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ABSTRACT 
As software systems are maintained, their architecture 

modularity often degrades through architectural erosion and 

drift. More directly, however, the modularity of software 

implementations degrades through the introduction of code 

anomalies, informally known as code smells. A number of 

strategies have been developed for supporting the automatic 

identification of implementation anomalies when only the 

source code is available. However, it is still unknown how 

reliable these strategies are when revealing code anomalies 

related to erosion and drift processes. In this paper, we 

present an exploratory analysis that investigates to what 

extent the automatically-detected code anomalies are related 

to problems that occur with an evolving system's 

architecture. We analyzed code anomaly occurrences in 38 

versions of 5 applications using existing detection strategies. 

The outcome of our evaluation suggests that many of the 

code anomalies detected by the employed strategies were 

not related to architectural problems. Even worse, over 50% 

of the anomalies not observed by the employed techniques 

(false negatives) were found to be correlated with 

architectural problems. 

Categories and Subject Descriptors D.2.8 [Software 

Engineering]: Metrics; D.2.10 [Software Engineering]: 

Design; D.2.11 [Software Engineering]: Software 

Architectures. 

General Terms: Measurement, Design. 

Keywords: Code anomalies; architectural degradation symptoms; 

architectural violations; architectural anomalies. 

1. Introduction 

Code anomalies, also referred in the literature as "code 

smells" [13], emerge in programs structured with any kind 

of modularization technique, including object-oriented 

programming [31] and aspect-oriented programming [19]. 

Code anomalies are often considered as key indicators of 

architectural degradation [13]. Hence, if these code 

anomalies are not systematically removed, the system's 

architectures may degrade due to erosion or drift [16]. 

Architectural erosion occurs when architectural violations 

are introduced, whereas drift is the realization of unintended 

design decisions also known as architectural anomalies [39]. 

The detection of architecturally-relevant code anomalies 

is particularly challenging when architectural designs are 

absent or obsolete, which is a common situation in evolving 

software projects. A complicating factor is that, due to time 

constraints, developers often need to concentrate on the 

most relevant anomalies. In other words, they should focus 

on code anomalies that are actually contributing to 

architecture erosion or drift. Let's consider a simple example 

of code anomaly, such as God Class [27]. Occurrences of 

God Class only cause harm to the architectural modularity 

when their realization of multiple concerns introduce 

undesirable dependencies between architecture elements 

(e.g., multiple architecture layers). Therefore, such God 

Class instances require closer, more immediate attention 

than other instances [37]. 

Recent research has developed complementary ways to 

improve automatic detection of code anomalies. They are 

usually based on exploiting information that is extracted 

from the source code [21, 26, 28, 32, 40, 46] and rely on the 

combination of static code metrics. These mechanisms, 

known as detection strategies [27], have been the subject of 

recent studies reported in the literature. Several studies have 

reported acceptable accuracy rates (60% or higher) for such 

strategies used in anomaly detection processes [27]. Studies 

have also evaluated the impact of the code anomalies 

detected by these strategies on maintenance effort [18, 37, 

38]. However, it is still unknown whether the code 

anomalies detected by current strategies could be also used 

for indicating more severe architectural problems. 

The objective of this paper is to assess the usefulness of 

automated code anomaly detection strategies for uncovering 

architecture modularity problems. To this end, we carried 

out an exploratory study to analyze the influences of code 

anomaly on architectural designs in 38 versions of 5 

applications from heterogeneous domains. These 
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applications followed different architectural patterns and 

styles, such as Layers, Model-View-Controller and 

Aspectual Design [4]. The anomalies were detected in these 

systems using automated detection strategies [21, 27] which 

were the most effective to detect those anomalies in recent 

studies [18, 21, 23, 27, 44]. In addition, the original 

architects were consulted to reliably identify architectural 

problems in the studied systems. We explicitly selected 

systems for which architectural information was accessible 

so that we could correlate the architectural problems with 

the presence of code anomalies. 

Our results confirmed that current automated strategies 

were not accurate to identify code anomalies that attempt 

against architectural modularity in the target systems. More 

specifically: 

 More than 50% of the automatically-detected code 

anomalies were not correlated with architectural problems. 

This means that developers could spend most of the time 

reviewing code that might not represent threats to the 

system's architectural design. 

 Even worse, more than 50% of the false negatives 

“generated” by automated strategies were found to be 

correlated with architectural modularity problems. This 

means that developers would lead to neglect code 

anomalies that are critical to architectural design. 

 The inefficiency of detection strategies cannot be simply 

addressed by calibrating specific metric thresholds or 

determining different combinations of particular measures. 

It seems that their imperfection is largely due to their 

inability to exploit architectural concern's properties or 

architectural information in the source code. 

 Certain recurring patterns of anomaly co-occurrences 

seem to be better indicators of architecture modularity 

problems than individual anomaly occurrences. These 

patterns usually cannot be directly specified and identified 

by existing detection strategies [21, 23, 32]. 

The rest of this paper is organized as follows. Section 2 

presents the related work and its limitations in the context of 

this study. Section 3 introduces the different kinds code 

anomalies and of architectural modularity problems that are 

considered in our analysis. Section 4 describes our analysis 

procedures. Section 5 presents the obtained results, whereas 

Section 6 discusses their relevance and the main findings. 

Section 7 highlights the limitations of our study and, finally, 

Section 8 provides some concluding remarks. 

2. Related Work 

Our focus is on automatic detection of code anomalies as 

engineers usually do not have time and resources for 

carrying out a manual detection process. In this context, we 

divided the related work in two categories. First, we present 

current research aiming to support automatic detection of 

code anomalies. Second, we overview empirical studies that 

analyze the impact of automatically-detected code 

anomalies from different perspectives. 

Automatic Detection of Code Anomalies. Emden and 

Moonen [9] describe jCosmo, an approach for detecting 

code anomalies based on the structural properties of code 

elements. Ratzinger et al. [41] detect code anomalies by 

examining change couplings. Strategies for detecting code 

anomalies [27] are the most common mechanism referenced 

and studied in the literature. The reason is that they generate 

a list of suspects; as a result, a wide range of static analysis 

tools, including visualization ones (e.g. [6, 49]), are based 

on such strategies. Marinescu [21, 27] introduced the 

concept of detection strategy, which consists of a logical 

expression composed by metrics to detect code anomalies. 

A concrete example is given in Section 3.1. Marinescu et al. 

[28] also presented inCode, a tool used to automate the 

application of certain detection strategies. 

Other authors also proposed strategies and tools for 

anomaly detection in the literature. For instance, Munro [32] 

proposed some heuristics for detecting code anomalies. 

