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Abstract
Modularity is a key concept for large and complex applica-
tions and an important enabler for collaborative research. In
comparison, virtual machines (VMs) are still mostly mono-
lithic pieces of software. Our goal is to significantly reduce
to the cost of extending VMs to efficiently host and ex-
ecute multiple, dynamic languages. We are designing and
implementing a VM following the “everything is extensible”
paradigm. Among the novel use cases that will be enabled by
our research are: VM extensions by third parties, support for
multiple languages inside one VM, and a universal VM for
mobile devices.

Our research will be based on the existing state of the
art. We will reuse an existing metacircular JavaTM VM and
an existing dynamic language VM implemented in Java. We
will split the VMs into fine-grained modules, define explicit
interfaces and extension points for the modules, and finally
re-connect them.

Performance is one of the most important concerns for
VMs. Modularity improves flexibility but can introduce an
unacceptable performance overhead at the module bound-
aries, e.g., for inter-module method calls. We will identify
this overhead and address it with novel feedback-directed
compiler optimizations. These optimizations will also im-
prove the performance of modular applications running on
top of our VM.

The expected results of our research will be not only new
insights and a new design approach for VMs, but also a
complete reference implementation of a modular VM where
everything is extensible by third parties and that supports
multiple languages.
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1. Introduction
Modularity enables developers to build increasingly large
and complex applications. It is often not feasible to closely
control the entire architecture of such applications. They
are often developed by distributed teams or even multiple
vendors, so it is necessary that individual modules are inde-
pendent and have a well-defined interface to the rest of the
application. The concept of a module system, i.e., a software
layer that loads, unloads, and connects modules, is well
understood in the field of software engineering [29]. It is
used on a daily basis with industry standards like OSGi [24].

The complexity of virtual machines (VMs) is steadily
increasing. This includes the development of more advanced
just-in-time (JIT) compilers and garbage collectors, but also
optimized run-time services such as thread synchronization.
Additionally, the rise of dynamic languages has led to
a plethora of new VMs, since a completely new VM is
typically developed for every new language. VMs are still
mostly monolithic pieces of software. They are developed in
C or C++, the languages that they aim to replace. In sum-
mary, VMs offer a lot of benefits for applications running on
top of them, but they mostly do not utilize these benefits for
themselves.

The reason often cited for this is performance. Many
subsystems are highly performance critical or have perfor-
mance critical connection points with other subsystems. For
example, when a garbage collector needs write barriers, the
JIT compiler must efficiently embed them into the generated
code. A callback into the garbage collector for every field
access would be too slow. Using modularity and interfaces,
it would be an even slower call that needs dynamic dis-
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patch. Existing modular VMs therefore have carefully se-
lected module boundaries to avoid the performance impact.

An important step towards true modularity for VMs are
metacircular VMs, i.e., VMs written in the same language as
they execute. The two most prominent examples for JavaTM

are the Jikes RVM [16] and the Maxine VM [20]. Maxine
is designed with modularity in mind: the core subsystems
are exchangeable using so-called “schemes”. However, there
is still no explicit concept of modules. Additionally, the
modularity is on a coarse level. Individual modules are not
designed with fine-grained extensibility in mind.

Most current VMs are designed to execute only a sin-
gle input language. The monolithic design makes it dif-
ficult to adapt major parts when building a new VM for
a new language. For example, Java VMs have been ex-
tensively optimized over the last decade, which has led to
aggressively optimizing JIT compilers as well as parallel
and concurrent garbage collectors. However, the dynamic
language VMs that have become highly popular in recent
years do not incorporate these implementation-intensive op-
timizations. The lack of modularity has prohibited the reuse
of existing VM optimizations. With fine-grained modularity,
implementing a VM for a new language requires only im-
plementing the new language-specific parts, while the core
runtime and optimization infrastructure remains unchanged.

The goal of our research is to investigate the impact of
fine-grained modularity on VMs. We envision a VM follow-
ing the “everything is extensible” paradigm, by combining
best practices of existing VM design and existing module
systems.

We expect our research to contribute along three axes.

