
Are Automatically-Detected Code Anomalies Relevant to

Architectural Modularity?
An Exploratory Analysis of Evolving Systems

Isela Macia
1
, Joshua Garcia

2
, Daniel Popescu

2
, Alessandro Garcia

1
, Nenad Medvidovic

2
, Arndt von Staa

1

1Opus Group, LES, Informatics Department, PUC-Rio, RJ, Brazil
2University of Southern California, Los Angeles, CA, USA

{ibertran, afgarcia, arndt}@inf.puc-rio.br, {joshuaga, dpopescu, neno}@usc.edu

ABSTRACT
As software systems are maintained, their architecture

modularity often degrades through architectural erosion and

drift. More directly, however, the modularity of software

implementations degrades through the introduction of code

anomalies, informally known as code smells. A number of

strategies have been developed for supporting the automatic

identification of implementation anomalies when only the

source code is available. However, it is still unknown how

reliable these strategies are when revealing code anomalies

related to erosion and drift processes. In this paper, we

present an exploratory analysis that investigates to what

extent the automatically-detected code anomalies are related

to problems that occur with an evolving system's

architecture. We analyzed code anomaly occurrences in 38

versions of 5 applications using existing detection strategies.

The outcome of our evaluation suggests that many of the

code anomalies detected by the employed strategies were

not related to architectural problems. Even worse, over 50%

of the anomalies not observed by the employed techniques

(false negatives) were found to be correlated with

architectural problems.

Categories and Subject Descriptors D.2.8 [Software

Engineering]: Metrics; D.2.10 [Software Engineering]:

Design; D.2.11 [Software Engineering]: Software

Architectures.

General Terms: Measurement, Design.

Keywords: Code anomalies; architectural degradation symptoms;

architectural violations; architectural anomalies.

1. Introduction

Code anomalies, also referred in the literature as "code

smells" [13], emerge in programs structured with any kind

of modularization technique, including object-oriented

programming [31] and aspect-oriented programming [19].

Code anomalies are often considered as key indicators of

architectural degradation [13]. Hence, if these code

anomalies are not systematically removed, the system's

architectures may degrade due to erosion or drift [16].

Architectural erosion occurs when architectural violations

are introduced, whereas drift is the realization of unintended

design decisions also known as architectural anomalies [39].

The detection of architecturally-relevant code anomalies

is particularly challenging when architectural designs are

absent or obsolete, which is a common situation in evolving

software projects. A complicating factor is that, due to time

constraints, developers often need to concentrate on the

most relevant anomalies. In other words, they should focus

on code anomalies that are actually contributing to

architecture erosion or drift. Let's consider a simple example

of code anomaly, such as God Class [27]. Occurrences of

God Class only cause harm to the architectural modularity

when their realization of multiple concerns introduce

undesirable dependencies between architecture elements

(e.g., multiple architecture layers). Therefore, such God

Class instances require closer, more immediate attention

than other instances [37].

Recent research has developed complementary ways to

improve automatic detection of code anomalies. They are

usually based on exploiting information that is extracted

from the source code [21, 26, 28, 32, 40, 46] and rely on the

combination of static code metrics. These mechanisms,

known as detection strategies [27], have been the subject of

recent studies reported in the literature. Several studies have

reported acceptable accuracy rates (60% or higher) for such

strategies used in anomaly detection processes [27]. Studies

have also evaluated the impact of the code anomalies

detected by these strategies on maintenance effort [18, 37,

38]. However, it is still unknown whether the code

anomalies detected by current strategies could be also used

for indicating more severe architectural problems.

The objective of this paper is to assess the usefulness of

automated code anomaly detection strategies for uncovering

architecture modularity problems. To this end, we carried

out an exploratory study to analyze the influences of code

anomaly on architectural designs in 38 versions of 5

applications from heterogeneous domains. These

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.

Copyright 2012 ACM 978-1-4503-1092-5/12/03...$10.00.

167

applications followed different architectural patterns and

styles, such as Layers, Model-View-Controller and

Aspectual Design [4]. The anomalies were detected in these

systems using automated detection strategies [21, 27] which

were the most effective to detect those anomalies in recent

studies [18, 21, 23, 27, 44]. In addition, the original

architects were consulted to reliably identify architectural

problems in the studied systems. We explicitly selected

systems for which architectural information was accessible

so that we could correlate the architectural problems with

the presence of code anomalies.

Our results confirmed that current automated strategies

were not accurate to identify code anomalies that attempt

against architectural modularity in the target systems. More

specifically:

 More than 50% of the automatically-detected code

anomalies were not correlated with architectural problems.

This means that developers could spend most of the time

reviewing code that might not represent threats to the

system's architectural design.

 Even worse, more than 50% of the false negatives

“generated” by automated strategies were found to be

correlated with architectural modularity problems. This

means that developers would lead to neglect code

anomalies that are critical to architectural design.

 The inefficiency of detection strategies cannot be simply

addressed by calibrating specific metric thresholds or

determining different combinations of particular measures.

It seems that their imperfection is largely due to their

inability to exploit architectural concern's properties or

architectural information in the source code.

 Certain recurring patterns of anomaly co-occurrences

seem to be better indicators of architecture modularity

problems than individual anomaly occurrences. These

patterns usually cannot be directly specified and identified

by existing detection strategies [21, 23, 32].

The rest of this paper is organized as follows. Section 2

presents the related work and its limitations in the context of

this study. Section 3 introduces the different kinds code

anomalies and of architectural modularity problems that are

considered in our analysis. Section 4 describes our analysis

procedures. Section 5 presents the obtained results, whereas

Section 6 discusses their relevance and the main findings.

Section 7 highlights the limitations of our study and, finally,

Section 8 provides some concluding remarks.

2. Related Work

Our focus is on automatic detection of code anomalies as

engineers usually do not have time and resources for

carrying out a manual detection process. In this context, we

divided the related work in two categories. First, we present

current research aiming to support automatic detection of

code anomalies. Second, we overview empirical studies that

analyze the impact of automatically-detected code

anomalies from different perspectives.

Automatic Detection of Code Anomalies. Emden and

Moonen [9] describe jCosmo, an approach for detecting

code anomalies based on the structural properties of code

elements. Ratzinger et al. [41] detect code anomalies by

examining change couplings. Strategies for detecting code

anomalies [27] are the most common mechanism referenced

and studied in the literature. The reason is that they generate

a list of suspects; as a result, a wide range of static analysis

tools, including visualization ones (e.g. [6, 49]), are based

on such strategies. Marinescu [21, 27] introduced the

concept of detection strategy, which consists of a logical

expression composed by metrics to detect code anomalies.

A concrete example is given in Section 3.1. Marinescu et al.

[28] also presented inCode, a tool used to automate the

application of certain detection strategies.

Other authors also proposed strategies and tools for

anomaly detection in the literature. For instance, Munro [32]

proposed some heuristics for detecting code anomalies.

Alikacem and Sahraoui [1] proposed a language to detect

code anomalies. This language allows the specification of

rules using metrics and thresholds. Moha et al. [32]

presented the Decor, a tool and a domain-specific language

to automate the construction of anomaly detection

strategies. However, none of these tools were used in the

context of this work (Section 4.4) because they are neither

available [1, 33] nor support the detection of all code

anomalies that are considered in our analysis [28, 32].