Alikacem and Sahraoui [1] proposed a language to detect 

code anomalies. This language allows the specification of 

rules using metrics and thresholds. Moha et al. [32] 

presented the Decor, a tool and a domain-specific language 

to automate the construction of anomaly detection 

strategies. However, none of these tools were used in the 

context of this work (Section 4.4) because they are neither 

available [1, 33] nor support the detection of all code 

anomalies that are considered in our analysis [28, 32]. 

Studies of Code Anomalies. The effectiveness of 

automatically-detected code anomalies using strategies have 

been recently studied under different perspectives. The 

authors have conducted empirical studies to investigate the 

negative effects of such automatically-detected anomalies. 

For instance, Mantyla and Lassensius investigate to what 

extent automatically-detected code anomalies can be used as 

a basis for subjective evaluation of code evolvability [25]. 

Olbrich et al. [37, 38] and Khomh et al. [18] investigate the 

evolution of automatically-detected code anomalies. The 

authors analyze whether the number of code anomalies 

increases over time, and the anomalies' influence on how 

often a code element changes. However, they did not study 

to what extent these phenomena are related to architectural 

modularity problems (Section 3). Certain classes (classified 

as "anomalous") might coincidently change more often 

because the associated requirements are naturally more 

volatile than others. In other words, the rate of individual 

class changes might not necessarily be an indicator of 

architecture modularity problems. 

Other works investigate the impact of automatically-

detected code anomalies on software defects (i.e. the need 

for corrective maintenance). For instance, D'Ambros et al. 

[6] found that, while some code anomalies are more 

frequent, none of them can be considered more harmful with 

respect to software defects. In the context of aspect-oriented 

systems, Macia et al. [23] analyzed the influence of code 

anomalies on corrective changes. They also analyzed their 

influence on perfective changes (i.e. refactoring effort). 
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However, none of these analyses investigate to what extent 

detection strategies accurately localize code anomalies that 

are related to architectural modularity problems. That is, 

they do not assess the impact of automatically-detected code 

anomalies on architectural designs. 

3. Code Anomalies and Architectural Problems  

This section introduces relevant concepts related to code 

anomalies (Section 3.1) and architectural modularity 

problems (Section 3.2). It also illustrates how they could be 

interrelated (Section 3.3) using a running example. 

3.1 Code Anomalies and Detection Strategies 

The modularity of system implementations degrades 

through the introduction of code anomalies. They affect 

different code units, such as classes and methods. For 

example, God Class is a code anomaly in which a class (i) 

realizes various concerns – i.e. it performs too much work 

on its own, delegating minor responsibilities to a set of 

simple classes, and (ii) uses data from many other classes, 

increasing its coupling. For instance, MediaController in 

Figure 1 was classified as a God Class instance.  

Detection strategies interpret a set of code metrics that 

are extracted from a specific code element (e.g., class or 

method) by using a set of threshold filter rules [27]. Then, 

the results of these filters are combined and used to identify 

code anomalies. Below, we present the detection strategy 

used to identify God Classes in our study. This detection 

strategy and its thresholds were defined in [21] and have 

been used in other studies [37, 38]. The calibration of these 

thresholds (see Section 4.4) is required in some cases. 

)5)(()3.0)(()47)(()(  CATFDCTCCCWMCCGodClass  

where: 

 C is the class being inspected; 

 Weighted Method Count (WMC(C)) is the sum of the 
cyclomatic complexity of all methods in C [21]; 

 Tight Class Cohesion (TCC(C)) is the relative number 
of directly connected methods, i.e. methods that access 
the same instance variables, in C [30]; 

 Access To Foreign Data (ATFD(C)) is the number of 
attributes in foreign classes accessed by class C [21]. 

Table 1 summarizes the set of code anomalies that we 

have analyzed in this study. These anomalies were selected 

because they represent all the code anomalies identified by 

developers in the systems we analyzed (Section 4.3). In 

addition, their detection strategies have been widely studied 

(Section 2), with detection accuracy rates higher than 60%. 

The details governing the anomalies' definitions as well as 

their detection strategies can be found in [21, 23, 44]; we 

elide them here for brevity and space constraints. 

3.2 Degradation: Architecture Modularity Problems 

The phenomenon of architectural degradation was 

introduced by Hochstein and Lindvall [16] as aiming at 

referring to the continuous decline of the architectural 

modularity. Architectural degradation encompasses 

architectural modularity problems caused by the processes 

of erosion and drift [39]. 

Architectural Erosion is the process of introducing 

decisions into a system architectural design that violates the 

system's intended architecture [39] and, therefore, attempt 

against the architectural modularity. As a result, architecture 

violations can only be observed if an explicit specification 

of the prescribed (i.e. intended) architectural design 

decisions is available. 

Figure 1 depicts an example of architectural violation in 

the MobileMedia system. The problem is associated with 

the realization of the exception handling policy in this 

system. Most exceptions are propagated through component 

interfaces across the system layers, thereby going against 

the architects' original intent in some cases. For instance, the 

MediaController component invokes different services from 

the AlbumData component, which partially realizes the 

Model layer. MediaController ends up handling exceptions 

(e.g. PersistentException) signalized by AlbumData, 

including those that should be treated internally to the other 

component realizing the Model layer. This means that 

additional code couplings, between elements realizing the 

Model and Controller layers, are the sources of architecture 

violations. 

Architectural Drift is the introduction of design decisions 

into a system's architecture that were not included in the 

intended architecture, albeit they do not violate any of the 

MediaController

+ handleCmd(Cmd c)

+ playMedia(String s)

+ playVideo(String s)

+countViews(String s)
+showImage(String s)

+goPreviousScreen()

…

Controller
handleCmd(Cmd c){   

la = c.getLabel();   

if(la.equals(“PlayM”)){..}

else if(l.equals(“Capture P”)){..}
else if(la.equals(“Views”)){..}

else if(la.equals(“Capture V”)){..}

else if(la.equals(“Favorite”)){..}

else if(la.equals(“Save”)){..}

//other similar if-else were omitted
}

handleCmd

AlbumData

+ save(String s)

+ delete(String s)

+ create(String s)

…

Model

Uses

Exceptions

Music Concern Video Concern Photo Concern Favorite Concern

MusicController

MusicAccessor

MusicController

MusicData

Architectural Violations

 

Figure 1. Relationship between code anomalies and architectural 

modularity problems 

Table 1.  Code anomalies analyzed in our study 

Aspect-Oriented Code Anomalies Object-Oriented Code Anomalies 

Composition Bloat [23] Data Class [13, 21]  

Duplicate Pointcut [44] Divergent Change [13, 21]  
Forced Join Point [23] Feature Envy [13, 21]  

God Aspect [23] God Class [21, 29]  

God Pointcut [23] Large Class [13, 21]  
Redundant Pointcut [23] Long Method [13, 21]  

 Long Parameter List [13, 21]  

 Misplaced Class [13, 21]  
 Shotgun Surgery [13, 21]  

 Small Class [13, 21]  
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prescribed design decisions [39]. Some architectural drift 

symptoms are caused by applying a design decision that 

neglects or impairs one or more modularity principles. Each 

of these symptoms of architectural drift is often referred as 

an architectural anomaly [14, 22]. These anomalies 

comprise decisions that may negatively impact architectural 

modularity principles, such as narrow component interfaces 

and components realizing a single concern [14, 29]. 

