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Abstract
Emerging languages are often source-to-source compiled to
mainstream ones, which offer standardized, fine-tuned im-
plementations of non-functional concerns (NFCs)—including
persistence, security, transactions, and testing. Because these
NFCs are specified through metadata such as XML config-
uration files, compiling an emerging language to a main-
stream one does not include NFC implementations. Unable
to access the mainstream language’s NFC implementations,
emerging language programmers waste development effort
reimplementing NFCs. In this paper, we present a novel ap-
proach to reusing NFC implementations across languages
by automatically translating metadata. To add an NFC to an
emerging language program, the programmer declares meta-
data, which is then translated to reuse the specified NFC im-
plementation in the source-to-source compiled mainstream
target language program. By automatically translating meta-
data, our approach eliminates the need to reimplement NFCs
in the emerging language. As a validation, we add unit test-
ing and transparent persistence to X10 by reusing imple-
mentations of these NFCs in Java and C++, the X10 back-
end compilation targets. The reused persistence NFC is effi-
cient and scalable, making it possible to checkpoint and mi-
grate processes, as demonstrated through experiments with
third-party X10 programs. These results indicate that our
approach can effectively reuse NFC implementations across
languages, thus saving development effort.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques—Object-oriented
programming; D.2.5 [Software Engineering]: Testing and
Debugging—Testing tools; D.3.3 [Programming Languages]:
Language Constructs and Features—Frameworks; D.3.4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12 March 25–30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

[Programming Languages]: Processors—Code generation,
Interpreters, Parsing

General Terms Languages, Design, Experimentation

Keywords X10, Java, C++, source-to-source compilation,
metadata, enterprise applications, non-functional concerns,
transparent persistence, unit testing

1. Introduction
Modern industrial scale programming languages are much
more than a grammar and syntactic rules for the program-
mer to follow. Mainstream enterprise languages feature com-
plex and elaborate ecosystems of libraries and frameworks
that provide standard application building blocks. In par-
ticular, many NFCs, including persistence, security, trans-
actions, and testing, have been implemented in a standard-
ized and reusable fashion. These implementations have be-
come indispensable in modern enterprise applications. Ex-
amples abound: transparent persistence mechanisms facili-
tate data management; security frameworks provide access
control and encryption; unit testing frameworks provide ab-
stractions for implementing and executing unit tests, etc.

A common implementation strategy for emerging pro-
gramming languages is to compile them to some existing
language. Source-to-source compilation is more straightfor-
ward than providing a dedicated compiler backend. Addi-
tionally, because mainstream, commercial programming lan-
guages have been highly optimized, compiling an emerging
language to a mainstream one can produce efficient execu-
tion without an extensive optimization effort. The emerging
languages that compile to mainstream languages or bytecode
include Scala [20], JRuby [2], Jython [11], and X10 [23].

Because a source-to-source compiler can only directly
translate a program from the source language to the target
language, the NFC implementations in the target language
cannot be accessed from the source language. Provided as
libraries and frameworks in the target language, these im-
plementations can be accessed only by declaring appropriate
metadata for target language programs. As a result, emerg-
ing languages must reimplement all the NFCs from scratch.

In this paper, we present a novel approach to reusing NFC
implementations across languages. Rather than reimplement
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an NFC in an emerging language, the programmer can reuse
the existing target language implementations. The approach
enables the programmer to specify the needed NFC in a
source language program by declaring metadata. The de-
clared metadata is then automatically translated, so that the
needed NFC implementation in the target language can be
reused. If the source language compiles to multiple target
languages, the NFC implementations can be reused for each
target language.

The thesis behind our work is that it is possible to trans-
late metadata alongside compiling the source language. Our
approach requires expressive languages to specify metadata
and how metadata is to be translated. We show how our
Pattern Based Structural Expressions (PBSE) language [24]
and its pattern-based implementation mechanism can play
that role. For this work, we have extended PBSE to com-
pile across languages, as specified by declarative translation
strategies, to work with target language programs.

We validate the efficiency and expressiveness of our ap-
proach by adding unit testing and transparent persistence to
X10, an emerging language being developed at IBM Re-
search. The X10 compiler compiles an X10 program to
both Java and C++, but does not implement unit testing or
transparent persistence natively. We have reused well-known
Java and C++ implementations of these NFCs in third-party
X10 programs. X10 programmers express an NFC in PBSE,
which is automatically translated to the metadata required
for the NFC implementations in Java and C++.

Based on our results, this paper contributes:

• An approach to reusing NFC implementations of a main-
stream language from an emerging language program,
when the emerging language is compiled to the main-
stream language;

• Automated cross-language metadata translation—a novel
approach to translating metadata alongside compiling the
source language;

• Meta-metadata, a domain-specific language that declar-
atively expresses how one metadata format can be trans-
lated into another metadata format;

• The ability to unit test and transparently persist X10 pro-
grams for both Java and C++ backends, the X10 compi-
lation targets.

The remainder of this paper is structured as follows. Sec-
tion 2 defines the problem and sketches our solution. Section
3 details our design and implementation. Section 4 presents
our case studies. Section 5 compares this work to the exist-
ing state of the art, and Section 6 concludes.