• Direct research results: We will study the performance
impact of fine-grained modularity in VMs, develop new
optimizations to eliminate possible overhead, and gener-
alize the results for the benefit of all modular applica-
tions.

• Benefits for future research: We will develop a VM re-
search platform that is ideal for future research. It will
make comparisons of different optimizations much easier
than before.

• Optimized VMs for many languages: We will define a
customizable family of VMs that can easily be configured
for different languages (static and dynamic languages),
different target systems (from embedded devices to
servers), and different optimization strategies. For some
of these configurations, no optimized VMs are available
yet, e.g., we expect to contribute significantly to the
performance of dynamic language VMs.

2. Vision of a Modular VM
While the performance and complexity of VMs have been
greatly increased over the last decade, the internal struc-
ture of VMs still neglects the concepts of modern modular
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Figure 1. Structure of current VMs.

software development. Consequently, it is not possible to
implement different VM optimizations independently from
each other: all parts of a VM interdepend on each other. Fig-
ure 1 shows important subsystems of a current VM. There
are multiple circular and bidirectional dependencies, e.g.,
between the JIT compiler and the garbage collector: the
JIT compiler emits read and write barriers specifically for a
garbage collector, while the garbage collector traverses stack
frames and root pointers defined by the JIT compiler.

We want to disentangle the structure of the VM by intro-
ducing an explicit concept of modules and module depen-
dencies. Modules provide well-specified extension points
that are used by other modules. We outline the main features
of the resulting system below.

• No circular dependencies: The module system prohibits
circular dependencies, leading to an overall structure that
is easier to understand.

• Fine-grained modules: Every subsystem is split into sev-
eral modules with explicit dependencies and extension
points in between.

• Ubiquitous extensibility: There is no distinction between
“internal” modules that constitute the core runtime sys-
tem, and “external” modules supplied by third-party ven-
dors. All use the same extension points and have access
to the same data and interfaces.

• Metacircularity: The VM is mostly written in one of the
many managed languages that it can execute (we antici-
pate the VM to be written in Java). Modules that extend
the VM are shipped in the same form as applications
running on top of the VM. Therefore, all optimizations
that improve the application speed also improve the VM
speed, and it is possible to eliminate the overhead of
modularity.

2.1 Performance
Performance is a key aspect for VMs because it affects all
applications running on top of the VM. However, we believe
that the current VM development process is too centered
around performance, thereby sacrificing other important as-
pects such as maintainability, portability, and extensibility.
Many optimizations are applied prematurely because there is
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Figure 2. Case study for the support of complex numbers inside the VM.

the common belief that they are indispensable. To overcome
this, we will follow a three step process.

1. Define the module boundaries so that each module is a
small, self-contained, and individually meaningful entity.

2. Measure the performance impact of modularity in various
configurations to identify whether there are bottlenecks
and where they are.

3. Implement optimizations that eliminate the bottlenecks.
Since these optimizations can be implemented as inde-
pendent modules themselves, they do not erode the over-
all system architecture.

The ability of a VM to “optimize itself” offers unique
benefits compared to, e.g., a modular operating system (OS).
In a modular OS, the module boundaries remain in effect at
run time. Calls that cross method boundaries are expensive
because they require a table lookup to find the current im-
plementation of an interface, or at least an indirect method
call using a function pointer. In our modular VM, run-time
profiling and the JIT compiler can eliminate the overhead
completely. Even in current VMs, interface calls are aggres-
sively optimized when there is only one implementation of
the interface available. Therefore, method inlining and other
inter-procedural optimizations across module boundaries are
feasible. We therefore argue that a modular VM has a vast
performance advantage compared to a modular OS.

2.2 Case Study: Third-Party VM Extensions
Suppose that a third party vendor offers a library providing
classes for computations with complex numbers. Figure 2(a)
illustrates this structure. The library is centered around a
class that combines two floating point numbers to one com-
plex number. Therefore, every complex number is a separate
object, leading to sub-optimal performance.