In order to select a set of drift symptoms to be analyzed 

in our study, we considered catalogs of architectural 

anomalies explicitly documented in the literature [14, 29]. 

Our final subset of analyzed anomalies encompassed those 

that were identified by architects in the target systems of our 

study (Section 4.3). The types of architectural anomalies 

analyzed in our study are summarized in Table 2. Note that 

each architectural anomaly hinders different modularity 

principles. For instance, while Component Concern 

Overload anomaly does not adhere to the single 

responsibility principle, the Ambiguous Interface violates 

the simple interface principle [29]. 

Table 2.  Architectural anomalies detected in our study 

Architectural Anomalies Definition 

Ambiguous Interface  

Interfaces that offer only a general entry-point 

into a component that handles more requests 
than it should actually process 

Extraneous Connector  
Connectors of different types are used to link a 

pair of components 

Connector Envy  
Components which realize functionality that 

should be assigned to a connector 

Scattered Parasitic 

Functionality  

Multiple components are responsible for 
realizing the same high-level concern and 

orthogonal ones 

Component Concern 

Overload 

Components responsible for realizing two or 

more unrelated architectural concerns 

As an illustration, Figure 1 depicts an Ambiguous 

Interface anomaly in the context of the MobileMedia system 

used in our study [12]. The interface handleCmd of the 

component Controller is implemented by the class 

MediaController. However, the interface offers only one 

method, which receives all service requests and, therefore, it 

handles more types of commands than it should actually 

process; i.e. it receives the parameter Cmd with the generic 

type Command. This situation hinders the architecture 

modularity as over-generalized interfaces allow additional 

dependencies between components [14, 29]. Note that even 

though this situation is not necessarily a violation of 

prescribed design decisions (i.e. symptoms of architecture 

erosion), over-generalized interfaces might favor tight 

component coupling as the system evolves. Additional 

examples and a discussion of each architectural anomaly 

can be found in [14, 29] and is out of the scope of our work. 

3.3 Code Anomalies as Indicators of Architecture 

Degradation Symptoms  

Previous research [21, 32] departs from the following 

assumption: detection strategies (Section 3.1) accurately 

localize code anomalies related to architectural modularity 

problems (Section 3.2). Our study (Section 4) is aimed to 

analyze to what extent this assumption holds. A code 

anomaly C is related to an architecture modularity problem 

A when: (i) the code elements (e.g., methods or classes) 

affected by C are in charge of implementing the 

architectural elements (e.g., components, interfaces, 

connectors), and (ii) these architectural elements are 

affected by A. In this work we considered only those 

relationships for which the cause-effect was confirmed by 

architects (Section 4.4). 

Figure 1 depicts an example of this cause-effect 

relationship. The MediaController.handleCmd method was 

considered as the source of two code anomalies and one 

architectural anomaly. First, this method was classified a 

Long Method (Table 1) as it contains many lines of code, 

presents high cyclomatic complexity, and realizes several 

architectural concerns. This method was also classified as 

Divergent Change because it is using information from 

several classes to deal with different services. In addition, its 

implementation is responsible for dealing with different 

exceptions propagated by the Model component; however, 

these exceptions are not related with the method's goal. 

Finally, this method is in charge of implementing the 

interface handleCmd of Controller classified as Ambiguous 

Interface. 

4. Study Definition and Design 

The relationship between code anomalies and architectural 

modularity problems has often been recognized by the 

literature [13, 16]. However, as software projects evolve, the 

source code is usually the only artifact available and the 

architectural design is not explicitly documented. Hence, the 

detection of code anomalies related to architectural 

problems is only viable if the available automated strategies 

(Section 3.1) are accurate. This study aims at analyzing 

whether detection strategies are accurate in localizing 

architecturally-relevant anomalies in the source code. 

4.1  Hypotheses 

In order to evaluate the accuracy of detection strategies for 

localizing architectural modularity problems (Section 3.2), 

we have divided the analysis into two perspectives by 

observing both architectural violations and architectural 

anomalies. These perspectives lead us to two null 

hypotheses H1 and H2 as defined below. 

H10: The accuracy of detection strategies to identify 

code anomalies related to architectural violations is high.  

H20: The accuracy of detection strategies to identify 

code anomalies related to architectural anomalies is high. 

Strategies are considered accurate in the literature when 

their precision and recall rates are 60% or higher for 

detecting code anomalies [18, 27, 37, 38]. This threshold 

has been derived from empirical studies involving systems 

implemented using different programming languages [21]. 
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As it is assumed that code anomalies are intrinsically related 

to architectural modularity problems [13, 16], we have used 

the same threshold in this study for assessing the strategies‟ 

accuracy to localize architecturally-relevant code anomalies. 

That is, we consider that their accuracy was „high‟ if 60% of 

the code anomalies related to architectural modularity 

problems (Section 3.3) are automatically-detected. 

4.2 Variable Selection  

In order to test our hypotheses, we have defined the 

following independent and dependent variables. 

Independent Variable. There are as many independent 

variables as there are kinds of automatically-detected code 

anomalies (Table 1). Each variable Ci,k,j indicates the 

number of times that an entity i suffers from a code anomaly 

k in a version vj. All code anomaly occurrences used in 

testing these hypotheses were confirmed by developers 

(Section 4.5). 

Dependent Variable. Similar to the independent variables, 

there are many dependent variables as there are kinds of 

code anomalies. The dependent variables Vi,k,j and Ai,k,j for 

H1 and H2 indicate whether the entity i affected by the code 

anomaly k is introducing any violation or architectural 

anomaly in a version vj, respectively. All instances of 

architectural degradation symptoms used in testing these 

hypotheses were confirmed by the original architects 

(Section 4.4). 

4.3 Target Systems 

In this study we decided to focus on investigating short-term 

architectural modularity problems because they can provide 

early symptoms of architectural degeneration. For this kind 

of study, it is important to select systems implemented with 

object-oriented programming and aspect-oriented 

programming. The goal is to make a broader analysis and 

identify whether there could be any influence of the modular 

programming technique on the results. However, the 

comparison between the strategies' accuracy rates for these 

two programming techniques is beyond the scope of our 

study. It is also important to select systems developed using 

different practices related to architectural rule enforcement 

in the source code as well as counting on the availability of 

their original architects and developers. Their availability is 

important to help us to validate the identified architectural 

modularity problems (Section 3.3). A complete list of 

criteria for supporting the system selection process is 

provided in [5]. 