2. Problem Definition and Solution Overview
The programming model for implementing NFCs is becom-
ing increasingly declarative. To add persistence, security,
or testing to an application, programmers rarely write code
in a mainstream programming language. Instead, program-

mers declare metadata such as XML files, Java 5 annota-
tions, or C/C++ pragmas. Such a metadata declaration con-
figures a standardized NFC implementation, provided as a li-
brary or a framework. Because NFCs are expressed declara-
tively through metadata, a source-to-source compiler cannot
emit code for their standardized implementations. Thus, to
reuse NFC implementations, metadata translation must sup-
plement source compilation.

To demonstrate the problem concretely, consider writing
an X10 program. The X10 compiler translates X10 programs
to either a C++ or Java backend. At some point, the program-
mer realizes that some portion of the program’s state must be
persisted. In other words, certain X10 object fields need to
be mapped to the columns of a database table, managed by a
Relational Database Management System (RDBMS). As the
program is being developed, the persistent state may change
with respect to both the included fields and their types. In
terms of persistent storage, it is desirable for the C++ and
Java backends to share the same RDBMS schema. This way,
the state persisted by the Java backend can be used by the
C++ backend and vice versa.

These requirements are quite common for modern soft-
ware applications, and mainstream programming languages
have well-defined solutions that satisfy these requirements.
In particular, object-relational mapping (ORM) systems
have been developed for all major languages, including Java
and C++. Commercial ORM systems implement the NFC
of transparent persistence. An ORM system persists lan-
guage objects to a relational database based on some declar-
ative metadata specification, so that the programmer does
not have to deal with tables, columns, and SQL. However,
because X10 is an emerging language, an ORM system has
not been developed for it. Developing an ORM system is
a challenging undertaking for any language, but for X10 it
would be even more complicated. Because X10 is compiled
to Java or C++, an X10 ORM solution must be compatible
with both of these compilation target languages.

The approach we present here addresses the problem de-
scribed above. For this example, our approach can add trans-
parent persistence to X10 programs by leveraging existing
ORM solutions developed for Java and C++. To demonstrate
how our approach works from the programmer’s perspective,
consider the X10 code snippet in Figure 1.

This figure depicts the X10 class FmmModel1 that contains
fields of different types. The number of fields and their
types are likely to change as the program is maintained
and evolved. Furthermore, our compilation target changes
repeatedly between the Java and C++ backends. We need to
persist the private fields of this class to a relational database
according to the following naming convention. The class and
the table share the same name, while the columns have the
same names as the fields, but capitalized.

1 http://squirrel.anu.edu.au/hg/public/x10-apps/file/

909f49fd95de/apps/fmm
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1 package model;
2

3 public class FmmModel {
4 private var modelId:Long;
5 private var energy:Double;
6 // ...
7 public def this(modelId : Long,
8 energy : Double, ..) {
9 this.modelId = modelId;

10 this.energy = energy;
11 // ...
12 }

13 // ...
14 }

Figure 1. An X10 class to be compiled to Java and C++.

1 Metadata PersistentModelClasses<Package p>
2 Class c in p

3 Where (public class *Model)
4 c += @table

5 @table.name = c.name

6 @table.class = c.name

7 Field<c>

8 Metadata Field<Class c>
9 Field f in c

10 Where (private var *:*)
11 f += @column

12 @column.name = (f.name=∼s/[a-z]/[A-Z]/)
13

14 PersistentModelClasses <"model">

Figure 2. Metadata to persist the X10 class in Figure 1.

To that end, the programmer writes a metadata specifi-
cation listed in Figure 2. We use Pattern-Based Structural
Expressions (PBSE), a new metadata format we introduced
recently [24] to improve the reusability, conciseness, and
maintainability of metadata programming. PBSE leverages
the correspondences between program constructs and meta-
data and uses queries on program structures to express how
metadata should be applied. In Figure 2, the PBSE specifica-
tion on the right expresses that all private fields of classes
with suffix “Model” should be persisted. This PBSE spec-
ification constitutes all the manually written code that the
programmer has to write to use our approach.

Based on a PBSE specification, our automated code gen-
eration tools produce all the necessary functionality to per-
sist the fields of class FmmModel in an RDBMS for the Java
and C++ backends. The automatically generated code arti-
facts include:

1. An X10 class called TP (short for TransparentPersistence)
that provides an X10 API for saving and restoring the
persistent fields. This class encapsulates all the low-level
database interaction functionality such as transactions
and can be further modified by expert programmers.

2. An XML deployment descriptor required by the Java
Data Objects (JDO) ORM system. The descriptor spec-
ifies how JDO should persist the fields of the Java class
emitted by the X10 compiler for the Java backend.

3. A C++ header file that contains #pragma declarations
required by ODB,2 an open source ORM system for C++
[3]. The pragma declarations specify how ODB should
persist the fields of the C++ class emitted by the X10
compiler for the C++ backend.

When either the Java or C++ target of the X10 program
executes, the fields in class FmmModel are transparently per-
sisted to a database table. Our approach is highly customiz-
able and configurable. Any Java or C++ ORM solution can
be used by changing a configuration file. The code generated
for the TP class can be easily modified by editing our code
generation template. Finally, if the X10 compiler were to be

2 Surprisingly, ODB is not an acronym.

extended for yet another cross language, our approach can
be easily extended to transparently persist the target code, as
long as the new target language has an ORM solution.