The library developer cannot solve this problem because
modifications of the VM are not possible. The VM developer
cannot solve the problem because implementing optimiza-

tions for a certain library is out of scope for a VM—only
important methods of the standard library that ships with the
VM are optimized by the VM.

Using our approach, the library vendor can also supply
extension modules for the VM. Figure 2(b) shows this ap-
proach. One VM module can define the object layout for
complex numbers, i.e., it defines that complex numbers are
handled in the same way as floating point numbers and are
not separate objects. Another module can define compiler
optimizations for complex numbers, e.g., perform constant
folding or use special processor instructions for complex
numbers. These extension modules are loaded when the li-
brary for complex numbers is loaded, i.e., the modules have
no impact on applications that do not use the library.

2.3 Case Study: Mixing of Languages
Figure 3 sketches the continuum of programming languages
in a very coarse and superficial manner. At one end of the
spectrum are statically typed languages such as Java and
C# that provide type safety and highly optimized execution
environments. On the other end are dynamic languages such
as Python, Ruby, and JavaScript. These are more flexible
and easier to use, especially for end users. In the middle
range are programming languages such as Visual Basic that
provide some (sometimes optional) static typing while being
suitable for casual users. No single language can fulfill the
needs for all kinds of programming tasks, so the combination
and integration of languages is important.

To get the best of both worlds, a hybrid approach is
increasingly used in which the core of an application is
written by experienced developers in a statically typed lan-
guage while domain experts and end-users write extensions
in dynamically typed (and often domain-specific) languages.
In many cases, the dynamic language is implemented on
top of a static language that also uses a virtual machine
environment for its execution (see for example [8, 15]),
leading to a big overhead due to double interpretation and
compilation.
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Figure 3. A continuum of programming language characteristics.

Our approach to handle multiple languages in one VM
addresses the layering cost. All languages use the same im-
plementation infrastructure, so data can be shared between
the languages. There is no more need for conversion between
different object models and wrapping or unwrapping of data.
By leveraging VM extensibility, we also will support highly
efficient ways to implement bytecode interpreters. Currently,
all of these techniques require the use of unsafe, systems-
oriented programming languages such as C and C++.

2.4 Case Study: One VM for Mobile Devices
Smartphones and other mobile or embedded devices have
become ubiquitous. Although their computational power
has increased, they are still much more limited than PCs.
Nevertheless, users want to access web pages that use
JavaScript, run Flash applications inside the browser, and
execute their well-known rich-client Java applications. All
these languages require a VM with the same core function-
ality, such as a garbage collector, an interpreter, and a JIT
compiler. Figure 4(a) illustrates the current situation. It is
a waste of resources to ship a mobile device with three
completely separate VMs. From a security perspective, a
larger code base means more potential vulnerabilities for
attackers to exploit.

Using our approach, the core functionality is shared be-
tween all VMs, as shown in Figure 4(b). The language spe-
cific parts are added as additional modules to the language-
independent set of core modules. No functionality is dupli-
cated, saving valuable disk space. Additionally, the different
applications can also be executed in one VM at run time,
provided that the VM is shipped with the appropriate mod-
ules that provide isolation between multiple applications
running inside one VM. This eliminates the duplication of
data structures in the main memory at run time.

Having a fine-grained set of core module also simplifies
customization of the VM for different device configurations.
A small-scale device can be shipped with the bare minimum
of modules, e.g., without a JIT compiler. The more powerful

a device is, the more optimizations can be added. This allows
to support the full scale of devices and the full scale of
languages with only one customizable VM.

2.5 Case Study: A Multi-Language VM-Based Web
Browser to Increase Web Security

The web is one prominent case where the interaction be-
tween multiple languages currently poses significant prob-
lems. The core of current web browsers is implemented
in C or C++, and they execute web applications written
in JavaScript, Flash, and other dynamic languages. How-
ever, the boundary between the languages is not as clear
as it seems at the first glance. JavaScript is also used for
core browser components, for example the user interface
of Mozilla’s Firefox is written in JavaScript. And browser
extensions can be implemented in JavaScript too. As a result,
current browsers have much communication between parts
written in different languages, which requires expensive con-
version and duplication of data structures in these worlds.