Based on the aforementioned criteria, we chose 38 

releases of 5 medium-sized applications. Table 3 

summarizes the general characteristics of each target 

system. Two of these applications are Web-based 

information systems, which allow citizens to register 

complaints about health issues in public institutions. 

HealthWatcher (HW) [15] is based on the layers 

architecture style. AspectualWatcher (AW) also follows this 

style, but relies on aspect-oriented design [4] for 

modularizing concerns that crosscut the layers in the HW 

system. Note that in this table the token “/” is used to 

separate the data of the object-oriented (Java) version and its 

aspect-oriented (AspectJ) counterpart. 

We have also selected two software product lines and a 

middleware. The third and fourth systems are product lines 

for deriving applications that manipulate media on mobile 

devices [12]. MobileMedia (MM), relies on the model-view-

controller architectural pattern, while AspectualMedia (AM) 

was structured based on aspectual architecture design for 

modularizing features that crosscut the MM architecture. 

The fifth system is a lightweight middleware platform, 

called MIDAS, for distributed, event-based sensor 

applications [24]. The two selected versions are the before 

and after versions of a major architectural restructuring with 

the widest impact in this system history. A high number of 

changes of architectural elements took place in this 

transition and are realized by the latest version. 

Table 3.  Systems used in our study 

 HW/AW MIDAS MM/AM 

Application Type Web-based system Middleware 
Software Product 

Line 
Code Availability Java/Aspect C++ Java/Aspect 
# of Versions 10/10 2 8/8 
# of Selected Versions 10/10 2 8/8 
Avg. # of CE 85/113 22 60/94 
Avg. # of AE 34/41 14 48/61 

Avg. KLOC 6 7 8 

HW=HealthWatcher; AH=AspectualWatcher; MM=MobileMedia; 

AM=AspectualMedia; CE=Code Elements (classes and aspects);  
AE=Architectural Elements (components and connectors) 

4.4 Procedures for Data Collection  

In order to perform the data collection process we count on 

the help of two groups of architects: (i) those that defined 

the original intended architecture, and (ii) independent 

reviewers of the software architecture; and on a group of 

original developers. These three groups were involved in the 

main phases of our study, which are described next. 

Recovering the Actual Architecture. This phase was 

based on a semi-automatic process. We have used Sonar 

[43] and Understand [47] to support the recovery of the 

actual architecture from the source code. These tools 

support architecture and code analyses in order to help 

developers to analyze and measure the modularity of the 

system's architecture and implementation. To make possible 

the architectural analysis, architects and original developers 

mapped code elements to architectural elements. These 

mappings allowed us to trace the influence of a code 

anomaly on the introduction of modularity problems in a 

system's architecture. These mappings also allowed us to 

identify how modularization of architectural concerns in the 

code were related to architecture modularity problems. An 

example of this mapping is showed in Figure 1 where the 

MediaController.handleCmd method is implementing 

Music, Video, Photo and Favorite concerns. 
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Identifying Architectural Degradation Symptoms. In 

order to identify symptoms of architectural erosion we used 

Software Reflexion Model [35]. As this technique demands 

the intended architecture was provided by architects. The 

comparison of the actual, extracted architecture (EA), and 

the intended architecture (IA) was supported by the two 

groups of architects. They were responsible for measuring 

the architecture conformance in terms of convergence (a 

component or relationship that is in both EA and IE), 

divergence (a component or relationship that is in EA but 

not in IA), and absence (a component or relationship that is 

in IA but not EA). For instance, all absence classifications 

were considered as violations. Although divergence 

classifications are natural suspects of possible violations, 

they can be related to unintended architectural decisions. 

Therefore, architects needed to validate their actual impact 

on architecture designs.  

Furthermore, architectural anomalies were detected by 

architects based mainly on: (i) a visual inspection of the EA, 

and (ii) a careful analysis of the code elements mapped to 

architectural elements, due to the lack of tools. We also 

asked the architects to indicate other anomalies observed in 

the architecture design beyond those presented in Table 2. 

This helped us to better judge whether and which code 

anomalies are good indicators of architectural modularity 

problems.  

As result of this stage, architects provided reports 

describing the architectural problems observed in each 

system's version. These reports described, for instance, the 

problem's type (e.g. violation, architectural anomaly), its 

location in the design, the architectural elements related to it 

and, in some cases, an explanation of the problem's cause. 

Automatic Detection of Code Anomalies. Code anomalies 

were automatically identified using detection strategies. We 

selected metrics and thresholds that have shown high 

accuracy to identify code anomalies in previous studies [21, 

23]. Sometimes, the thresholds suffered some minor 

adjustments in order to maximize the accuracy. For 

instance, certain thresholds were calibrated according to the 

specific programming styles and system characteristics [20]. 

When multiples detection strategies for a code anomaly 

were available in the literature, we analyzed which metrics 

and thresholds would be the most appropriate to reach the 

highest accuracy rates. The goal was to get the best possible 

results with the detection strategies at hand. If needed, the 

changes in the original detection strategies [21, 23, 44] were 

discussed with the systems' original developers. A complete 

list of the detection strategies used and their corresponding 

thresholds are available in a supplementary web site [5]. 

Furthermore, the metrics used in the detection strategies 

were mostly collected with existing tools such as: MuLATo 

[34], Together [45] and Understand [47]. These tools were 

chosen as they are complementary: MuLATo is a static 

analyzer for AspectJ programs whereas Together and 

Understand analyze Java programs. They have been used in 

previous studies reported in the literature [15, 21, 23] and, 

more importantly, they collect a large number of metrics 

that were required for the detection strategies employed. 

4.5 Analysis Method 

We also asked the developers to identify all the code 

anomalies that influenced on the architectural design. The 

lists of code anomalies provided by developers included 

fine-grained and accurate details about the code anomaly 

facilitating our analysis. For instance, the lists describe the 

code anomaly's type, the code elements affected by it, and 

its correlation with the architectural problems previously 

identified by architects. Afterwards, a stage was dedicated 

to investigate the accuracy of the detection strategies [21, 

23] when detecting the code anomalies previously identified 

by developers. Therefore, this investigation was based on 

both lists: (i) automatically-detected code anomalies using 

existing detection techniques and, (ii) code anomalies 

detected by developers through the code review stage. In 

particular, the lists provided by developers were useful to 

assess the impact of non-automatically-detected code 

anomalies on architectural decompositions. 