Our approach is intended to support the implementation
of major NFCs that include security, transactions, and test-
ing. Although we demonstrate our approach on the domain
of unit testing and transparent persistence, our approach is
general because of how NFCs are commonly implemented
in modern languages. In particular, declarative approaches
are common, with metadata being used as the preferred ex-
pression medium. Programmers use metadata, such as XML
files, Java 5 annotations, C/C++ pragmas, macros, or C# at-
tributes, to express how NFCs should be implemented in
their programs.

For example, a C# security framework can provide spe-
cial attributes for the programmer to restrict access to meth-
ods and fields. Once the programmer annotates the program,
the framework will furnish the specified security function-
ality, thus implementing this NFC. If an emerging language
compiled to C# needs to implement security, the methods
and fields of the emerging language can be marked with the
required access restrictions using any available metadata for-
mat. The resulting metadata specification in any format can
then be translated to C# attributes that work with the C# code
emitted by the source-to-source compiler.

3. Design and Implementation
In the following discussion, we first outline our requirements
and design space considered, and then detail our implemen-
tation, including PBSE enhancements, metadata translation,
and NFC API generation.

3.1 Design Objectives and General Approach
When designing our approach, we aimed at (1) providing
a declarative programming interface, (2) maintaining gen-
erality, and (3) not imposing an unreasonable performance
overhead. Specifically, our approach is designed to support
those existing implementations of NFCs that expose a high
level, declarative programming interface. Expressing ma-
jor NFCs—including persistence, transactions, security, and
testing—through metadata has become an industry practice.
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Figure 3. Generating Target Sources and Metadata formats.

Thus, our programming interface design goal was to en-
able the programmer to interface with our tool chain through
declarative metadata specifications. We aimed at making our
approach general with respect to both the NFCs it supports
and the kinds of languages to which it applies. Finally, our
approach should not impose an undue performance overhead
on the target programs.

To support these design goals, we had to choose an ap-
propriate metadata format that can be translated to the re-
quired metadata representations used by the existing NFC
implementations in mainstream languages. To that end, we
chose PBSE to support our goal of generality. PBSE is ex-
ternal to the source code and can work with any source lan-
guages, even if they do not provide built-in metadata con-
structs such as X10 annotations [19]. To fulfill this goal we
could also have used XML files, but we found that XML
is not a suitable format as a programmer written medium.
PBSE provides conciseness, reusability, and maintainability
advantages [24]. By capturing the naming correspondences
between programming constructs and their metadata, PBSE
is more expressive than mainstream metadata formats.

Because our approach hinges on the ability to effectively
translate PBSE to existing metadata formats used with exist-
ing mainstream languages (e.g., annotations, pragmas, XML
deployment descriptors, macros, etc.), we considered sev-
eral choices with respect to designing our metadata trans-
lation infrastructure. Some emerging languages provide so-
phisticated facilities for systematically extending the core
compiler. For example, the X10 compiler can be extended
through plug-ins, but not all the emerging languages can
be similarly extended. Striving for generality, we made our
metadata translation infrastructure external to the source-to-
source compiler, and ensured that the translation strategies
are adaptable, customizable, and configurable.

In terms of the programming model, our approach re-
quires that the source-to-source compilation mappings be-
tween the emerging and target languages be made avail-

able. NFC implementers (e.g., an ORM or a unit testing
framework vendor) can then use these mappings to derive a
simple declarative specification that expresses how to com-
pile PBSE across languages. To that end, our approach pro-
vides a simple declarative Domain-Specific Language (DSL)
that is derived from PBSE. The resulting PBSE mapping
specification parameterizes a generator that synthesizes a
PBSE cross-translator (Section 3.3). Finally, the emerging
language programmers only need to declare PBSE to add
any NFC implementation to their programs.

To increase flexibility without jeopardizing performance,
we also automatically generate a special target language API
for each supported NFC implementation rather than provide
a pre-defined library. Automatically generating the API also
makes it possible to introduce workarounds whenever an
NFC implementation cannot be straightforwardly added to
the target language programs. For example, Scala functional
lists and maps translate to Java classes that cannot be directly
persisted using mainstream Java persistence frameworks in-
terfaces. They are translated to Java classes that do not im-
plement the java.util.List and java.util.Map. Our code
generator synthesizes mirror data structures compatible with
Java persistence and copies the data back and forth during
the saving and restoring operations.

