wesley Longman Publishing Co., Inc., 1999.
[7] Cavarra, R., Crichton, C., Davies, J., Hartman, A. and Mounier, L.

Using UML for automatic test generation In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA
'02) (2002).

[8] Pender, T. UML Bible. Wiley, 2003.
[9] Yedduladoddi, R. Aspect Oriented Software Development: An

Approach to Composing UML Design Models. VDM Verlag Dr.
Müller, 2009.

[10] IBM OCL Parser, IBM, http://www-
01.ibm.com/software/awdtools/library/standards/ocl-download.html,
2010

[11] OCLE, http://lci.cs.ubbcluj.ro/ocle/, 2010
[12] EyeOCL Software, http://maude.sip.ucm.es/eos/, 2010
[13] Zhang, G. Towards Aspect-Oriented State Machines. In Proceedings

of the 2nd Asian Workshop on Aspect-Oriented Software
Development (AOASIA'06) (Tokyo, 2006).

[14] Zhang, G. and Hölzl, M. HiLA: High-Level Aspects for UML-State
Machines. In Proceedings of the In Proceedings of the 14th
Workshop on Aspect-Oriented Modeling (AOM@MoDELS'09)
(2009).

[15] Zhang, G., Hölzl, M. M. and Knapp, A. Enhancing UML State
Machines with Aspects. 2007.

[16] Xu, D., Xu, W. and Nygard, K. A State-Based Approach to Testing
Aspect-Oriented Programs. In Proceedings of the 17th International
Conference on Software Engineering and Knowledge Engineering
(Taiwan, 2005).

[17] Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A. and
Rabbi, R. An Expressive Aspect Composition Language for UML
State Diagrams. 2007.

[18] Laddad, R. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications, 2003.

[19] Gomaa, H. Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley Professional, 2000.

[20] Wohlin, C., Runeson, P. and Höst, M. Experimentation in Software
Engineering: An Introduction. Springer, 1999.

[21] Ali, S., Yue, T., Briand, L. C. and Malik, Z. I. Does Aspect-Oriented
Modeling Help Improve the Readability of UML State Machines?
Simula Reserach Laboratory, Technical Report(2010-11), 2010.

[22] Sheskin, D. J. Handbook of Parametric and Nonparametric
Statistical Procedures. Chapman and Hall/CRC, 2007.

[23] Höst, M., Regnell, B. and Wohlin, C. Using Students as Subjects—A
Comparative Study of Students and Professionals in Lead-Time
Impact Assessment. Empirical Software Engineering, 5, 3I (2000),
pp. 201-214.

[24] Arisholm, E. and Sjoberg, D. I. K. Evaluating the Effect of a
Delegated versus Centralized Control Style on the Maintainability of
Object-Oriented Software. IEEE Transactions on Software
Engineering, 30, 8I (2004), pp. 521-534.

[25] Holt, R. W., Boehm-Davis, D. A. and Shultz, A. C. Mental
Representations of Programs for Student and Professional
Programmers. Ablex Publishing Corp., 1987.

[26] Durr, P., Bergmans, L. and Aksit, M. A Controlled Experiment for the
Assessment of Aspects - Tracing in an Industrial Context. University
of Twente, CTIT, 2008.

[27] Hanenberg, S., Kleinschmager, S. and Josupeit-Walter, M. Does
aspect-oriented programming increase the development speed for
crosscutting code? An empirical study. In Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering
and Measurement (2009). IEEE Computer Society.

[28] Walker, R. J., Baniassad, E. L. A. and Murphy, G. C. An initial
assessment of aspect-oriented programming. In Proceedings of the
21st international conference on Software engineering (Los Angeles,
California, United States, 1999). ACM.

[29] Bartsch, M. and Harrison, R. An exploratory study of the effect of
aspect-oriented programming on maintainability. Software Quality
Control, 16, 1I (2008), pp. 23-44.

[30] Ferrari, F., Burrows, R., Lemos, v., Garcia, A., Figueiredo, E., Cacho,
N., Lopes, F., Temudo, N., Silva, L., Soares, S., Rashid, A., Masiero,
P., Batista, T. and Maldonado, J. An exploratory study of fault-
proneness in evolving aspect-oriented programs. In Proceedings of
the Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1 (Cape Town, South Africa, 2010).
ACM.

[31] Farias, K., Garcia, A. and Whittle, J. Assessing the impact of aspects
on model composition effort. In Proceedings of the Proceedings of
the 9th International Conference on Aspect-Oriented Software
Development (Rennes and Saint-Malo, France). ACM.

[32] Carton, A., Driver, C., Jackson, A. and Clarke, S. Model-Driven
Theme/UML. Springer-Verlag, 2009.

[33] Hovsepyan, A., Scandariato, R., Baelen, S. V., Berbers, Y. and
Joosen, W. From aspect-oriented models to aspect-oriented code?:
the maintenance perspective. In Proceedings of the Proceedings of
the 9th International Conference on Aspect-Oriented Software
Development (Rennes and Saint-Malo, France). ACM.

165

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