In order to reject H10 and H20, we calculated the 

precision and recall of detection strategies using the 

following formulas: 

          
FPTP

TP
precision


           

FNTP

TP
recall


  

where, True Positive (TP) and False Positive (FP) 

encompass all automatically-detected code anomalies that 

respectively were or not confirmed as relevant by architects 

and developers. As we described previously developers 

performed a code review in order to detect code anomalies 

related to architectural problems that were not automatically 

identified by the detection strategies; i.e. False Negative 

(FN). Based on these criteria, a detection strategy achieves 

100% of precision and 100% of recall if it only pinpoints the 

same set of architecturally-relevant code anomalies 

confirmed by developers. 

5. Study Results 

Before discussing the strategies' accuracy to identify 

architecturally-relevant code anomalies (Section 5.2), this 

section presents how often the code anomalies were actually 

related to architecture problems in the target systems. Tables 

4 and 5 summarize the overall impact of code anomalies on 

architectural designs. The list of code anomalies (used to 

compute the table values) represents all the occurrences of 

anomalies (Section 3.2), whether automatically detected by 

the strategies or not. The tables present, for each of the 

target systems, the relationship between code anomalies and 

architectural violations (Table 4) or particular types of 

architectural anomalies (Table 5). The columns are headed 

with the acronym of each system. The rows x and S in both 

tables represent the mean and the standard deviation, 

respectively. Violations in Table 4 were related to divergent 

relationships (Section 4.4) as the system's implementation 
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started based on its intended architecture. Data for MIDAS 

are not presented in Table 4 as no violation occurred in this 

system. This observation was expected as the development 

process in the MIDAS project strictly enforced architecture 

conformance [24] . 

Table 4.  Code anomalies related to architectural violations 

  AW HW AM MM 

Violations 
X 134.9 207.2 43.5 46.7 
S 2.81 9.46 4.57 4.56 

Non-related 
X 24.7 51.8 10.87 7.8 
S 1.82 5.12 2.29 4.67 

Total  160 259 54 55 

 

Table 5.  Code anomalies related to architectural anomalies 

  AW HW AM MM MIDAS 

Ambiguous Interface 
X 8.6 6.4 9.25 12.16 2.5 
S 2.06 1.03 2.48 3.22 0 

Connector Envy 
X 5.6 5.6 7.25 8.63 2 
S 2.75 2.75 2.17 2.95 0 

Component Concern 

Overload 

X - 3 1.41 2.73 1 
S - 0 2.39 1.86 0 

Extraneous Connector 
X 3.8 - 1.38 - 14 
S 1.82 - 0.84 - 3.18 

Scattered Parasitic 

Functionality 

X 4.7 2.2 2.13 3.75 - 
S 1.85 1.01 1.18 1.3 - 

Non-related 
X 3.1 2.7 1.6 2.62 6 
S 1.44 1.91 1.52 1.78 4.5 

Total  26 20 22 30 29 

A first analysis of Tables 4 and 5 revealed that the 

architectural modularity problems were significantly related 

to code anomalies. The correlation was usually higher than 

80% for both violations and architectural anomalies. This 

conclusion can be drawn by comparing the total number of 

architectural modularity problems (row “Total”) and the 

mean of those problems unrelated to code anomalies (i.e. 

row “Non-related”) in each table. Interestingly, around 15% 

of the architectural modularity problems were related to 

code anomalies that emerged in the first system's versions. 

On the other hand, less than 20% of the architectural 

problems were not related to code anomalies. From the 

opposite perspective, we observed that just about 10% of the 

architectural anomalies were not related to code anomalies. 

The aforementioned results were particularly relevant as 

the high correlation coefficient was observed even in 

systems developed with modularity principles in mind. The 

developers tried to maximize such principles in both 

architecture design and implementation phases. These 

results confirm that code anomalies may be indicators of 

architectural modularity problems in the source code. It 

reinforces the motivation of using detection strategies as 

indicators of architectural modularity problems in the source 

code. On the other hand, the success of this approach largely 

depends on the accuracy of existing strategies to detect 

architecturally-relevant code anomalies. 

5.1 Diverse Degradation Symptoms in the Systems 

The individual analysis of the systems revealed that the 

HealthWatcher (HW) system presented the largest number 

of architectural violations of the five systems. The number 

of violations increased over time in this system, leading to 

the highest architecture erosion rate. According to its 

architects, the main reason for introducing violations was 

the incremental addition of classes in the GUIElements layer 

that illegally access information in the DataManagement 

layer. 

On the other hand, the MobileMedia (MM) system 

presented the largest number of architectural modularity 

anomalies of the five systems. The majority of these 

architectural drift symptoms were related to code anomalies 

that emerged along the system evolution. In particular, they 

were mostly caused by the non-modular realization of new 

concerns progressively included in the latest system 

versions. They were often instances of the following 

architectural anomalies: Connector Envy, Scattered 

Parasitic Functionality and Component Concern Overload. 

Interestingly, the results show that architecture problems 

also occurred in the evolution history of systems or 

packages where architecture conformance was more strictly 

enforced in the code. The MIDAS project is the best 

example. Most architectural anomalies in MIDAS occurred 

due to interfaces are underlying the event-based middleware 

and misuse of connectors provided by the middleware. 

These anomalies were mostly cases of Extraneous 

Connector and Connector Envy occurrences. In addition, 

single components in MIDAS were realizing multiple 

scattered concerns, including service discovery, the fault 

tolerance policy, and dynamic adaptation. As a 

consequence, these components suffered from occurrences 

of Component Concern Overload and Scattered Parasitic 

Functionality anomalies. 

As we can observe from the discussion above, code 

anomalies tend to manifest in different ways according to 

the system's characteristics. The extent of their contribution 

to either architectural erosion or architectural drift was also 

diverse. Regardless of these variations, the results revealed 

that a considerable amount of architectural modularity 

problems were introduced in the first system versions of all 

the 5 systems. This was observed even in MobileMedia, in 

which most of the architecture problems were introduced 

along the system evolution as discussed above. We further 

elaborate the implications of this finding in Section 6. 

5.2 Accuracy of Investigated Detection Strategies 

The accuracy of automated strategies for detecting 

architecturally-relevant code anomalies is summarized in 

Table 6. The token '-' is used in this table to represent the 

cases where modularity problems did not occur or they were 

not related to architectural problems. The average of the 

strategies' accuracy rates is also presented for anomalies in 

both object-oriented and aspect-oriented code. For aspect-
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oriented systems, we concentrate on presenting the details 

related to the code anomaly occurrences. A detailed list of 

all code anomalies, false positives and false negatives in 

each one of the investigated systems can be found at [5]. 