3.2 Implementation Details
Figure 3 gives an overview of our approach. To add an imple-
mentation of an NFC to a program in the source language,
the programmer writes a PBSE specification that refers to
that program’s constructs. For each concern to be added, the
programmer needs to provide a separate PBSE specification.
For example, if a program needs both persistence and se-
curity, the program must specify separate PBSE specifica-
tions for each of these two NFCs. PBSEs are then trans-
lated from the source to the target language specifications.
Our approach supports PBSE for multiple languages, includ-
ing Java, C++, X10, Scala, and C#. Then, the PBSE speci-
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fications in the target language are translated to the meta-
data format required by the NFC’s target language imple-
mentations. Each implementation may use a different meta-
data format and sometimes use multiple formats simultane-
ously. For example, the Java Data Objects persistence system
takes as input both XML files and Java 5 annotations. At the
same time, the Security Annotation Framework (SAF)[15]
requires that the programmer use Java 5 annotations. Our
approach can translate a PBSE specification to all the major
metadata formats, including XML files, annotations, prag-
mas, and macros. Once the translated metadata is added to
the program emitted by the source-to-source compiler, the
resulting executable artifact implements both functional and
non-functional concerns. The functional concerns are imple-
mented by translating the source program to the target one,
while the NFCs are implemented by adding the appropriate
metadata to the target program.

This process must be repeated for each of the supported
source-to-source compilation targets. For example, the X10
compiler emits both Java and C++. Thus, if an NFC is
needed in both backends, the appropriate metadata has to be
generated for each of them. Because language ecosystems
tend to implement the same NFC distinctly, the NFC imple-
mentations in each compiled language may require different
metadata formats and content. For example, for the persis-
tence NFC, a Java ORM may require XML configuration
files, while a C++ ORM may require C/C++ pragmas.

3.3 Metadata Translation
Our design is based on the assumption that if a source lan-
guage can be source-to-source compiled to a target language,
then the metadata with which a source language program is
tagged can be translated to tag the resulting target language
program. Figure 4 demonstrates this assumption pictorially.
We assume that (1) the program’s source-to-source compiler
is not aware of metadata, and (2) the metadata’s compiler
can be derived from the program’s source-to-source com-
piler. This entails that metadata is external to the source lan-
guage. If it were part of the language, such as in the case
of Java 5 annotations, the program’s source-to-source com-
piler would have to compile the metadata as well. If the for-
mat between the source and target metadata is not going to
change (e.g., if it were an XML file for the source language

Metadata
Source Language

Program 
in Source Language

Metadata
Target Language

1..n

Program 
in Target Language

1..n

<<tag>>

<<tag>>

Program 
Source-to-source 

Compile

Metadata
Cross-language 

Compile

Figure 4. Translating Metadata formats.

program, it will also be an XML file for the resulting target
language program), then the metadata’s compiler must mir-
ror the program’s source-to source compiler transformations
for the program’s constructs tagged with metadata.

In our approach, PBSE specifications can be translated
across languages. In particular, a PBSE specification for X10
is translated to PBSE specifications for Java and C++, when-
ever an X10 program is compiled to these languages. We
call this translation process cross-language metadata trans-
formation. In addition, PBSE specifications can be translated
to mainstream metadata formats, including XML, Java 5 an-
notations as well as C/C++ pragmas and macros.

Metadata translation framework Since metadata transla-
tion is the cornerstone of our approach, one of the key design
goals we pursued was to facilitate cross-language metadata
transformation. Our solution is two-pronged: metadata trans-
lation is specified declaratively and implemented using a
generative approach. That is, to express metadata translation
rules, our approach features a declarative domain-specific
language. In addition, we provide a PBSE translation frame-
work that transforms a PBSE specification into an abstract
syntax tree that can be operated on using visitors. Our code
generator takes declarative metadata translation rules and
synthesizes the translation visitors.

PBSE meta-metadata Within the same language, differ-
ent metadata formats for a given NFC tag the same pro-
gram constructs. Across languages, the tagged source lan-
guage constructs map to their source-to-source compilation
targets. Because NFC metadata tags structural program con-
structs (i.e., classes, methods, and fields), one can express
declaratively how metadata is to be translated both within
and across languages.

To that end, our approach extends PBSE with meta-
metadata—meta constructs that codify differences between
metadata formats. In Figure 5, we show meta-metadata for
translating between PBSE for X10 (Figure 2) and Java (Fig-
ure 20). Because metadata applies to structural program con-
structs (i.e., classes, methods, and fields), meta-metadata
needs to express how these structural constructs map to each
other between the source and target languages.3

The meta-metadata in Figure 6 expresses how to translate
from PBSE to XML for the JDO ORM. Pattern matching
expresses how different metadata variables, depicted as Java
5 annotations, should map to the corresponding XML tags.

Generative visitors Based on the meta-metadata specifi-
cation in Figure 6, our code generator synthesizes a vis-
itor class in shown Figure 7. Because it would not be
pragmatic to generate all code from scratch, the generated
PBSEVisitorJavaToXML class references several classes pro-
vided as a library. In particular, it extends the PBSEVisitor-

3 Meta-metadata specifications are to be crafted by language compiler
writers—intimately familiar with how their source language translates into
the target language—who can easily declare the mapping.
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1 MetaMetadata PBSEX10toJava<PBSE pbse>
2 Where (Class c in pbse)
3 Where (public struct *)
4 "struct" -> "class"
5 Where (Field f in pbse)
6 Where (private * ${temp1}:${temp2})
7 ${temp1} <-> ${temp2}
8 Where (private * *:*)
9 ":" -> "\s"

10 Where (private val *:*)
11 "val" -> "final"
12 Where (private var *:*)
13 "var" -> ""
14 Where (Method m in pbse)
15 Where (* def *:${returntype})
16 "def" -> ${returntype}
17 ...