Our solution allows a browser, where the main compo-
nents are implemented in a static managed language like
Java, to transparently communicate with extensions and web
applications written in JavaScript, as well as web appli-
cations written in Flash. That enables seamless and com-
bined optimization of the browser core, browser extensions,
and web applications running inside the browser. The code
handling a single mouse click on a web page button cur-
rently crosses the language boundary several times. We al-
low method inlining and other aggressive optimizations from
the code that receives the mouse event to the JavaScript
handler and then to the code that accesses and modifies
the document object model (DOM) representing the page in
memory.

An additional benefit of our approach that we want to
highlight is the possibility for increased security. Attacks
such as cross-site scripting and deficiencies of the same-
origin policy that is currently used by most browsers can
be solved by approaches such as fine grained information
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Figure 4. Case study for the support of multiple languages in one VM on mobile devices.

flow tracking inside the JavaScript VM. From a conceptional
point of view, every JavaScript value has a label with its
origin attached. However, when the web page source code
with the DOM is part of the browser core written in C or
C++, DOM elements cannot be labeled and tracked by the
JavaScript VM. Our envisioned VM allows end-to-end infor-
mation flow tracking in the whole browser. A single imple-
mentation of information flow tracking secures the browser
and web applications, so our VM is the ideal basis for future
research in this area.

2.6 Metacircular VMs
As previously mentioned, traditional VMs are written in a
language different from the one they execute. In many cases,
the VM is implemented using a low-level or system oriented
programming language like C or C++, while the VM itself
executes a high-level programming language. The VM offers
productivity advantages such as type safety, memory safety,
garbage collection, and JIT compilation, but the VM itself
does not benefit from these features.

In contrast, metacircular VMs [14, 16, 20, 28] are im-
plemented in the same programming language they execute.
Both the application and VM code are treated uniformly.
There is no internal distinction between parts of the VM and
parts of the application. Metacircular design is advantageous
in terms of both performance and development time. For
example, the JIT compiler of the VM optimizes both the
VM and application code together in the same context. A
VM with run-time profiling not only optimizes the running
application, but also the VM itself. Similarly, a VM with run-
time profiling makes no distinction between optimizing the
VM itself and the application it runs.

Although there is no difference between VM and ap-
plication code inside a metacircular VM, the outside view
is still different. The VM requires a bootstrapping process
that translates the VM to machine code ahead of time. This
requires a second, non-metacircular VM for the language,

so that the JIT compiler can run the first time and compile
itself. The result of the bootstrapping process is a machine
code image of the VM that can be executed directly by
the processor. For all VMs we are currently aware of, the
image is a monolithic piece of machine code. We want to
evaluate whether splitting the file into several smaller parts
and preserving the module structure, i.e., a reduced image
that covers only essential parts, is sufficient and beneficial.

2.7 Reliability
A modular VM design embraces and encourages extension
from third-party vendors. That can raise concerns about the
reliability of the VM. Code from different vendors, which is
unlikely to have been tested together, must interact. Several
parts of a modular VM are quite similar to ordinary modular
applications. They do not need access to low-level data struc-
tures such as raw memory, threads, or synchronization prim-
itives. For example, an optimization for the JIT compiler
transforms high-level graph-based data structures and not
raw memory. The dependency tracking of the module system
enforces that such access does not happen. Additionally,
modules that contribute optimizations are not critical for the
overall functionality of the VM and can be disabled when
they show erroneous behavior.

Still, the machine code generated by the JIT compiler
operates on raw memory, so an erroneous optimization can
lead to code that crashes the VM; and modules extending
the garbage collector require arbitrary memory access to
work. This problem can be tackled for example with in-
tegrity checks performed by the core modules or with mod-
ule interfaces that encourage fault-tolerant programming.

We consider it an essential part of this research to evaluate
reliability issues. This includes both a formal analysis of
our prototype implementation, as well as field studies that
combine our core modules with third-party extensions.