In general, our analysis reveals that detection strategies 

are inaccurate in identifying architecturally-relevant code 

anomalies. Specifically, most of the automatically-detected 

code anomalies were not associated with architectural 

modularity problems, leading to many false positives. In 

general, the average of the automatically-detected code 

anomalies represented about 45% (or less) of the total 

number of code anomalies related to architectural 

modularity problems. MIDAS was the only exception, 

which will be discussed later. Consequently, these results 

might imply a problem to engineers who are interested in 

performing clean-up code revisions to avoid architecture 

degeneration. In these cases, developers are likely to devote 

most of their time analyzing code anomalies that do not 

represent a threat to the architecture modularity. 

Even worse, many of the code anomalies harmful to 

architectural modularity problems were not automatically 

detected by strategies, leading to a high rate of false 

negatives. Developers will miss a wide range of architecture 

erosion and drift symptoms. In particular, many of the 

strategies exhibited recall rates close or much lower than 

45%. That is, about 55% or more of the non automatically-

detected code anomalies were related to architectural 

modularity problems. These results indicate that detection 

strategies seem to have a tendency to send developers in 

wrong directions when addressing code anomalies related to 

architectural modularity problem. 

The next subsections discuss how accurate the strategies 

were when localizing code anomalies related to both 

violations (Section 5.2.1) and anomalies (Section 5.2.2). 

5.2.1 Revealing Symptoms of Architecture Erosion  

On average about 41% of the code anomalies related to 

violations were automatically-detected by strategies in the 

target systems. The results also show that code anomalies 

related to violations emerged in systems developed with 

both OO and AO modularity techniques. In OO systems, 

these violations were related to undesirable 

interdependencies between classes responsible for 

implementing different architectural elements. For instance, 

69% of the violations in HealthWatcher were related to 

exception events propagated from the DataManagement 

layer to the GUIElements layer. Consequently, all interfaces 

between DataManagement and GUIElements layers 

propagated these exceptional events, even though the 

majority of these exceptions should be treated internally by 

classes defined in the DataManagement layer according to 

the designers. intent. The propagation of exception events 

introduced several occurrences of Long Method, Misplaced 

Class, Divergent Change, and Shotgun Surgery. However, 

just about 33% of these architecturally-relevant anomalies 

were automatically-detected by strategies. 

Other kinds of violations emerged in AO systems as they 

follow a different architecture design. For instance 26% of 

the total number of architecturally-relevant anomalies was 

related to undesirable tight coupling between aspects and 

the base code. These relations were motivated by the fact 

that classes were exposing internal information just to be 

used by aspects. For instance, artificial methods had to be 

created in later system versions, aiming at allowing the 

expected composition between aspects. This situation leads 

to interface bloat occurrences and to the introduction of 

relevant Long Parameter Lists and Forced Join Points. 

However, detection strategies were able only to identify 

about 40% of these relevant occurrences. 

5.2.2 Revealing Symptoms of Architecture Drift 

Architectural anomalies were mostly related to the 

inappropriate modularization of architectural concerns in the 

target systems. Exception Handling for AspectualWatcher 

and Connection for AspectualMedia presented the strongest 

relationship with architectural modularity problems as they 

Table 6.  Results for the analyzed detection strategies 

Code Smells 
True Positives False Positives False Negatives Precision Recall 

HW MM MIDAS HW MM MIDAS HW MM MIDAS HW MM MIDAS HW MM MIDAS 

Divergent Change 7 1 4 14 2 43 19 2 2 0.33 0.33 0.09 0.27 0.33 0.67 

Feature Envy 5 2 - 27 6 - 9 3 - 0.16 0.25 - 0.36 0.40 - 

God Class 1 3 2 2 4 0 4 5 1 0.67 0.43 1.00 0.33 0.38 0.67 
Large Class 1 1 2 2 0 4 4 1 0 0.43 1.00 0.30 0.38 0.50 1.00 

Long  23 7 6 33 24 37 18 10 4 0.41 0.23 0.34 0.56 0.41 0.50 

Long Parameter List 4 - - 12 - - 5 - - 0.25 - - 0.44 - - 
Misplaced Class 2 1 - 5 2 - 1 2 - 0.33 0.33 - 0.50 0.33 - 

Shotgun Surgery 6 2 3 19 6 23 9 7 6 0.24 0.25 0.22 0.40 0.22 0.32 

OO Avg. Rates          0.35 0.40 0.33 0.41 0.38 0.63 

 AW AM MIDAS AW AM MIDAS AW AM MIDAS AW AM MIDAS AW AM MIDAS 

OO Avg. Rates          0.47 0.32 - 0.38 0.44 - 

Composition Bloat 2 3 - 4 1 - 3 4 - 0.33 0.50 - 0.40 0.43 - 

Duplicate Pointcut 8 65 - 11 47 - 3 31 - 0.42 0.58 - 0.72 0.68 - 

Forced Join Point 6 1 - 6 2 - 9 6 - 0.50 0.33 - 0.40 0.14 - 
God Aspect 11 6 - 11 4 - 17 9 - 0.50 0.60 - 0.39 0.40 - 

God Pointcut 10 8 - 20 7 - 14 11 - 0.33 0.53 - 0.42 0.42 - 

Redundant Pointcut 52 3 - 17 3 - 32 2 - 0.75 0.50 - 0.62 0.60 - 

AO Avg. Rates          0.47 0.50 - 0.49 0.44 - 
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are very context-specific with code. Exception Handling, for 

instance, was scattered among different architectural 

components and, therefore, it was related to Scattered 

Parasitic Functionality occurrences. On the other hand, the 

high tangling of Connection with Persistence and Logging 

led to the architectural components responsible for its 

modularization were classified as Component Concern 

Overload. The inappropriate modularization of these 

concerns was associated with several occurrences of Long 

Method, God Aspect, God Class, Divergent Change, 

Shotgun Surgery in the target systems. Exception Handling 

and Connection were responsible, respectively, for 53 % 

and 41% of the total of architecturally-relevant code 

anomalies in AspectualWatcher and AspectualMedia. 

However, just about 47% of these relevant anomalies was 

automatically detected by strategies. 

5.2.3 Hypotheses and Overall Accuracy Results  

Based on the aforementioned results, we can conclude that 

metrics-based strategies were not accurate in detecting 

architecturally-relevant code anomalies (Section 3.2). 

Therefore, we reject both null hypotheses H10 and H20 

(Section 4.1) for all the systems, except MIDAS (Table 6). 

Several detection strategies presented recall rates greater 

than 60% in MIDAS. That is, more than a half of code 

anomalies related to architectural degradation symptoms 

were automatically identified by detection strategies in 

MIDAS. We also observed that the number architectural 

anomalies not related to code anomalies tend to increase 

compared with the other systems. 