Figure 5. Meta-metadata for translating PBSE from X10 to
Java.

1 MetaMetadata PBSEJavaToXML<PBSE pbse>
2 Where (Class c in pbse)
3 @Table -> "<class/>"
4 @Table.name -> "<class name=" + c.name + "/>"
5 @Table.class -> "<class table=" + c.table + "/>"
6 Where (Field f in pbse)
7 @Field -> "<field/>"
8 @Field.name -> "<field name=" + f.name + "/>"
9 @Column -> "<column/>"

10 @Column.name -> "<column name==" + f.column + "/>"
11 ...

Figure 6. Meta-metadata for translating PBSE for Java to
XML used by the JDO system.

1 class PBSEVisitorJavaToXML extends PBSEVisitorAdater {
2 void visit(PBSEElementClass elem){
3 if(elem.tagWith("@Table")){
4 out.write(JavaToXML.
5 translate("@Table","<class/>"));
6 } else
7 if(elem.tagWith("@Table.name")){
8 out.write(JavaToXML.translate
9 ("@Table.name","<class table=${value}/>"));

10 } else
11 if(elem.tagWith("@Class.table")){
12 out.write(JavaToXML.translate
13 ("@Table.class","<class name=${value}/>"));
14 }}
15

16 void visit(PBSEElementField elem){ /∗..∗/ }
17 // other visit methods go here.
18 }}

Figure 7. A generated visitor.

Adaptor class and manipulates various PBSE AST element
classes such as PBSEElementClass and PBSEElementField.
It also uses a utility class JavaToXML that encapsulates low-
level translation functionality. The XML in Figure 8 was
produced by one of the generated visitors.

Figure 9 presents a UML diagram of the visitors used in
the examples discussed throughout the paper. All the core
pieces of our translation framework have been implemented.
Some of the code generation functionality is provided by
code templates. Future work will refine our code generation
infrastructure and explore whether some library pieces can
be generated from scratch instead.

Generating client APIs Since not all NFC functionality
can be expressed via metadata, some client API must sup-

1 <jdo><package name="ssca1">
2 <class name="SSCA1Model"
3 table="SSCA1"
4 identity-type="application">
5 <field name="modelId" persistence-modifier=
6 "persistent" primary-key="true">
7 <column name="MODELID"/>
8 </field>
9 <field name="winningScore"

10 persistence-modifier="persistent">
11 <column name="WINNINGSCORE"/>
12 </field>
13 <field name="shorterLast"
14 persistence-modifier="persistent">
15 <column name="SHORTERLAST"/>
16 </field>
17 <field name="longerLast"
18 persistence-modifier="persistent">
19 <column name="LONGERLAST"/>
20 </field>
21 <field name="longOffset"
22 persistence-modifier="persistent">
23 <column name="LONGOFFSET"/>
24 </field>
25 ...
26 </class></package></jdo>

Figure 8. Translated XML metadata for the JDO system.
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PBSEVisitorX10toJava

PBSEVisitorX10toCpp

PBSEVisitorJavatoXML

PBSEVisitorJavatoAnnotation

+ visit(PBSEElementPackage elem)
+ visit(PBSEElementClass elem)
+ visit(PBSEElementField elem)
+ visit(PBSEElementMethod elem)
+ visit(PBSEElementMetaVariable elem)
     ...

PBSEElementPackage

<<interface>>
PBSEElement

+ accept(PBSEVisitor visitor)

PBSEElementClass

PBSEElementField

PBSEElementMetaVariable

PBSEElementMethod

...

...

Figure 9. PBSE visitors translating metadata format.

plement the automatically translated metadata process de-
scribed above. To that end, our infrastructure features NFC-
specific client APIs. These APIs are invoked to access cer-
tain NFC functionalities explicitly. For example, persistent
objects may need to be stored and retrieved from stable
storage within a transactional context. In lieu of a transac-
tion framework based on metadata, one may provide a code
template to easily add transactional context to the persis-
tence operations performed on any object. Figure 10 shows
our code templates that can be used to add transactional
support to persisting objects in Java and C++, shown in
the upper and lower parts of the figure, respectively. The
code templates are parameterized with the needed program
construct names. The parameters are distinguished by their
names, with the $ sign prefixing each parameter. For exam-
ple, \$[Class.name] expresses that this parameter should be
substituted with the value of this variable in the configura-
tion file, composed of key-value pairs. The $iterator[..]
metavariable iterates over all fields or methods of a class.
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1 $[Class.name] getPersistentObj ($[Class.name] param) {
2 PersistenceManager pm = getPersistenceManager();
3 $[Class.name] pobj = getObj(pm,"$[Class.name].class",param);
4 Transaction tx = pm.currentTransaction();
5 tx.begin();
6 ...
7 if (pobj == null) {
8 pobj = new $[Class.name]($iterator
9 [param.$[Class.field.name]]);

10 pm.makePersistent(pobj);
11 }
12 tx.commit();
13 return pobj;
14 }

1 ref<$[Class.name]> getPersistentObj (ref<$[Class.name]> param) {
2 auto_ptr < database > db (create_database (argc, argv));
3 $[Class.name]* pobj = param._val;
4 transaction t(db->begin());
5 ...
6 if (checkNull(pobj)) {
7 db->persist(*pobj);
8 }
9 t.commit();

10 return param;
11 }

Figure 10. The code template for generating database trans-
action API for the Java (top) and C++ (bottom) backend.