Studies of Code Anomalies. The effectiveness of

automatically-detected code anomalies using strategies have

been recently studied under different perspectives. The

authors have conducted empirical studies to investigate the

negative effects of such automatically-detected anomalies.

For instance, Mantyla and Lassensius investigate to what

extent automatically-detected code anomalies can be used as

a basis for subjective evaluation of code evolvability [25].

Olbrich et al. [37, 38] and Khomh et al. [18] investigate the

evolution of automatically-detected code anomalies. The

authors analyze whether the number of code anomalies

increases over time, and the anomalies' influence on how

often a code element changes. However, they did not study

to what extent these phenomena are related to architectural

modularity problems (Section 3). Certain classes (classified

as "anomalous") might coincidently change more often

because the associated requirements are naturally more

volatile than others. In other words, the rate of individual

class changes might not necessarily be an indicator of

architecture modularity problems.

Other works investigate the impact of automatically-

detected code anomalies on software defects (i.e. the need

for corrective maintenance). For instance, D'Ambros et al.

[6] found that, while some code anomalies are more

frequent, none of them can be considered more harmful with

respect to software defects. In the context of aspect-oriented

systems, Macia et al. [23] analyzed the influence of code

anomalies on corrective changes. They also analyzed their

influence on perfective changes (i.e. refactoring effort).

168

However, none of these analyses investigate to what extent

detection strategies accurately localize code anomalies that

are related to architectural modularity problems. That is,

they do not assess the impact of automatically-detected code

anomalies on architectural designs.

3. Code Anomalies and Architectural Problems

This section introduces relevant concepts related to code

anomalies (Section 3.1) and architectural modularity

problems (Section 3.2). It also illustrates how they could be

interrelated (Section 3.3) using a running example.

3.1 Code Anomalies and Detection Strategies

The modularity of system implementations degrades

through the introduction of code anomalies. They affect

different code units, such as classes and methods. For

example, God Class is a code anomaly in which a class (i)

realizes various concerns – i.e. it performs too much work

on its own, delegating minor responsibilities to a set of

simple classes, and (ii) uses data from many other classes,

increasing its coupling. For instance, MediaController in

Figure 1 was classified as a God Class instance.

Detection strategies interpret a set of code metrics that

are extracted from a specific code element (e.g., class or

method) by using a set of threshold filter rules [27]. Then,

the results of these filters are combined and used to identify

code anomalies. Below, we present the detection strategy

used to identify God Classes in our study. This detection

strategy and its thresholds were defined in [21] and have

been used in other studies [37, 38]. The calibration of these

thresholds (see Section 4.4) is required in some cases.

)5)(()3.0)(()47)(()( CATFDCTCCCWMCCGodClass

where:

 C is the class being inspected;

 Weighted Method Count (WMC(C)) is the sum of the
cyclomatic complexity of all methods in C [21];

 Tight Class Cohesion (TCC(C)) is the relative number
of directly connected methods, i.e. methods that access
the same instance variables, in C [30];

 Access To Foreign Data (ATFD(C)) is the number of
attributes in foreign classes accessed by class C [21].

Table 1 summarizes the set of code anomalies that we

have analyzed in this study. These anomalies were selected

because they represent all the code anomalies identified by

developers in the systems we analyzed (Section 4.3). In

addition, their detection strategies have been widely studied

(Section 2), with detection accuracy rates higher than 60%.

The details governing the anomalies' definitions as well as

their detection strategies can be found in [21, 23, 44]; we

elide them here for brevity and space constraints.

3.2 Degradation: Architecture Modularity Problems

The phenomenon of architectural degradation was

introduced by Hochstein and Lindvall [16] as aiming at

referring to the continuous decline of the architectural

modularity. Architectural degradation encompasses

architectural modularity problems caused by the processes

of erosion and drift [39].

Architectural Erosion is the process of introducing

decisions into a system architectural design that violates the

system's intended architecture [39] and, therefore, attempt

against the architectural modularity. As a result, architecture

violations can only be observed if an explicit specification

of the prescribed (i.e. intended) architectural design

decisions is available.

Figure 1 depicts an example of architectural violation in

the MobileMedia system. The problem is associated with

the realization of the exception handling policy in this

system. Most exceptions are propagated through component

interfaces across the system layers, thereby going against

the architects' original intent in some cases. For instance, the

MediaController component invokes different services from

the AlbumData component, which partially realizes the

Model layer. MediaController ends up handling exceptions

(e.g. PersistentException) signalized by AlbumData,

including those that should be treated internally to the other

component realizing the Model layer. This means that

additional code couplings, between elements realizing the

Model and Controller layers, are the sources of architecture

violations.

Architectural Drift is the introduction of design decisions

into a system's architecture that were not included in the

intended architecture, albeit they do not violate any of the

MediaController

+ handleCmd(Cmd c)

+ playMedia(String s)

+ playVideo(String s)

+countViews(String s)
+showImage(String s)

+goPreviousScreen()

…

Controller
handleCmd(Cmd c){

la = c.getLabel();

if(la.equals(“PlayM”)){..}

else if(l.equals(“Capture P”)){..}
else if(la.equals(“Views”)){..}

else if(la.equals(“Capture V”)){..}

else if(la.equals(“Favorite”)){..}

else if(la.equals(“Save”)){..}

//other similar if-else were omitted
}

handleCmd

AlbumData

+ save(String s)

+ delete(String s)

+ create(String s)

…

Model

Uses

Exceptions

Music Concern Video Concern Photo Concern Favorite Concern

MusicController

MusicAccessor

MusicController

MusicData

Architectural Violations

Figure 1. Relationship between code anomalies and architectural

modularity problems

Table 1. Code anomalies analyzed in our study

Aspect-Oriented Code Anomalies Object-Oriented Code Anomalies

Composition Bloat [23] Data Class [13, 21]

Duplicate Pointcut [44] Divergent Change [13, 21]
Forced Join Point [23] Feature Envy [13, 21]

God Aspect [23] God Class [21, 29]

God Pointcut [23] Large Class [13, 21]
Redundant Pointcut [23] Long Method [13, 21]

 Long Parameter List [13, 21]

 Misplaced Class [13, 21]
 Shotgun Surgery [13, 21]

 Small Class [13, 21]

169

prescribed design decisions [39]. Some architectural drift

symptoms are caused by applying a design decision that

neglects or impairs one or more modularity principles. Each

of these symptoms of architectural drift is often referred as

an architectural anomaly [14, 22]. These anomalies

comprise decisions that may negatively impact architectural

modularity principles, such as narrow component interfaces

and components realizing a single concern [14, 29].

In order to select a set of drift symptoms to be analyzed

in our study, we considered catalogs of architectural

anomalies explicitly documented in the literature [14, 29].

Our final subset of analyzed anomalies encompassed those

that were identified by architects in the target systems of our

study (Section 4.3). The types of architectural anomalies

analyzed in our study are summarized in Table 2. Note that

each architectural anomaly hinders different modularity

principles. For instance, while Component Concern

Overload anomaly does not adhere to the single

responsibility principle, the Ambiguous Interface violates

the simple interface principle [29].