The MIDAS case confirmed our intuition that detection 

strategies are more effective in systems where architecture 

conformance is more strictly enforced in the code. The 

better the code modularity reflects the architecture 

decomposition, the fewer the number of code anomalies. 

This finding was not actually exclusive to MIDAS. Similar 

results were observed in packages of MobileMedia and 

HealthWatcher with highest adherence to the architectural 

rules. In these packages (e.g., Model for MobileMedia and 

Business for HealthWatcher) the detection strategies 

presented precision and recall rates higher than 60%. These 

packages also presented the lowest number of 

architecturally-relevant code anomalies. 

Another relevant characteristic that is likely to favor the 

success of detection strategies (i.e., accuracy rates higher 

than 60%) is when the projection of architectural elements 

occurs in a few code units. In these cases, single code 

anomalies will exert a more direct impact on the 

architectural element that they are implementing. This 

phenomenon was observed in all target systems. 

6. Analyzing Overlooked Code Anomalies 

Once we have discussed the strategies' accuracy, we reflect 

upon the key factors that contributed to their failure in 

localizing architecturally-relevant code anomalies (Sections 

6.1 and 6.2). This discussion can provide insights on how to 

improve the techniques to detect architecture degradation 

based on source code analysis. 

6.1 Inability to Analyze Architectural Concerns’ 

Properties in the Source Code 

Code anomalies were often the source of architectural 

modularity problems when they were located in modules 

realizing various architectural concerns. We noticed that 

62% of the total number of architecturally-relevant code 

anomalies exhibited this characteristic. This frequency 

reinforces that detection strategies should be more sensitive 

to the degree of concern scattering and tangling in the code. 

In fact, the employed strategies were not accurate when 

detecting anomalies associated with the inappropriate 

modularization of architectural concerns; they presented 

precision and recall rates around 43% and 48% respectively. 

For instance, the class BaseController in MobileMedia 

was classified by developers as an architecturally-relevant 

occurrence of God Class since it is realizing different 

architectural concerns (e.g. Photo, Music, and Persistence). 

However, differently from MediaController (Figure 1), it 

was not automatically detected by the strategies. Even 

though this class was the source of highly tangled and 

scattered concerns, its methods present neither low cohesion 

nor high complexity (Section 3.1). However, changes 

associated with each of the architectural concerns were 

performed in this class, confirming its anomalous nature. 

This class was particularly related to two architectural 

anomalies, namely Component Concern Overload and 

Scattered Parasitic Functionality. 

As a conclusion, the results reveal that conventional 

detection strategies are not accurate largely due to their lack 

of sensitivity to properties of architectural concerns in the 

code. Detection strategies are limited to metrics of structural 

properties (detected by static analysis tools) of modules in 

the code. Existing concern metrics [42] and concern tracing 

tools [10] should be leveraged to improve the accuracy of 

detection strategies used to assess architecture degradation. 

6.2 Inability to Identify Architectural Information in 

the Source Code 

Architecturally-relevant code anomalies often occurred in 

code elements responsible for implementing different 

architectural elements. Specifically, 49% of the 

architecturally-relevant code anomalies fell in this category. 

However, precision and recall rates of the strategies were 

36% and 44%, respectively, when identifying these code 

anomalies. 

For instance, the method InsertEmployee.execute in 

HealthWatcher represents an example of an architecturally-

relevant code anomaly that was not automatically detected 

by our employed strategies. In particular, this method was 

classified as Divergent Change by developers since it 

accesses information and call methods of classes responsible 

for implementing different architectural elements. This 

method also introduces undesirable dependencies between 
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non-adjacent layers, condition to be classified as an 

architecturally-relevant occurrence. However, such execute 

method was not automatically detected by strategies because 

they focus on measuring method's strong coupling degree 

based on syntactic dependencies. 

However, this method had instead a semantic 

dependency with other methods: the former changed 

together with other methods realizing different architectural 

components, which were not syntactically coupled to the 

former. Hence, we observed that strategies were not 

effective in detecting this kind of anomaly as they are not 

sensitive to which architectural elements a code anomaly is 

responsible for implementing. The key issue is that 

detection strategies cannot rely on information about how 

the code elements are associated with architectural modules 

and their inter-dependencies; this information cannot be 

extracted using code metrics. This might indicate the need 

for further investigating how detection strategies could 

exploit traces of architectural information in the code. 

6.3 Patterns of Code Anomalies 

It was observed that certain patterns of code anomalies tend 

to be better indicators of architectural degradation 

symptoms than single code anomalies. However, these 

patterns cannot be directly detected by strategies, which 

focus on identifying individual code anomalies. They do not 

capture, for instance, a chain of inter-related anomalies. 

Co-occurrences of Code Anomalies. Certain recurring 

patterns of co-occurring code anomalies tend to be stronger 

indicators of architectural degradation symptoms. For 

instance, co-occurrences of Long Method and Divergent 

Change were associated with architectural problems in all 

the systems. That is, methods with either high cyclomatic 

complexity or many lines of code and, high coupling degree 

with different architectural elements were better indicators 

than single Long Method occurrences. More than 75% of 

these combined occurrences were associated with 

architectural problems while just about 43% of single Long 

Method occurrences were related to architectural problems. 

It is important to point out that many of these relevant 

co-occurrences cannot be detected by simply combining 

multiple strategies using logical operators (Section 3.1). 

Aiming at identifying these co-occurrences, detection 

strategies must rely on some kind of architectural 

information (Section 6.2). For instance, it would be also 

useful to consider how many different architectural elements 

a method is accessing. Otherwise, strategies will just detect 

such relevant co-occurrences that present similar 

characteristics of non-relevant co-occurrences. That is, those 

co-occurrences that present tight coupling degree with 

several elements, disregarding their distribution on 

architectural decompositions. 

Code Elements suffering from the Same Anomaly. 

Interesting findings emerged from analyzing groups of code 

elements that suffer from the same code anomaly. For 

instance, when a group of classes that suffer from God Class 

or Large Class are implementing the same architectural 

component A and realizing different concerns it may 

indicate that A suffers from Component Concern Overload. 

This assumption departs from the fact that God Classes and 

Large Classes are likely to be related to the inappropriate 

modularization of architectural concerns. Furthermore, 

when other architectural components and God Classes of A 

are sharing the same architectural concern, it may suggest 

that A is affected by Scattered Parasitic Functionality. This 

situation was observed in all the systems. 

Propagation of Architectural Problems. It was also often 

observed the propagation of architectural problems from 

parents to children in the inheritance trees of all the systems. 

There are two main categories related to such propagation 

of architectural problems. The first is related to architectural 

problems that are propagated to all the children in the 

inheritance tree whereas in the second category the 

architectural problem is not propagated to all the children, 

i.e. some children are free of architectural problems. 