3.4 Discussion
Our approach leverages the prevalence of declarative ab-
stractions for expressing NFCs in modern enterprise appli-
cations. In particular, the programmer expresses these con-
cerns by declaring metadata. The expressed functionality is
provided by libraries and frameworks, which heavily rely
on code generation and transformation both at source or
bytecode levels. For example, a specialized compiler or a
bytecode enhancer can add persistence to an application as
specified by a metadata declaration. Due to their concise-
ness and simplicity, declarative specifications are particu-
larly amenable to automatic transformation, a property ex-
ploited by our approach.

Our approach would be inapplicable if NFCs were im-
plemented through custom coding in mainstream languages.
In fact, when reusing unit testing functionality, our approach
addresses the issue of reusing test drivers and harnesses, fa-
cilities that execute programmer-written unit tests and report
the results. Programmers still have to write their unit tests in
X10, albeit using a provided assertion library.

Declarative approaches are widely used to implement the
majority of NFCs. One reason for this is because Aspect-
oriented programming has entered the mainstream of indus-
trial software development. Another reason is because meta-
data has been integrated into programming languages, such
as Java 5 annotations and C# attributes. As declarative ap-
proaches become even more dominant, more functionality
will become reusable through approaches similar to ours.

When applied to the same codebase, NFC implementa-
tions may harmfully interfere with each other. Although our
approach does not change how NFCs are implemented, but
only how they are expressed, we plan to explore whether
PBSE be extended with constructs that specify the order in

which NFCs should be applied. When multiple NFCs in-
fluence the same program element, ensuring a specific or-
der can help avoid some harmful interferences. Notice that
mainstream metadata formats provide no such constructs.

So far, declarative abstractions have been used primarily
to express NFCs. However, if portions of core functionality
become expressible declaratively, the potential benefits of
our approach will also increase. If metadata can be used to
express certain core functionalities, metadata translation can
supplement or, in some instances, replace compilation.

4. Case Studies
To validate our approach, we applied it to reuse four NFC
implementations across two domains and two languages. We
reused the JUnit and CppUnit testing frameworks, thereby
adding unit testing capabilities to X10. We also reused Java
Data Objects (JDO) and ODB, Java and C++ ORM systems,
thereby adding transparent persistence to X10 programs. In
the following description, we detail our experiences with
reusing these NFC implementations in X10.

4.1 Unit Testing X10 Programs
As is true for many emerging languages, no unit testing
framework has yet been developed for X10. Although unit
testing is an NFC, it is an integral part of widely used soft-
ware development methodologies such as test-driven devel-
opment (TDD) and extreme programming (XP). As a result,
programmers following these methodologies in other lan-
guages are likely to miss unit testing support when program-
ming in X10.

Although testing has not been explicitly identified as an
NFC in the literature, unit testing is indeed an NFC. Unit
tests help ensure that a program does what it is expected
to do, but they do not affect the program’s core function-
ality. Adding unit testing to a program does not change the
program’s semantics. Furthermore, unit testing frameworks
heavily rely on metadata used by the programmer to declare
how a framework should run unit tests.

Consider the X10 class Integrate in Figure 11 that uses
Gaussian quadrature to numerically integrate between two
input parameters—the left and the right values. This class
comes from a standard IBM X10 benchmark.4 An area is
computed by integrating its partial parts. For example, when
computing the area with the start of a and the end of b,∫ b

a
f(x)dx computes partial results through integration. The

application then sums up the partial integration results—∫ b

a
f(x)dx = b−a

2

∫ 1

−1
f( b−a

2 x+ b+a
2 )dx.

Gaussian quadrature is non-trivial to implement correctly,
but this implementation is even more complex as it involves
parallel processing. X10 async and finish constructs spawn
and join parallel tasks, respectively. Even a testing skeptic
would want to carefully verify a method whose logic is that

4 http://x10.svn.sourceforge.net/viewvc/x10/benchmarks/

trunk/microbenchmarks/Integrate/
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1 public class Integrate {
2 static def computeArea(left:double, right:double) {
3 return recEval(left, (left*left + 1.0) * left,
4 right, (right*right + 1.0) * right, 0);
5 }
6

7 static def recEval(l:double,.. r:double,..) {
8 // ..
9 finish {

10 async { expr1 = recEval(c, fc, r, fr, ar); };
11 expr2 = recEval(l, fl, c, fc, al);
12 } return expr1 + expr2;
13 }}

Figure 11. An X10 Integrate class to be unit tested.

complex. The irony of the situation is that both of the X10
compilation targets—Java and C++—have mature unit test-
ing frameworks developed for them (e.g., JUnit and CppUnit
[8]). The programmer should be able to write unit tests in
an X10 program, and depending on the compilation target,
compile these tests to be run by JUnit or CppUnit.

Our approach makes it possible to reuse the implementa-
tions of this NFC. To implement and run unit tests in X10,
the programmer first implements the needed unit tests in an
X10 class. For example, the unit tests for class Integrate in
Figure 11 is shown in Figure 12.