In addition to guaranteeing this low-level system in-
tegrity, we realize the danger of interference between third-
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Figure 5. Architecture of the modular VM.

party modules. For example, our envisioned modular VM
indicates a conflict, if there are two modules A and B, both
altering the same code fragment, such as the same class, or
method. In such a case, there are basically several ways to
proceed. First, we resolve conflicts by restricting the access
to the same piece of code such that we give permission to
only one of the two conflicting modules. Next, we think
that both modifications are permissible if both modules
share a common namespace, similar to the same-origin-
policy in web browsers. Finally, the conflict is analogous
to conflicting compiler optimizations (corresponding to
modules): before actually performing any transformation,
each optimization ensures soundness by ensuring that its
preconditions hold.

2.8 System Architecture
We envision a VM where all subsystems are split into small
modules with well-defined module boundaries. On the low-
est level, a module system manages the dependencies be-
tween the modules and allows module interactions in a con-
trolled way. Figure 5 shows the overall structure. On top of
the module system, a small set of core modules provides the
basic runtime environment of the VM. During the bootstrap-
ping process, this part must be compiled to machine code
to get an initial running VM image. Additional modules
with advanced optimizations are loaded on demand. These
modules are shipped as bytecodes, so they are executed and
optimized like any application running on top of the VM.

Modules are kept at the smallest feasible granularity to
allow fine-grained configurability and extensibility. As an
example, Figure 6 shows a possible structure of the opti-
mizing JIT compiler. The intermediate representation and
flow of compilation is defined in a central module. All other
parts, especially the individual optimizations, are in separate
modules that depend on the central module. Additionally,
other subsystems contribute to the compilation process, such
as the garbage collector, the run-time profiling, and the def-
inition of language-specific semantics. It is also possible to
integrate optimizations contributed by third-party vendors.

This breaks up the current paradigm that mandates the whole
VM to be defined, maintained, and shipped by a single
vendor.

Splitting up a VM into modules separates the clas-
sic subsystems such as the interpreter, JIT compiler, and
garbage collector, from each other. It also separates the
language-specific parts from language-independent parts on
a fine-grained level. For example, the JIT compiler of a
current Java VM contains many global optimizations that
are applicable for any language, but also Java-specific parts
such as method and field linking. Separating these parts into
different modules allows for an easy re-use of language-
independent VM parts.

When building the VM for a new language, it is con-
sequently only necessary to define the language-dependent
parts for the new language, which is most likely only a small
subset of the whole VM. This reuse of modules is especially
important in the context of emerging dynamic languages.
Instead of building a whole new VM for every language,
our approach requires only a small addition to the existing
VM framework. To demonstrate this potential, we are in the
process of adding support for an additional language to an
existing VM.

3. Expected Outcomes
Our project is expected to yield new insights and a design
rationale for modular VMs. We have no desire to re-invent
the wheel. Hence, our work benefits intelligently from prior
research and existing open-source projects. For example,
we are using an existing Java VM—Maxine from Oracle
Labs [20]—which is already clearly divided into indepen-
dent subsystems as the basis for our host VM. Maxine is our
VM of choice because it is a well-structured Java VM and it
is available under an open source license.

Converting Maxine into a modular VM is non-trivial.
While high-level components such as the garbage collection
algorithm, the layout of objects, and the JIT compiler are
exchangeable, it is currently not designed to be modular. Ad-
ditionally, it is tailored towards the Java VM specification,
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and not ready to support multiple languages. For example,
the semantics and constraints of Java bytecodes are visible
throughout the whole VM, from the class loader to the JIT
compiler.

Even the recently added C1X JIT compiler provides no
support for different input languages; it only provides an
interface between the compiler and the rest of the VM using
the intermediate language XIR [31]. We will use C1X as the
starting point, but we need to open up the intermediate repre-
sentation to support both static and dynamic typing, and we
need to incorporate run-time type feedback in the compiler.
Significant research is necessary throughout the whole VM
to isolate the Java-specific parts from the language agnos-
tic parts and re-connect them using a well-defined module
interface.