Examples of both categories were found in all systems. For 

instance, in HealthWatcher it was observed that several 

interfaces were introducing undesirable relationships via 

their parameter types. These interfaces were not identified 

by detection strategies because they had a well-defined 

interface (e.g. several members, without a high coupling 

degree). However, they had a considerable negative effect 

as these violations were propagated down through the class 

hierarchies. Usually these undesirable references are left in a 

system over a long period due to the ripple effects when 

refactorings are applied to remove them. 

The limitations of detection strategies for localizing 

propagated relevant occurrences of code anomalies are the 

same for localizing single relevant occurrences. This is due 

to the propagation of code anomalies in the inheritance trees 

itself could be detected using static code analysis. 

6.4 Architectural Design and Strategy Accuracy 

There was a direct influence of the lack of modularity of 

certain concerns on the architecturally-relevant anomalies 

when analyzing different architectural decompositions. We 

observed that when the modularization of architectural 

concerns is more explicit in the source code the number of 

architecturally-relevant anomalies tend to decrease. For 

instance, OO systems presented a higher number of 

conventional code anomalies [13] than AO systems. We 

suspect this occurred due to most of the code anomalies 

were related to the inappropriate modularization of 

architectural concerns, which are more scattered in OO 

systems. As AOP mechanisms tend to improve the 

modularization of concerns in single aspects, they may 

remove relevant anomalies related to this factor. It is not our 

intention to compare the results in both decompositions, as 

we discussed in previous sections the inadequate use of AO 

mechanisms may introduce other kinds of architecturally-

relevant code anomalies. 
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Even more interesting is the fact that we have observed 

how the strategies' accuracy for identifying architecturally-

relevant anomalies seem to be similar in both kinds of 

architectural decompositions. This assumption is derived 

from results regarding to the “average rows” in Table 6. The 

strategies' accuracy rates are about 40% for detecting 

architecturally-relevant code anomalies in all AO and non-

AO systems, except in MIDAS. 

7. Threats to Validity 

This section summarizes the main threats to validity and the 

mitigations considered; a detailed analysis of all the possible 

imperfections and mitigations for our study can be found at 

the supplementary website [5]. 

Construct Validity. Threats to construct validity are mainly 

related to possible errors introduced in the identification of 

code anomalies and architectural problems. There are 

different kinds of detection strategies documented in the 

literature. In particular, we opted for not selecting history-

sensitive detection strategies as they tend to be less 

predictive and require multiple versions of the system [26, 

40]. Consequently, they accurately reveal code anomalies 

just in later releases, when the system may have already 

achieved critical degradation stages. 

We are aware that detection strategies, manual 

inspection and other mechanisms to identify code anomalies 

and architectural problems can introduce imprecision. 

However, we mitigated this threat by: (i) involving original 

developers and architects in this process, and (ii) using 

architectural models where architectural elements were 

mapped to different levels of granularity. That is, the 

relationships between code elements and architecture 

elements were often not 1-to-1. Furthermore, the 

architectural problems were identified by architects, who 

had previous experience on the detection of architectural 

violations and anomalies in other systems. The correlation 

analysis between code anomalies and architectural problems 

was also validated with the architects and developers. 

Conclusion Validity. We have two issues that threaten the 

conclusion validity of our study: the number of evaluated 

systems and assessed anomalies. Two versions of MIDAS, 

eight versions of MobileMedia, eight versions of Aspectual-

Media, ten versions of HealthWatcher and, ten versions of 

AspectualWatcher were used for the purposes of this study, 

totaling 38 versions. Of course, a higher number of systems 

is always desired. However, the analysis of a bigger sample 

in this study would be impracticable for different reasons. 

First, the relationship between code anomalies and 

architectural problems needed to be confirmed by architects. 

Second, the number of systems with all the required 

information and stakeholders available to perform this study 

is rather scarce. Then, our sample can be seen as appropriate 

for a first exploratory investigation [20]. All the findings 

(for example, those discussed in Section 6) contribute with 

more specific hypotheses that should be further tested in 

repetitions or more controlled replications of our study. 

Related to the second issue (completeness of code 

anomalies and architectural problems), our analysis was 

concerned with a wide variety of code anomalies and 

problems that occur in system's architecture. We analyzed 

the accuracy of detection strategies for identifying all 

architecturally-relevant code anomalies that occurred in the 

target systems. In addition, certain code anomalies were not 

discussed (e.g. Data Class) since their occurrences did not 

influence on studied system architectures. 

Internal and External Validity. The main threats to 

internal and external validity are the following. First, the 

level of experience of systems' programmers could be an 

issue. In order to mitigate this, we used systems that were 

developed by more than 20 programmers with different 

levels of software development skills. The main threat to 

external validity is related to the nature of the evaluated 

systems. In order to minimize this threat we have tried to 

use applications with different sizes, that suffer from a 

different set of code anomalies and that were implemented 

using different architectural styles and environments. 

However, we are aware that more studies involving a higher 

number of systems should be performed in the future. 

8. Concluding Remarks 

Our results suggest that state-of-the-art detection strategies 

were not able to identify and locate architecturally relevant 

code anomalies. Specifically, more than 60% of the 

automatically-detected code anomalies were not correlated 

with architectural problems (neither with other threats, such 

as faults in the code). This means that developers might be 

spending a lot of time reviewing code anomalies (and 

refactoring code) that do not represent architectural (or 

other) threats to the system. Even worse, many of the false 

negatives (i.e. about 50%) generated by automated anomaly 

detection are often correlated with architectural problems. 

This means that developers would not be informed by 

detection strategies of code anomalies that are critical to 

architecture sustainability. These findings are interesting 

because they question the effectiveness of existing strategies 

and tools in supporting "architecture revision" strictly based 

on the source code (which is commonly the case). Also, it is 

in such case where the current mechanisms for "architecture 

revision" [1][8] cannot be used since they rely on the 

existence of the intended architectural design. 

We found that the imperfection of the detection 

strategies is not simply related to specific thresholds or 

combinations of particular measures. On the contrary, the 

false positives and false negatives often cannot be resolved 

if design decisions are not traced and mapped to the source 

code, and exploited by detection strategies (Section 6). For 

instance, detection strategies cannot decide whether (or not) 

relationships between two classes are introducing violations. 

They cannot decide either whether a class is accessing 

information from classes defined in different architectural 
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elements. It was also found that certain recurring patterns of 

anomaly combinations or anomaly propagations are better 

indicators of architectural problems than individual anomaly 

occurrences. Therefore, developers should be warned about 

the harmful impact of these patterns and their existence in 

the source code in order to perform their early removal. 

However, these patterns usually cannot be specified or 

detected by existing techniques [21, 32], as they are 

intended to pick out individual anomaly occurrences.  
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