1 public class IntegrateTest {
2 var parm : double;
3 var expt : double;
4 var integrate : Integrate;
5

6 def init() {integrate = new Integrate();}
7

8 def finish() {integrate = null;}
9

10 def this(parm : double, expt : double) {
11 this.parm = parm;
12 this.expt = expt;
13 }
14

15 public def testComputeArea() {
16 val result = integrate.computeArea(0, this.parm);
17 TUnit.assertEquals(this.expt, result);
18 }
19

20 public static def data() {
21 val parm = new Array[double](0..1*0..2);
22 parm(0, 0) = 2;
23 parm(0, 1) = 6.000000262757339;
24 parm(1, 0) = 4;
25 parm(1, 1) = 72.000000629253464;
26 parm(2, 0) = 6;
27 parm(2, 1) = 342.000001284044629;
28 return parm;
29 }}

Figure 12. The unit testing class for the X10 Integrate class.

This class implements a typical test harness required
by major unit testing frameworks. In particular, methods
init and finish initialize and cleanup the test data, respec-
tively. Method testComputeArea tests method computeArea
in class Integrate by asserting that the method’s result is
what is expected. Method data provides the parameters for
different instantiations of class IntegrateTest as a multi-
dimensional array, in which each row contains a parameter/
expected value pair, located in first and second columns,
respectively.

To translate this code to work with unit testing imple-
mentations in Java and C++ as shown in Figure 13, the pro-
grammer also has to declare a simple metadata specification
shown in Figure 14. This specification establishes a cod-
ing convention as the one used in class IntegrateTest. The
main advantage of PBSE as compared to annotations is that
this metadata specification can be reused with all the classes
ending with suffix “Test” in a given package.

IntegrateTest

param 1..n: Type

testComputeArea(): void
data(): Array[T]

Original X10 Class

IntegrateTest

param 1..n : Type

@Parameters
+data():java.util.Collection<Object[]>

+testComputeArea(): void
+data(): x10.array.Array<T>

@RunWith(Parameterized.class)
IntegrateTestDerived

IntegrateTest

param 1 .. n: Type

IntegrateTestDerived

+testComputeArea(): void

+testComputeArea(): void
+data(): x10aux::ref<x10::array::Array<T> >

PrameterProvider

parms: x10aux::ref<x10::array::Array<T> >

+addParms(parms): void
+getParms():x10aux::ref<x10::array::Array<T> >

Programmer’s written code 
that source-to-source 
compiler compiles.

Tool auto-generated code
that is guided by PBSE.

Source-to-source compiled to C++ Source-to-source compiled to Java

<<use>>

Figure 13. The class diagram for unit testing X10 programs
with JUnit and CppUnit.

1 Metadata UnitTest<Package p>
2 Class c in p
3 Where(public class *Test)
4 c += @RunWith
5 @RunWith.value = "Parameterized"
6 TestMethod<c>
7 Metadata TestMethod<Class c>
8 Method m in c
9 Where (public def init ())

10 m += @Before
11 Where (public def finish ())
12 m += @After
13 Where (public def test* ())
14 m += @Test
15 Where (public static def data ())
16 m += @Parameters
17 UnitTest<"integrate">

Figure 14. The PBSE for unit testing the X10 program.
Given this PBSE specification as input, our approach then

generates the Java or C++ code required to run the translated
test harness of the unit testing framework at hand. A key ad-
vantage of our approach is that it addresses the incongruity
of features in different NFC implementations through code
generation. While parameterized unit tests are supported by
JUnit in the form of the @RunWith(value=Parameterized.
class) annotation, CppUnit has no corresponding fea-
ture to implement this functionality (the left part of Fig-
ure 13). In addition, JUnit requires that the method pro-
viding the parameters for unit test instantiations return
java.util.Collection (the right part of Figure 13). Be-
cause x10.array.Array, the return type of the emitted Java
method data, does not extend java.util.Collection, the
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auxiliary code generator uses the the Adaptor design pat-
tern. To ensure that the data methods return the required
java.util.Collection, an adaptor method wraps the re-
turned type to an instance of java.util.ArrayList, thus
satisfying this JUnit convention (Figure 15).

Junit
TestSuite

@RunWith(
Parameterized.class)
IntegrateTestDerived IntegrateTest

testComputeArea()

@Parameters data()

IntegrateTestDrive(..)

data()

Parameterized
Junit
Core

runClasses()

R
u

n
n

er

Reused Part Tool Auto-generated Part

super(..)

Figure 15. The sequence diagram for unit testing X10 pro-
grams with JUnit.

Supporting parameterized unit test execution in CppUnit
requires more elaborate code generation. In particular, Cp-
pUnit features special macros to designate test classes and
methods. We argue that such C++ macros serve as predeces-
sors of modern metadata formats such as XML files and an-
notations. The defining characteristic of enterprise metadata
is the ability to express functionality declaratively, describ-
ing what needs to take place rather than how it should be
accomplished. In that regard, C/C++ macros are commonly
used to define a DSL for expressing functionality at a higher
abstraction level.