Table 2. Architectural anomalies detected in our study

Architectural Anomalies Definition

Ambiguous Interface

Interfaces that offer only a general entry-point

into a component that handles more requests
than it should actually process

Extraneous Connector
Connectors of different types are used to link a

pair of components

Connector Envy
Components which realize functionality that

should be assigned to a connector

Scattered Parasitic

Functionality

Multiple components are responsible for
realizing the same high-level concern and

orthogonal ones

Component Concern

Overload

Components responsible for realizing two or

more unrelated architectural concerns

As an illustration, Figure 1 depicts an Ambiguous

Interface anomaly in the context of the MobileMedia system

used in our study [12]. The interface handleCmd of the

component Controller is implemented by the class

MediaController. However, the interface offers only one

method, which receives all service requests and, therefore, it

handles more types of commands than it should actually

process; i.e. it receives the parameter Cmd with the generic

type Command. This situation hinders the architecture

modularity as over-generalized interfaces allow additional

dependencies between components [14, 29]. Note that even

though this situation is not necessarily a violation of

prescribed design decisions (i.e. symptoms of architecture

erosion), over-generalized interfaces might favor tight

component coupling as the system evolves. Additional

examples and a discussion of each architectural anomaly

can be found in [14, 29] and is out of the scope of our work.

3.3 Code Anomalies as Indicators of Architecture

Degradation Symptoms

Previous research [21, 32] departs from the following

assumption: detection strategies (Section 3.1) accurately

localize code anomalies related to architectural modularity

problems (Section 3.2). Our study (Section 4) is aimed to

analyze to what extent this assumption holds. A code

anomaly C is related to an architecture modularity problem

A when: (i) the code elements (e.g., methods or classes)

affected by C are in charge of implementing the

architectural elements (e.g., components, interfaces,

connectors), and (ii) these architectural elements are

affected by A. In this work we considered only those

relationships for which the cause-effect was confirmed by

architects (Section 4.4).

Figure 1 depicts an example of this cause-effect

relationship. The MediaController.handleCmd method was

considered as the source of two code anomalies and one

architectural anomaly. First, this method was classified a

Long Method (Table 1) as it contains many lines of code,

presents high cyclomatic complexity, and realizes several

architectural concerns. This method was also classified as

Divergent Change because it is using information from

several classes to deal with different services. In addition, its

implementation is responsible for dealing with different

exceptions propagated by the Model component; however,

these exceptions are not related with the method's goal.

Finally, this method is in charge of implementing the

interface handleCmd of Controller classified as Ambiguous

Interface.

4. Study Definition and Design

The relationship between code anomalies and architectural

modularity problems has often been recognized by the

literature [13, 16]. However, as software projects evolve, the

source code is usually the only artifact available and the

architectural design is not explicitly documented. Hence, the

detection of code anomalies related to architectural

problems is only viable if the available automated strategies

(Section 3.1) are accurate. This study aims at analyzing

whether detection strategies are accurate in localizing

architecturally-relevant anomalies in the source code.

4.1 Hypotheses

In order to evaluate the accuracy of detection strategies for

localizing architectural modularity problems (Section 3.2),

we have divided the analysis into two perspectives by

observing both architectural violations and architectural

anomalies. These perspectives lead us to two null

hypotheses H1 and H2 as defined below.

H10: The accuracy of detection strategies to identify

code anomalies related to architectural violations is high.

H20: The accuracy of detection strategies to identify

code anomalies related to architectural anomalies is high.

Strategies are considered accurate in the literature when

their precision and recall rates are 60% or higher for

detecting code anomalies [18, 27, 37, 38]. This threshold

has been derived from empirical studies involving systems

implemented using different programming languages [21].

170

As it is assumed that code anomalies are intrinsically related

to architectural modularity problems [13, 16], we have used

the same threshold in this study for assessing the strategies‟

accuracy to localize architecturally-relevant code anomalies.

That is, we consider that their accuracy was „high‟ if 60% of

the code anomalies related to architectural modularity

problems (Section 3.3) are automatically-detected.

4.2 Variable Selection

In order to test our hypotheses, we have defined the

following independent and dependent variables.

Independent Variable. There are as many independent

variables as there are kinds of automatically-detected code

anomalies (Table 1). Each variable Ci,k,j indicates the

number of times that an entity i suffers from a code anomaly

k in a version vj. All code anomaly occurrences used in

testing these hypotheses were confirmed by developers

(Section 4.5).

Dependent Variable. Similar to the independent variables,

there are many dependent variables as there are kinds of

code anomalies. The dependent variables Vi,k,j and Ai,k,j for

H1 and H2 indicate whether the entity i affected by the code

anomaly k is introducing any violation or architectural

anomaly in a version vj, respectively. All instances of

architectural degradation symptoms used in testing these

hypotheses were confirmed by the original architects

(Section 4.4).

4.3 Target Systems

In this study we decided to focus on investigating short-term

architectural modularity problems because they can provide

early symptoms of architectural degeneration. For this kind

of study, it is important to select systems implemented with

object-oriented programming and aspect-oriented

programming. The goal is to make a broader analysis and

identify whether there could be any influence of the modular

programming technique on the results. However, the

comparison between the strategies' accuracy rates for these

two programming techniques is beyond the scope of our

study. It is also important to select systems developed using

different practices related to architectural rule enforcement

in the source code as well as counting on the availability of

their original architects and developers. Their availability is

important to help us to validate the identified architectural

modularity problems (Section 3.3). A complete list of

criteria for supporting the system selection process is

provided in [5].

Based on the aforementioned criteria, we chose 38

releases of 5 medium-sized applications. Table 3

summarizes the general characteristics of each target

system. Two of these applications are Web-based

information systems, which allow citizens to register

complaints about health issues in public institutions.

HealthWatcher (HW) [15] is based on the layers

architecture style. AspectualWatcher (AW) also follows this

style, but relies on aspect-oriented design [4] for

modularizing concerns that crosscut the layers in the HW

system. Note that in this table the token “/” is used to

separate the data of the object-oriented (Java) version and its

aspect-oriented (AspectJ) counterpart.

We have also selected two software product lines and a

middleware. The third and fourth systems are product lines

for deriving applications that manipulate media on mobile

devices [12]. MobileMedia (MM), relies on the model-view-

controller architectural pattern, while AspectualMedia (AM)

was structured based on aspectual architecture design for

modularizing features that crosscut the MM architecture.

The fifth system is a lightweight middleware platform,

called MIDAS, for distributed, event-based sensor

applications [24]. The two selected versions are the before

and after versions of a major architectural restructuring with

the widest impact in this system history. A high number of

changes of architectural elements took place in this

transition and are realized by the latest version.

Table 3. Systems used in our study

 HW/AW MIDAS MM/AM

Application Type Web-based system Middleware
Software Product

Line
Code Availability Java/Aspect C++ Java/Aspect
of Versions 10/10 2 8/8
of Selected Versions 10/10 2 8/8
Avg. # of CE 85/113 22 60/94
Avg. # of AE 34/41 14 48/61

Avg. KLOC 6 7 8

HW=HealthWatcher; AH=AspectualWatcher; MM=MobileMedia;

AM=AspectualMedia; CE=Code Elements (classes and aspects);
AE=Architectural Elements (components and connectors)

4.4 Procedures for Data Collection

In order to perform the data collection process we count on

the help of two groups of architects: (i) those that defined

the original intended architecture, and (ii) independent

reviewers of the software architecture; and on a group of

original developers. These three groups were involved in the

main phases of our study, which are described next.