There are many high-quality implementations of dynamic
languages available as open-source projects. We want to
support at least one dynamic language in addition to Java.
For all major dynamic languages, VMs written in Java are
available as open-source projects. Among applicable candi-
dates are the Rhino JavaScript VM [27], the JRuby VM for
Ruby [17], and the Jython VM for Python [18]. All these
VMs currently run on top of a Java VM, i.e., from the point
of view of the Java VM they are applications. This leads
to double interpretation and compilation overhead, which
is no longer present in our approach. Incorporating code
from an existing VM not only saves development resources,
but also allows direct comparison with the original VM.
We expect our dynamic VM to be faster than the original
because it leverages the optimization system designed to ac-
commodate dynamic languages. However, our system is not
limited to existing dynamic languages, but also simplifies
and encourages the development of new domain-specific and
simple end-user programming languages targeted for special
limited programming tasks.

In summary, our research has four expected outcomes.

• The definition of a module system at the VM level. We
believe this will significantly lower the cost of supporting
new languages efficiently.

• A set of new optimizations that eliminate the possible
overhead of modularity and layering of languages.

• Evaluations and experiments with different module con-
figurations, especially with different amounts of code to
be bootstrapped.

• A platform and baseline for other researchers that sim-
plifies the development of new optimizations and the
comparison of optimizations of different research groups.

4. Realizing the Vision
In previous work, we have experienced both the shortcom-
ings of existing VM structures and the benefits of modular
applications. Based on the insights and experience, we are
confident that a broad and systematic research on this topic
can revolutionize the implementation of VMs.

4.1 Enabling Modularization
The first and fundamental basic step is to define an explicit
module structure for VMs. As we do not want to reinvent the
wheel, we are using the existing Maxine VM.

The initial module structure is rather coarse-grained and
matches the existing subsystem boundaries of Maxine. In
future steps, we will then refine the modules and split them
to get the desired fine-grained modularity. This process in-
cludes the definition of suitable extension points for all parts
of the VM. Once all modules are present, we will investigate
the minimum set of modules that are necessary to run a Java
application.

To get a broader variety of modules and configurations,
we will then add a trace-based JIT compiler as an alternative
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to the existing JIT compiler. This trace-based JIT compiler
re-uses several of Maxine’s compilation systems. Its integra-
tion in the existing system architecture is the first proof-of-
concept that the module interfaces are useful to re-use parts
of the existing compiler.

Finally, we will start to separate the Java-specific parts
into separate modules. This is the first step towards a
language-independent VM where special language features
are supplied using additional modules.

4.2 Exploiting Modularity
In the second step, we want to add support for a dynamic
language. Since all major dynamic languages (e.g., Python,
Ruby, or JavaScript) have VMs available written in Java, a
smooth integration is possible. We plan to modularize the
dynamic language VM and strip away the parts that are
already covered by Maxine. The challenge is to re-use as
many modules as possible from the previous step. For exam-
ple, the optimizing JIT compiler can be re-used immediately
without larger changes, while the garbage collector needs to
be opened to support dynamically growing objects. There-
fore, the process of integrating the dynamic language also
involves a broadening of the existing modules by providing
even more extension points. The resulting dynamic language
VM has the potential to outperform existing VMs because it
leverages compiler and garbage collector optimizations that
were not previously available for dynamic languages.

4.3 Eliminating Module Overhead
In the final stage, we will analyze and optimize inter-module
calls in the VM. Following the spirit of feedback-directed
dynamic optimizations, we will implement optimizations
that specifically target frequently executed inter-module
calls. Using profile information and dynamic code spe-
cialization, overhead introduced by modularization can be
eliminated.

Additionally, we will develop inter-language optimiza-
tions. The modular VM approach enables support for multi-
ple static and dynamic languages inside one VM. All code is
optimized together, so we can study the commonalities and
the differences in the respective optimization approaches.
This will demonstrate the full power of our modular VM
approach.

Finally, we will perform a quantitative and qualitative
analysis of the module overhead. By studying different
methods of bootstrapping, the full spectrum from the mini-
mal set of modules to the whole VM can be bootstrapped,
while the remaining modules are loaded on demand. This
evaluation will answer our primary research question: which
amount of modularity and bootstrapping is best for a VM.

5. Related Work
Most research and production quality VMs are internally
designed in a fairly modular way. The different subsystems

are separated in different packages, namespaces, directories,
or other means offered by the language the respective VM is
written in. The “modularity” is only expressed as different
namespaces and directories and not in minimized depen-
dencies and clear interfaces, and no explicit module system
is present. Therefore, we do not consider these VMs to be
modular in a fine-grained way. Additionally, these VMs are
not extensible at run time. Only a small number of research
projects explicitly target the VM structure and modularity.

Haupt et al. propose to disentangle VM architectures us-
ing an explicit architecture description language [12, 13].
They use the VM Architecture Description Language to de-
scribe the interface of a module. It is a mixture of declarative
specifications and actual code that is merged into the VM
source code. The merging is similar to code weaving of as-
pect oriented programming. All configuration is performed
at compile time, so the resulting VM is not extensible at
run time. They then define a product line of VMs using a
standard product line modeling tool. Our approach does not
require the definition of a separate architecture description
language. Instead, we propose to embed the module defini-
tions directly into the source code.

Thomas et al. introduce a Micro Virtual Machine (MVM)
that is then extended to the JnJVM [30]. MVM is a mini-
mal but nevertheless complete VM that consists of a code
loader, an extensible JIT compiler, and I/O functionality. Ad-
ditionally, it is extensible using aspect oriented programming
techniques. For this, MVM includes an aspect weaver that
can integrate new VM parts at run time. A small Lisp-like
language is used to specify the extensions. JnJVM is a Java
VM developed on top of MVM. It is written in the Lisp-
like language, and the MVM compiles the JnJVM on the fly
when it is loaded. This leads to a high run-time overhead.
Our solution will perform all source code compilation at
compile time, and provide the option to optimize and com-
bine the modules either at compile time or run time.

Harris presents a prototype eXtensible Virtual Machine
(XVM) [11] that allows application code to interact with the
VM. Because of the inherent safety risk of untrusted appli-
cation code modifying the VM, the interaction is limited.
We do not plan to have direct interactions of applications
with the VM (although such modules would be possible to
implement), instead we focus on extensibility inside the VM.

Geoffray et al. present I-JVM [9], a Java virtual machine
for component isolation in OSGi. They address problems of
module isolation. One malicious module can accidentally or
deliberately crash the complete application platform. I-JVM
isolates the modules so that they can be reliably terminated
without affecting other modules. The VM itself is not based
on OSGi. However, their ideas on module isolation apply to
our envisioned modular VM.

Metacircularity originates from LISP [21]. Its eval()

function requires a LISP interpreter, which was defined in
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LISP itself. Also, the first successful LISP compiler was
already developed in LISP.

The idea was then applied to other languages. For ex-
ample, the programming environments and compilers for
Oberon [33] and Cecil [4] were written in the respective
language. This leverages the benefits of the language for the
language development itself, and also simplifies reflective
access in the language. Modules could be loaded and un-
loaded on demand, and the use of a bootlinker was explored
to manage VM images. However, these languages were stat-
ically compiled to machine code and not executed by a VM,
so there were no metacircular runtime environments.

Similar ideas apply to Pascal p-Code, one of the prede-
cessors of modern bytecodes [26]. In this case, even whole
operating systems were written in the system, allowing the
operating system and all applications to be ported easily to
different platforms. On the lowest level, p-Code was still
interpreted by a small runtime layer that remained separated
from the code it executed.

In Smalltalk [7], large parts of the system were written
in Smalltalk itself. Powerful reflective facilities allowed the
access of class, method, and field metadata objects from
within an application. Also, the modular programming style
of Smalltalk could be applied to these reflective system parts.
However, the core bytecode interpreter of most Smalltalk
systems was still written in a statically compiled language.
Only the “blue book” reference implementation was written
in Smalltalk itself [10], but it was intended only for illustra-
tive purposes.