Recovering the Actual Architecture. This phase was

based on a semi-automatic process. We have used Sonar

[43] and Understand [47] to support the recovery of the

actual architecture from the source code. These tools

support architecture and code analyses in order to help

developers to analyze and measure the modularity of the

system's architecture and implementation. To make possible

the architectural analysis, architects and original developers

mapped code elements to architectural elements. These

mappings allowed us to trace the influence of a code

anomaly on the introduction of modularity problems in a

system's architecture. These mappings also allowed us to

identify how modularization of architectural concerns in the

code were related to architecture modularity problems. An

example of this mapping is showed in Figure 1 where the

MediaController.handleCmd method is implementing

Music, Video, Photo and Favorite concerns.

171

Identifying Architectural Degradation Symptoms. In

order to identify symptoms of architectural erosion we used

Software Reflexion Model [35]. As this technique demands

the intended architecture was provided by architects. The

comparison of the actual, extracted architecture (EA), and

the intended architecture (IA) was supported by the two

groups of architects. They were responsible for measuring

the architecture conformance in terms of convergence (a

component or relationship that is in both EA and IE),

divergence (a component or relationship that is in EA but

not in IA), and absence (a component or relationship that is

in IA but not EA). For instance, all absence classifications

were considered as violations. Although divergence

classifications are natural suspects of possible violations,

they can be related to unintended architectural decisions.

Therefore, architects needed to validate their actual impact

on architecture designs.

Furthermore, architectural anomalies were detected by

architects based mainly on: (i) a visual inspection of the EA,

and (ii) a careful analysis of the code elements mapped to

architectural elements, due to the lack of tools. We also

asked the architects to indicate other anomalies observed in

the architecture design beyond those presented in Table 2.

This helped us to better judge whether and which code

anomalies are good indicators of architectural modularity

problems.

As result of this stage, architects provided reports

describing the architectural problems observed in each

system's version. These reports described, for instance, the

problem's type (e.g. violation, architectural anomaly), its

location in the design, the architectural elements related to it

and, in some cases, an explanation of the problem's cause.

Automatic Detection of Code Anomalies. Code anomalies

were automatically identified using detection strategies. We

selected metrics and thresholds that have shown high

accuracy to identify code anomalies in previous studies [21,

23]. Sometimes, the thresholds suffered some minor

adjustments in order to maximize the accuracy. For

instance, certain thresholds were calibrated according to the

specific programming styles and system characteristics [20].

When multiples detection strategies for a code anomaly

were available in the literature, we analyzed which metrics

and thresholds would be the most appropriate to reach the

highest accuracy rates. The goal was to get the best possible

results with the detection strategies at hand. If needed, the

changes in the original detection strategies [21, 23, 44] were

discussed with the systems' original developers. A complete

list of the detection strategies used and their corresponding

thresholds are available in a supplementary web site [5].

Furthermore, the metrics used in the detection strategies

were mostly collected with existing tools such as: MuLATo

[34], Together [45] and Understand [47]. These tools were

chosen as they are complementary: MuLATo is a static

analyzer for AspectJ programs whereas Together and

Understand analyze Java programs. They have been used in

previous studies reported in the literature [15, 21, 23] and,

more importantly, they collect a large number of metrics

that were required for the detection strategies employed.

4.5 Analysis Method

We also asked the developers to identify all the code

anomalies that influenced on the architectural design. The

lists of code anomalies provided by developers included

fine-grained and accurate details about the code anomaly

facilitating our analysis. For instance, the lists describe the

code anomaly's type, the code elements affected by it, and

its correlation with the architectural problems previously

identified by architects. Afterwards, a stage was dedicated

to investigate the accuracy of the detection strategies [21,

23] when detecting the code anomalies previously identified

by developers. Therefore, this investigation was based on

both lists: (i) automatically-detected code anomalies using

existing detection techniques and, (ii) code anomalies

detected by developers through the code review stage. In

particular, the lists provided by developers were useful to

assess the impact of non-automatically-detected code

anomalies on architectural decompositions.

In order to reject H10 and H20, we calculated the

precision and recall of detection strategies using the

following formulas:

FPTP

TP
precision




FNTP

TP
recall




where, True Positive (TP) and False Positive (FP)

encompass all automatically-detected code anomalies that

respectively were or not confirmed as relevant by architects

and developers. As we described previously developers

performed a code review in order to detect code anomalies

related to architectural problems that were not automatically

identified by the detection strategies; i.e. False Negative

(FN). Based on these criteria, a detection strategy achieves

100% of precision and 100% of recall if it only pinpoints the

same set of architecturally-relevant code anomalies

confirmed by developers.

5. Study Results

Before discussing the strategies' accuracy to identify

architecturally-relevant code anomalies (Section 5.2), this

section presents how often the code anomalies were actually

related to architecture problems in the target systems. Tables

4 and 5 summarize the overall impact of code anomalies on

architectural designs. The list of code anomalies (used to

compute the table values) represents all the occurrences of

anomalies (Section 3.2), whether automatically detected by

the strategies or not. The tables present, for each of the

target systems, the relationship between code anomalies and

architectural violations (Table 4) or particular types of

architectural anomalies (Table 5). The columns are headed

with the acronym of each system. The rows x and S in both

tables represent the mean and the standard deviation,

respectively. Violations in Table 4 were related to divergent

relationships (Section 4.4) as the system's implementation

172

started based on its intended architecture. Data for MIDAS

are not presented in Table 4 as no violation occurred in this

system. This observation was expected as the development

process in the MIDAS project strictly enforced architecture

conformance [24] .

Table 4. Code anomalies related to architectural violations

 AW HW AM MM

Violations
X 134.9 207.2 43.5 46.7
S 2.81 9.46 4.57 4.56

Non-related
X 24.7 51.8 10.87 7.8
S 1.82 5.12 2.29 4.67

Total 160 259 54 55

Table 5. Code anomalies related to architectural anomalies

 AW HW AM MM MIDAS

Ambiguous Interface
X 8.6 6.4 9.25 12.16 2.5
S 2.06 1.03 2.48 3.22 0

Connector Envy
X 5.6 5.6 7.25 8.63 2
S 2.75 2.75 2.17 2.95 0

Component Concern

Overload

X - 3 1.41 2.73 1
S - 0 2.39 1.86 0

Extraneous Connector
X 3.8 - 1.38 - 14
S 1.82 - 0.84 - 3.18

Scattered Parasitic

Functionality

X 4.7 2.2 2.13 3.75 -
S 1.85 1.01 1.18 1.3 -

Non-related
X 3.1 2.7 1.6 2.62 6
S 1.44 1.91 1.52 1.78 4.5

Total 26 20 22 30 29

A first analysis of Tables 4 and 5 revealed that the

architectural modularity problems were significantly related

to code anomalies. The correlation was usually higher than

80% for both violations and architectural anomalies. This

conclusion can be drawn by comparing the total number of

architectural modularity problems (row “Total”) and the

mean of those problems unrelated to code anomalies (i.e.

row “Non-related”) in each table. Interestingly, around 15%

of the architectural modularity problems were related to

code anomalies that emerged in the first system's versions.

On the other hand, less than 20% of the architectural

problems were not related to code anomalies. From the

opposite perspective, we observed that just about 10% of the

architectural anomalies were not related to code anomalies.