Squeak [14] is a metacircular Smalltalk VM. It is written
in a subset of Smalltalk: a non-object-oriented programming
style is necessary to allow the interpreter to be translated
to C code, which is then compiled to machine code. The
reduced language limits the metacircular benefit because
VM extensions have to be coded in a special way before they
can be integrated with the VM.

SELF [5] is a language that offers even more dynamic
reflective facilities. Every method dispatch is dynamic and
can be changed a run time. The original VM was written in
C++ and was the incubator for many dynamic and feedback-
directed optimizations available in today’s VMs.

The Klein VM [32] is a metacircular SELF VM written
entirely in SELF. The dynamic nature and run-time con-
figurability of this VM probably makes it the VM most
closely related to the system we envision. According to its
authors, the primary goal for Klein is to achieve feature par-
ity with the existing SELF VM, while reducing the amount
of source code by two thirds. Klein achieves a high degree of
reuse by trading off performance for architectural simplicity
and ease of development. Rather than minimizing the code-
base, we seek to make a different set of tradeoffs. We will
leverage metacircularity and modularity to support multiple
languages while retaining high performance through new,
feedback-directed optimizations.

PyPy [28] is a VM for Python, based on a framework use-
able for any dynamic language, written in Python. It is an
example of a dynamic language VM written in a dynamic
language itself. Run-time optimizations are performed by
a trace-based JIT compiler. During bootstrapping, the VM
code is either translated to C code or to the .NET common
intermediate language. This requires an additional C com-
piler or .NET runtime environment for execution.

The two major metacircular research Java VMs are
Jikes [2, 16], which was originally developed by IBM and
is now used in many research projects, and Maxine [20],
which is a novel research VM developed by Oracle. The ex-
ecution environment of Jikes is fairly modular and provides
different JIT compilers, and its Memory Manager Toolkit
(MMTk) allows to integrate new garbage collection algo-
rithms. However, there is no explicit concept of modules in
the VM. Maxine provides modularity using the concepts of
schemes and snippets. A scheme encapsulates the different
subsystems, e.g., there is a scheme that specifies how fields
are accessed. The code for the field access is then compiled
to a snippet when the VM is started, and the JIT compiler
uses the snippet when compiling field access bytecodes.
Although this design disentangles different VM subsystems
quite well, there is still no extensibility at run time and no
fine-grained modularity.

The Open Runtime Platform (ORP) [6] developed by
Intel is a research VM targeted not only towards multiple
architectures, but also towards multiple languages. It can
run either Java or Common Language Infrastructure (CLI)
applications by applying the compile-only approach. It is
available as open source from [23], but this version seems
to be quite old and does not reflect the current development
version of Intel. ORP offers a flexible compiler interface, and
different JIT compilers were developed. An example is the
StarJIT compiler [1].

The Dynamic Runtime Layer Virtual Machine (DRLVM)
of Apache Harmony [3] is a Java VM written in C++. Mod-
ularity is a key feature of the VM: it is separated in a small
number of coarse-grained modules with well-defined inter-
faces. Modules are compiled to separate libraries that are
dynamically linked at run time. However, inter-module calls
cannot be optimized at run time because the VM is written
in C++. There is no fine-grained modularity.

The Java HotSpotTM VM of Oracle [22] is a production-
quality open-source Java VM written in C++. The source
code base contains two interpreters, two JIT compilers, and
multiple different garbage collection algorithms (some of
them being parallel or concurrent). However, these parts
are not separated into modules, so it is sometimes difficult
to identify the boundaries of and interfaces between these
subsystems in the source code. Only the compiler interface,
which separates the client compiler [19] and the server com-
piler [25] from the rest of the VM, is explicitly defined.
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6. Conclusions
Modularity for virtual machines is a promising research
area: our project has the ability to completely change the
way production-quality virtual machines are built. When
companies see that modular VMs are possible without
performance overhead, they will quickly adapt this paradigm
and use it when they design new VMs, or even retrofit their
existing VMs.

Our preliminary work extends the Maxine VM and serves
as a foundation towards addressing issues central to the three
mentioned case studies. By doing so, we expect to validate
our research hypotheses and in turn inspire further research
on modular VM architectures.
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