The aforementioned results were particularly relevant as

the high correlation coefficient was observed even in

systems developed with modularity principles in mind. The

developers tried to maximize such principles in both

architecture design and implementation phases. These

results confirm that code anomalies may be indicators of

architectural modularity problems in the source code. It

reinforces the motivation of using detection strategies as

indicators of architectural modularity problems in the source

code. On the other hand, the success of this approach largely

depends on the accuracy of existing strategies to detect

architecturally-relevant code anomalies.

5.1 Diverse Degradation Symptoms in the Systems

The individual analysis of the systems revealed that the

HealthWatcher (HW) system presented the largest number

of architectural violations of the five systems. The number

of violations increased over time in this system, leading to

the highest architecture erosion rate. According to its

architects, the main reason for introducing violations was

the incremental addition of classes in the GUIElements layer

that illegally access information in the DataManagement

layer.

On the other hand, the MobileMedia (MM) system

presented the largest number of architectural modularity

anomalies of the five systems. The majority of these

architectural drift symptoms were related to code anomalies

that emerged along the system evolution. In particular, they

were mostly caused by the non-modular realization of new

concerns progressively included in the latest system

versions. They were often instances of the following

architectural anomalies: Connector Envy, Scattered

Parasitic Functionality and Component Concern Overload.

Interestingly, the results show that architecture problems

also occurred in the evolution history of systems or

packages where architecture conformance was more strictly

enforced in the code. The MIDAS project is the best

example. Most architectural anomalies in MIDAS occurred

due to interfaces are underlying the event-based middleware

and misuse of connectors provided by the middleware.

These anomalies were mostly cases of Extraneous

Connector and Connector Envy occurrences. In addition,

single components in MIDAS were realizing multiple

scattered concerns, including service discovery, the fault

tolerance policy, and dynamic adaptation. As a

consequence, these components suffered from occurrences

of Component Concern Overload and Scattered Parasitic

Functionality anomalies.

As we can observe from the discussion above, code

anomalies tend to manifest in different ways according to

the system's characteristics. The extent of their contribution

to either architectural erosion or architectural drift was also

diverse. Regardless of these variations, the results revealed

that a considerable amount of architectural modularity

problems were introduced in the first system versions of all

the 5 systems. This was observed even in MobileMedia, in

which most of the architecture problems were introduced

along the system evolution as discussed above. We further

elaborate the implications of this finding in Section 6.

5.2 Accuracy of Investigated Detection Strategies

The accuracy of automated strategies for detecting

architecturally-relevant code anomalies is summarized in

Table 6. The token '-' is used in this table to represent the

cases where modularity problems did not occur or they were

not related to architectural problems. The average of the

strategies' accuracy rates is also presented for anomalies in

both object-oriented and aspect-oriented code. For aspect-

173

oriented systems, we concentrate on presenting the details

related to the code anomaly occurrences. A detailed list of

all code anomalies, false positives and false negatives in

each one of the investigated systems can be found at [5].

In general, our analysis reveals that detection strategies

are inaccurate in identifying architecturally-relevant code

anomalies. Specifically, most of the automatically-detected

code anomalies were not associated with architectural

modularity problems, leading to many false positives. In

general, the average of the automatically-detected code

anomalies represented about 45% (or less) of the total

number of code anomalies related to architectural

modularity problems. MIDAS was the only exception,

which will be discussed later. Consequently, these results

might imply a problem to engineers who are interested in

performing clean-up code revisions to avoid architecture

degeneration. In these cases, developers are likely to devote

most of their time analyzing code anomalies that do not

represent a threat to the architecture modularity.

Even worse, many of the code anomalies harmful to

architectural modularity problems were not automatically

detected by strategies, leading to a high rate of false

negatives. Developers will miss a wide range of architecture

erosion and drift symptoms. In particular, many of the

strategies exhibited recall rates close or much lower than

45%. That is, about 55% or more of the non automatically-

detected code anomalies were related to architectural

modularity problems. These results indicate that detection

strategies seem to have a tendency to send developers in

wrong directions when addressing code anomalies related to

architectural modularity problem.

The next subsections discuss how accurate the strategies

were when localizing code anomalies related to both

violations (Section 5.2.1) and anomalies (Section 5.2.2).

5.2.1 Revealing Symptoms of Architecture Erosion

On average about 41% of the code anomalies related to

violations were automatically-detected by strategies in the

target systems. The results also show that code anomalies

related to violations emerged in systems developed with

both OO and AO modularity techniques. In OO systems,

these violations were related to undesirable

interdependencies between classes responsible for

implementing different architectural elements. For instance,

69% of the violations in HealthWatcher were related to

exception events propagated from the DataManagement

layer to the GUIElements layer. Consequently, all interfaces

between DataManagement and GUIElements layers

propagated these exceptional events, even though the

majority of these exceptions should be treated internally by

classes defined in the DataManagement layer according to

the designers. intent. The propagation of exception events

introduced several occurrences of Long Method, Misplaced

Class, Divergent Change, and Shotgun Surgery. However,

just about 33% of these architecturally-relevant anomalies

were automatically-detected by strategies.

Other kinds of violations emerged in AO systems as they

follow a different architecture design. For instance 26% of

the total number of architecturally-relevant anomalies was

related to undesirable tight coupling between aspects and

the base code. These relations were motivated by the fact

that classes were exposing internal information just to be

used by aspects. For instance, artificial methods had to be

created in later system versions, aiming at allowing the

expected composition between aspects. This situation leads

to interface bloat occurrences and to the introduction of

relevant Long Parameter Lists and Forced Join Points.

However, detection strategies were able only to identify

about 40% of these relevant occurrences.

5.2.2 Revealing Symptoms of Architecture Drift

Architectural anomalies were mostly related to the

inappropriate modularization of architectural concerns in the

target systems. Exception Handling for AspectualWatcher

and Connection for AspectualMedia presented the strongest

relationship with architectural modularity problems as they

Table 6. Results for the analyzed detection strategies

Code Smells
True Positives False Positives False Negatives Precision Recall

HW MM MIDAS HW MM MIDAS HW MM MIDAS HW MM MIDAS HW MM MIDAS

Divergent Change 7 1 4 14 2 43 19 2 2 0.33 0.33 0.09 0.27 0.33 0.67

Feature Envy 5 2 - 27 6 - 9 3 - 0.16 0.25 - 0.36 0.40 -

God Class 1 3 2 2 4 0 4 5 1 0.67 0.43 1.00 0.33 0.38 0.67
Large Class 1 1 2 2 0 4 4 1 0 0.43 1.00 0.30 0.38 0.50 1.00

Long 23 7 6 33 24 37 18 10 4 0.41 0.23 0.34 0.56 0.41 0.50

Long Parameter List 4 - - 12 - - 5 - - 0.25 - - 0.44 - -
Misplaced Class 2 1 - 5 2 - 1 2 - 0.33 0.33 - 0.50 0.33 -

Shotgun Surgery 6 2 3 19 6 23 9 7 6 0.24 0.25 0.22 0.40 0.22 0.32

OO Avg. Rates 0.35 0.40 0.33 0.41 0.38 0.63

 AW AM MIDAS AW AM MIDAS AW AM MIDAS AW AM MIDAS AW AM MIDAS

OO Avg. Rates 0.47 0.32 - 0.38 0.44 -

Composition Bloat 2 3 - 4 1 - 3 4 - 0.33 0.50 - 0.40 0.43 -

Duplicate Pointcut 8 65 - 11 47 - 3 31 - 0.42 0.58 - 0.72 0.68 -

Forced Join Point 6 1 - 6 2 - 9 6 - 0.50 0.33 - 0.40 0.14 -
God Aspect 11 6 - 11 4 - 17 9 - 0.50 0.60 - 0.39 0.40 -

God Pointcut 10 8 - 20 7 - 14 11 - 0.33 0.53 - 0.42 0.42 -

Redundant Pointcut 52 3 - 17 3 - 32 2 - 0.75 0.50 - 0.62 0.60 -

AO Avg. Rates 0.47 0.50 - 0.49 0.44 -

174

are very context-specific with code. Exception Handling, for

instance, was scattered among different architectural

components and, therefore, it was related to Scattered

Parasitic Functionality occurrences. On the other hand, the

high tangling of Connection with Persistence and Logging

led to the architectural components responsible for its

modularization were classified as Component Concern

Overload. The inappropriate modularization of these

concerns was associated with several occurrences of Long

Method, God Aspect, God Class, Divergent Change,

Shotgun Surgery in the target systems. Exception Handling

and Connection were responsible, respectively, for 53 %

and 41% of the total of architecturally-relevant code

anomalies in AspectualWatcher and AspectualMedia.

However, just about 47% of these relevant anomalies was

automatically detected by strategies.

5.2.3 Hypotheses and Overall Accuracy Results

Based on the aforementioned results, we can conclude that

metrics-based strategies were not accurate in detecting

architecturally-relevant code anomalies (Section 3.2).

Therefore, we reject both null hypotheses H10 and H20

(Section 4.1) for all the systems, except MIDAS (Table 6).

Several detection strategies presented recall rates greater

than 60% in MIDAS. That is, more than a half of code

anomalies related to architectural degradation symptoms

were automatically identified by detection strategies in

MIDAS. We also observed that the number architectural

anomalies not related to code anomalies tend to increase

compared with the other systems.

The MIDAS case confirmed our intuition that detection

strategies are more effective in systems where architecture

conformance is more strictly enforced in the code. The

better the code modularity reflects the architecture

decomposition, the fewer the number of code anomalies.

This finding was not actually exclusive to MIDAS. Similar

results were observed in packages of MobileMedia and

HealthWatcher with highest adherence to the architectural

rules. In these packages (e.g., Model for MobileMedia and

Business for HealthWatcher) the detection strategies

presented precision and recall rates higher than 60%. These

packages also presented the lowest number of

architecturally-relevant code anomalies.

Another relevant characteristic that is likely to favor the

success of detection strategies (i.e., accuracy rates higher

than 60%) is when the projection of architectural elements

occurs in a few code units. In these cases, single code

anomalies will exert a more direct impact on the

architectural element that they are implementing. This

phenomenon was observed in all target systems.

6. Analyzing Overlooked Code Anomalies

Once we have discussed the strategies' accuracy, we reflect

upon the key factors that contributed to their failure in

localizing architecturally-relevant code anomalies (Sections

6.1 and 6.2). This discussion can provide insights on how to

improve the techniques to detect architecture degradation

based on source code analysis.

6.1 Inability to Analyze Architectural Concerns’

Properties in the Source Code

Code anomalies were often the source of architectural

modularity problems when they were located in modules

realizing various architectural concerns. We noticed that

62% of the total number of architecturally-relevant code

anomalies exhibited this characteristic. This frequency

reinforces that detection strategies should be more sensitive

to the degree of concern scattering and tangling in the code.

In fact, the employed strategies were not accurate when

detecting anomalies associated with the inappropriate

modularization of architectural concerns; they presented

precision and recall rates around 43% and 48% respectively.

For instance, the class BaseController in MobileMedia

was classified by developers as an architecturally-relevant

occurrence of God Class since it is realizing different

architectural concerns (e.g. Photo, Music, and Persistence).

However, differently from MediaController (Figure 1), it

was not automatically detected by the strategies. Even

though this class was the source of highly tangled and

scattered concerns, its methods present neither low cohesion

nor high complexity (Section 3.1). However, changes

associated with each of the architectural concerns were

performed in this class, confirming its anomalous nature.

This class was particularly related to two architectural

anomalies, namely Component Concern Overload and

Scattered Parasitic Functionality.

As a conclusion, the results reveal that conventional

detection strategies are not accurate largely due to their lack

of sensitivity to properties of architectural concerns in the

code. Detection strategies are limited to metrics of structural

properties (detected by static analysis tools) of modules in

the code. Existing concern metrics [42] and concern tracing

tools [10] should be leveraged to improve the accuracy of

detection strategies used to assess architecture degradation.

6.2 Inability to Identify Architectural Information in

the Source Code

Architecturally-relevant code anomalies often occurred in

code elements responsible for implementing different

architectural elements. Specifically, 49% of the

architecturally-relevant code anomalies fell in this category.

However, precision and recall rates of the strategies were

36% and 44%, respectively, when identifying these code

anomalies.

For instance, the method InsertEmployee.execute in

HealthWatcher represents an example of an architecturally-

relevant code anomaly that was not automatically detected

by our employed strategies. In particular, this method was

classified as Divergent Change by developers since it

accesses information and call methods of classes responsible

for implementing different architectural elements. This

method also introduces undesirable dependencies between

175

non-adjacent layers, condition to be classified as an

architecturally-relevant occurrence. However, such execute

method was not automatically detected by strategies because

they focus on measuring method's strong coupling degree

based on syntactic dependencies.

However, this method had instead a semantic

dependency with other methods: the former changed

together with other methods realizing different architectural

components, which were not syntactically coupled to the

former. Hence, we observed that strategies were not

effective in detecting this kind of anomaly as they are not

sensitive to which architectural elements a code anomaly is

responsible for implementing. The key issue is that

detection strategies cannot rely on information about how

the code elements are associated with architectural modules

and their inter-dependencies; this information cannot be

extracted using code metrics. This might indicate the need

for further investigating how detection strategies could

exploit traces of architectural information in the code.

6.3 Patterns of Code Anomalies

It was observed that certain patterns of code anomalies tend

to be better indicators of architectural degradation

symptoms than single code anomalies. However, these

patterns cannot be directly detected by strategies, which

focus on identifying individual code anomalies. They do not

capture, for instance, a chain of inter-related anomalies.

Co-occurrences of Code Anomalies. Certain recurring

patterns of co-occurring code anomalies tend to be stronger

indicators of architectural degradation symptoms. For

instance, co-occurrences of Long Method and Divergent

Change were associated with architectural problems in all

the systems. That is, methods with either high cyclomatic

complexity or many lines of code and, high coupling degree

with different architectural elements were better indicators

than single Long Method occurrences. More than 75% of

these combined occurrences were associated with

architectural problems while just about 43% of single Long

Method occurrences were related to architectural problems.

It is important to point out that many of these relevant

co-occurrences cannot be detected by simply combining

multiple strategies using logical operators (Section 3.1).

Aiming at identifying these co-occurrences, detection

strategies must rely on some kind of architectural

information (Section 6.2). For instance, it would be also

useful to consider how many different architectural elements

a method is accessing. Otherwise, strategies will just detect

such relevant co-occurrences that present similar

characteristics of non-relevant co-occurrences. That is, those

co-occurrences that present tight coupling degree with

several elements, disregarding their distribution on

architectural decompositions.

Code Elements suffering from the Same Anomaly.

Interesting findings emerged from analyzing groups of code

elements that suffer from the same code anomaly. For

instance, when a group of classes that suffer from God Class

or Large Class are implementing the same architectural

component A and realizing different concerns it may

indicate that A suffers from Component Concern Overload.

This assumption departs from the fact that God Classes and

Large Classes are likely to be related to the inappropriate

modularization of architectural concerns. Furthermore,

when other architectural components and God Classes of A

are sharing the same architectural concern, it may suggest

that A is affected by Scattered Parasitic Functionality. This

situation was observed in all the systems.

Propagation of Architectural Problems. It was also often

observed the propagation of architectural problems from

parents to children in the inheritance trees of all the systems.

There are two main categories related to such propagation

of architectural problems. The first is related to architectural

problems that are propagated to all the children in the

inheritance tree whereas in the second category the

architectural problem is not propagated to all the children,

i.e. some children are free of architectural problems.

Examples of both categories were found in all systems. For

instance, in HealthWatcher it was observed that several

interfaces were introducing undesirable relationships via

their parameter types. These interfaces were not identified

by detection strategies because they had a well-defined

interface (e.g. several members, without a high coupling

degree). However, they had a considerable negative effect

as these violations were propagated down through the class

hierarchies. Usually these undesirable references are left in a

system over a long period due to the ripple effects when

refactorings are applied to remove them.

The limitations of detection strategies for localizing

propagated relevant occurrences of code anomalies are the

same for localizing single relevant occurrences. This is due

to the propagation of code anomalies in the inheritance trees

itself could be detected using static code analysis.

6.4 Architectural Design and Strategy Accuracy

There was a direct influence of the lack of modularity of

certain concerns on the architecturally-relevant anomalies

when analyzing different architectural decompositions. We

observed that when the modularization of architectural

concerns is more explicit in the source code the number of

architecturally-relevant anomalies tend to decrease. For

instance, OO systems presented a higher number of

conventional code anomalies [13] than AO systems. We

suspect this occurred due to most of the code anomalies

were related to the inappropriate modularization of

architectural concerns, which are more scattered in OO

systems. As AOP mechanisms tend to improve the

modularization of concerns in single aspects, they may

remove relevant anomalies related to this factor. It is not our

intention to compare the results in both decompositions, as

we discussed in previous sections the inadequate use of AO

mechanisms may introduce other kinds of architecturally-

relevant code anomalies.

176

Even more interesting is the fact that we have observed

how the strategies' accuracy for identifying architecturally-

relevant anomalies seem to be similar in both kinds of

architectural decompositions. This assumption is derived

from results regarding to the “average rows” in Table 6. The

strategies' accuracy rates are about 40% for detecting

architecturally-relevant code anomalies in all AO and non-

AO systems, except in MIDAS.

7. Threats to Validity

This section summarizes the main threats to validity and the

mitigations considered; a detailed analysis of all the possible

imperfections and mitigations for our study can be found at

the supplementary website [5].

Construct Validity. Threats to construct validity are mainly

related to possible errors introduced in the identification of

code anomalies and architectural problems. There are

different kinds of detection strategies documented in the

literature. In particular, we opted for not selecting history-

sensitive detection strategies as they tend to be less

predictive and require multiple versions of the system [26,

40]. Consequently, they accurately reveal code anomalies

just in later releases, when the system may have already

achieved critical degradation stages.

We are aware that detection strategies, manual

inspection and other mechanisms to identify code anomalies

and architectural problems can introduce imprecision.

However, we mitigated this threat by: (i) involving original

developers and architects in this process, and (ii) using

architectural models where architectural elements were

mapped to different levels of granularity. That is, the

relationships between code elements and architecture

elements were often not 1-to-1. Furthermore, the

architectural problems were identified by architects, who

had previous experience on the detection of architectural

violations and anomalies in other systems. The correlation

analysis between code anomalies and architectural problems

was also validated with the architects and developers.

Conclusion Validity. We have two issues that threaten the

conclusion validity of our study: the number of evaluated

systems and assessed anomalies. Two versions of MIDAS,

eight versions of MobileMedia, eight versions of Aspectual-

Media, ten versions of HealthWatcher and, ten versions of

AspectualWatcher were used for the purposes of this study,

totaling 38 versions. Of course, a higher number of systems

is always desired. However, the analysis of a bigger sample

in this study would be impracticable for different reasons.

First, the relationship between code anomalies and

architectural problems needed to be confirmed by architects.

Second, the number of systems with all the required

information and stakeholders available to perform this study

is rather scarce. Then, our sample can be seen as appropriate

for a first exploratory investigation [20]. All the findings

(for example, those discussed in Section 6) contribute with

more specific hypotheses that should be further tested in

repetitions or more controlled replications of our study.

Related to the second issue (completeness of code

anomalies and architectural problems), our analysis was

concerned with a wide variety of code anomalies and

problems that occur in system's architecture. We analyzed

the accuracy of detection strategies for identifying all

architecturally-relevant code anomalies that occurred in the

target systems. In addition, certain code anomalies were not

discussed (e.g. Data Class) since their occurrences did not

influence on studied system architectures.

Internal and External Validity. The main threats to

internal and external validity are the following. First, the

level of experience of systems' programmers could be an

issue. In order to mitigate this, we used systems that were

developed by more than 20 programmers with different

levels of software development skills. The main threat to

external validity is related to the nature of the evaluated

systems. In order to minimize this threat we have tried to

use applications with different sizes, that suffer from a

different set of code anomalies and that were implemented

using different architectural styles and environments.

However, we are aware that more studies involving a higher

number of systems should be performed in the future.

8. Concluding Remarks

Our results suggest that state-of-the-art detection strategies

were not able to identify and locate architecturally relevant

code anomalies. Specifically, more than 60% of the

automatically-detected code anomalies were not correlated

with architectural problems (neither with other threats, such

as faults in the code). This means that developers might be

spending a lot of time reviewing code anomalies (and

refactoring code) that do not represent architectural (or

other) threats to the system. Even worse, many of the false

negatives (i.e. about 50%) generated by automated anomaly

detection are often correlated with architectural problems.

This means that developers would not be informed by

detection strategies of code anomalies that are critical to

architecture sustainability. These findings are interesting

because they question the effectiveness of existing strategies

and tools in supporting "architecture revision" strictly based

on the source code (which is commonly the case). Also, it is

in such case where the current mechanisms for "architecture

revision" [1][8] cannot be used since they rely on the

existence of the intended architectural design.

We found that the imperfection of the detection

strategies is not simply related to specific thresholds or

combinations of particular measures. On the contrary, the

false positives and false negatives often cannot be resolved

if design decisions are not traced and mapped to the source

code, and exploited by detection strategies (Section 6). For

instance, detection strategies cannot decide whether (or not)

relationships between two classes are introducing violations.

They cannot decide either whether a class is accessing

information from classes defined in different architectural

177

elements. It was also found that certain recurring patterns of

anomaly combinations or anomaly propagations are better

indicators of architectural problems than individual anomaly

occurrences. Therefore, developers should be warned about

the harmful impact of these patterns and their existence in

the source code in order to perform their early removal.

However, these patterns usually cannot be specified or

detected by existing techniques [21, 32], as they are

intended to pick out individual anomaly occurrences.

9. Acknowledgements

This was sponsored by: I.Macia CNPq grant 579604/2008-

0; A.Garcia FAPERJ grant E-26/102.211/2009,

111.152/2011 and CNPq grant 305526/2009-0; A.v.Staa

CNPq grant 306802/2008-2; Projects: CNPq grants

483882/2009-7, 479344/2010-8 and 485348/2011-0. It was

also sponsored by the US National Science Foundation

under Grant number 1117593. Any opinions, findings, and

conclusions expressed in this paper are those of the authors

and do not necessarily reflect the views of the NSF.

References

[1] Aldrich, J. ArchJava: Connecting Software Architecture to
Implementation. In Proc of the 24th ICSE, pp. 187-197, 2002.

[2] Alikacem, E.H and Sahraoui, H. Generic metric extraction
framework. In Proc. of the 16th IWSM/MetriKon, 2006, pp. 383–390.

[3] Bieman, J.M. and Kang, B.K. Cohesion and Reuse in an Object

Oriented System. In Proc of the ISSR, pp 259-262, 1995.

[4] Clements, P et al. Documenting Software Architectures: Views and
Beyond. Addison-Wesley, 2nd Edition, 2010

[5] Code smells study: http://www.inf.puc-rio.br/~ibertran/aosd12.

[6] D'Ambros, M. et al. the Impact of Design Flaws on Software Defects.
In Proc. of the 10th QSIC, pp. 23 - 31, 2010.

[7] Dhambri et al. Visual Detection of Design Anomalies. In Proc. of the

12th CSMR, pp. 279-283, 2008.

[8] Eichberg, M. et al. Defining and Continuous Checking of Structural
Program Dependencies. In Proc. of the 30th ICSE, 2008.

[9] Emden, E. and Moonen, L. Java quality assurance by detecting code

smells. In Proceedings of the 9th ICRE, 2002.

[10] FEAT tool, http://www.cs.mcgill.ca/~swevo/feat/

[11] Ferrari, F. et al. An exploratory study of error-proneness in evolving

Aspect-Oriented Programs. In: Proc. of the 25th OOPSLA, USA,
2009.

[12] Figueiredo, E. et al. Evolving software product lines with aspects: An

empirical study on design stability. In Proc of the 30th ICSE, 2008.

[13] Fowler, M. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[14] Garcia, J. et al. Identifying architectural bad smells. In Proc of the.

13th CSMR, pp 255–258, 2009.

[15] Greenwood, P. et al. On the impact of aspectual decompositions on
design stability: An empirical study. In Proc. of the 21st ECOOP,

2007.

[16] Hochstein, L. and Lindvall, M. Combating architectural degeneration:

A survey. Info. & Soft. Technology July, 2005.

[17] Hosmer, D. and Lemeshow, S. Applied Logistic Regression (2nd
Edition). Wiley, 2000.

[18] Khomh, K. et al. An exploratory study of the impact of code smells
on software change-proneness. In Proc of the 16th WCRE, 2009.

[19] Kiczales, G.,et al. Aspect-oriented programming. In Proc. of the 11th
ECOOP. LNCS, vol. 1241. Springer, Heidelberg. pp. 220-242, 1997.

[20] Kitchenham, B. et al. Evaluating guidelines for empirical software
engineering studies. ISESE pp 38-47, 2006

[21] Lanza, M. and Marinescu, R. Object-Oriented Metrics in Practice.
Springer, 2006.

[22] Lippert, M. and Roock, S. Refactoring in Large Software Projects:

Performing Complex Restructurings Successfully. Wiley. 2006.

[23] Macia, I. et al. A. An Exploratory Study of Code Smells in Evolving
Aspect-Oriented Systems. In Proc of the 10th AOSD, 2011.

[24] Malek, S. et al. Reconceptualizing a family of heterogeneous

embedded systems via explicit architectural support. In Proc. of the
29th ICSE. 2007.

[25] Mantyla, M.V. and Lassenius, C. Subjective evaluation of software

evolvability using code smells: An empirical study. Empirical

Software Enggineering, vol. 11, no. 3, pp. 395–431, 2006.

[26] Mara, L. et al. Hist-Inspect: A Tool for History-Sensitive Detection of
Code Smells. In Proc. of the 10th AOSD, 2011

[27] Marinescu, R. Detection strategies: Metrics-based rules for detecting

design flaws. In Proc. of the 20th ICSM, pp 350-359, 2004.

[28] Marinescu,R.; Ganea, G. and Veredi, I. inCode: Continuous Quality
Assessment and Improvement. In Proc of the 14th CSMR, 2010.

[29] Martin, R. Agile Principles, Patterns, and Practices. Prentice Hall,

2002.

[30] McCabe, T.J. A Software Complexity Measure. IEEE Transactions
on Software Engineering, 2 (4), pp 308-320, 1976.

[31] Meyer, B. Object-Oriented Software Construction. Prentice Hall
Professional Technical 2nd edition, 2000.

[32] Moha, N. et al. DECOR: A Method for the Specification and

Detection of Code and Design Smells. IEEE TSE, 2010.

[33] Munro, MJ. Product metrics for automatic identification of bad smell

design problems in java source-code. In Proc of 11th METRICS, 2005

[34] MuLATo tool, http://sourceforge.net/projects/mulato/ (3/08/2009)

[35] Murphy, G.C., et al.. Software Reflexion Models: Bridging the Gap

between Design and Implementation. IEEE TSE, pp 364–380, 2001.

[36] Murphy-Hill, E. Scalable, expressive, and context-sensitive code
smell display. In Proc of the 23rd OPSLA, 2008.

[37] Olbrich, S.M. et al. Are all code smells harmful? A study of God
Classes and Brain Classes in the evolution of three open source

systems. In Proc of the 26th ICSM pp 1-10, 2010.

[38] Olbrich, S.M. et al. The evolution and impact of code smells: A case
study of two open source systems. In Proc of the 3rd ESEM, 2009.

[39] Perry, D.E. and Wolf, A.L. Foundations for the study of software

architecture, ACM Software. Eng. Notes 17 (4) pp 40–52, 1992.

[40] Ratiu, D. et al. Using History Information to Improve Design Flaws
Detection. In Proc of the 8th CSMR, 2004.

[41] Ratzinger, J. et al. Improving evolvability through refactoring. In

Proc of the 5th IEEE MSR, 2005.

[42] Sant'anna, C. et al. On the modularity of software architectures: A
Concern-Driven measurement framework. In Proc. of ECSA, 2007.

[43] Sonar: http://docs.codehaus.org/display/SONAR/

[44] Srivisut, K. and Muenchaisri, P. Bad-smell Metrics for Aspect-
Oriented Software. In Proc of the 6th ICIS, 2007.

[45] Together: http://www.borland.com/us/products/together/

[46] Tsantalis, N. and Chatzigeorgiou, A. Identification of move method

refactoring opportunities. IEEE TSE, 35(3), pp 347–367, 2009.

[47] Understand: http://www.scitools.com/

[48] Wake, W.C. Refactoring Workbook. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2003.

[49] Wettel, R. and Lanza, M. Visually localizing design problems with
disharmony maps. In Proc. of the 4th Softvis pp. 155–164, 2008.

178

http://www.inf.puc-rio.br/~ibertran/aosd12