The macros in Figure 16 play the role of metadata that
specifies how the CppUnit test harness should execute the
tests defined in class IntegrateTest. To simplify the re-
quired metadata translation, we extended the built-in set of
CppUnit macros to support parameterized unit tests.5 The
CppUnit macros express declarative metadata directives to
initialize the framework, instantiate parameterized unit test
classes, add them to a test harness, and run the added test
methods (Figure 17).

1 void cppUnitMainTestSuite() {
2 INIT_TEST();
3 INIT_PARAMETER(ParameterProvider);
4 PARM_ITERATOR(SIZE()) {
5 ADD_TEST(IntegrateTest, /∗ a test class. ∗/
6 testComputeArea); /∗ a test method. ∗/
7 }
8 RUN_TEST();
9 }

Figure 16. Extended macros based on CppUnit.

Standard implementations of NFCs in richer languages
expectedly provide more features and capabilities. In the

5 These macros are regenerated from scratch for every PBSE translation.

CppUnit
TestSuite IntegrateTestDerived IntegrateTest

Parameter
Provider

INIT_PARAMETER()

testComputeArea()

getParms()

testComputeArea()

CppUnit::xUi::
TestRunner

ADD_TEST()

Reused Part Tool Auto-generated Part

INIT_TEST()

addParms()

RUN_TEST()

Figure 17. The sequence diagram for unit testing X10 pro-
grams with CppUnit.

case of unit testing, JUnit has built-in support for parameter-
ized unit testing. As a result, adapting the X10 Java backend
to work with JUnit is more straightforward than adapting
the C++ backend for CppUnit. In particular, the @RunWith
annotation is natively supported by JUnit. Thus, to annotate
the Java methods returning the parameterized test parame-
ters with @RunWith, they simply need to be adapted to return
java.util.Collection, as discussed above.

4.2 Transparently Persisting X10 Programs
Next we describe how we applied our approach to enhance
X10 programs with transparent persistence capabilities.

1 public class Fmm3d{
2 def getDirectEnergy() : Double{
3 val model = new FmmModel();
4 val directEnergy = finish (SumReducer()){
5 ateach (p1 in locallyEssentialTrees) {
6 var thisPlaceEnergy : Double = 0.0;
7 for ([x1,y1,z1] in lowestLevelBoxes.dist(here)){
8 val box1 = lowestLevelBoxes(x1,y1,z1) as FmmLeafBox;
9 for ([atomIndex1] in 0..(box1.atoms.size()-1)){

10 for (p in uList){
11 for ([otherBoxAtomIndex] in 0..(boxAtoms.size-1)){
12 thisPlaceEnergy +=
13 atom1.charge * atom2Packed.charge /
14 atom1.centre.distance(atom2Packed.centre);
15 }}}
16 model.setModelId(id(box1.x,box1.y,box1.z));
17 model.setEnergy(thisPlaceEnergy);
18 // other setter methods go here.
19 TP.setFmmModelObj(model);
20 }
21 offer thisPlaceEnergy;
22 }};
23 return directEnergy;
24 }}

Figure 18. A persisting class Fmm3d (simplified version) for
the X10 FmmModel class in Figure 1.

Both compilation targets of X10—Java and C++—use
ORM engines to implement transparent persistence. Our
approach makes it possible to reuse these implementations,
thereby making X10 programs transparently persistent.

Figure 18 shows an X10 class Fmm3d [17] that implements
the Fast Multipole Method for electrostatic calculations with
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1 <jdo>
2 <package name="au.edu.anu.mm">
3 <class name="FmmModel"
4 table="Fmm"
5 identity-type="application">
6 <field name="modelId" persistence-modifier=
7 "persistent" primary-key="true">
8 <column name="MODELID"/>
9 </field>

10 <field name="energy" persistence-modifier=
11 "persistent">
12 <column name="ENERGY"/>
13 </field>
14 ...
15 </class>
16 </package>
17 </jdo>

Figure 19. Translated XML for the JDO system.

1 Metadata PersistentJava<Package p>
2 Class c in p
3 Where (public class *Model)
4 c += @Table
5 @Table.name = (c.name=∼s/Model$//)
6 Column<c>
7 Metadata Column<Class c>
8 Field f in c
9 Where (private * *)

10 Method m in c
11 Where((get+(f.name=∼s/ˆ[a-z]/[A-Z]/))==m.name)
12 m += @Column
13 @Column.name = (f.name=∼s/[a-z]/[A-Z]/)
14 Where (public * *Id ())
15 @Column.primaryKey = true
16 m += @Id
17 PersistentJava <"ssca1">

Figure 20. PBSE for transparent persistence in Java.
1 #ifndef ODB_MAPPING_H
2 #define ODB_MAPPING_H
3

4 #include <x10/lang/Runtime.h>
5 #include <x10aux/bootstrap.h>
6 #include <x10/lang/Runtime.h>
7 #include <x10aux/bootstrap.h>
8 #include "FmmModel.h"
9

10 #pragma db object(FmmModel) table("Fmm")
11

12 #pragma db member(FmmModel::FMGL(modelId)) id
13 column("MODELID")
14

15 #pragma db member(FmmModel::FMGL(energy))
16 column("ENERGY")
17 ...
18 #endif

Figure 21. Translated C++ pragmas for the ODB system.

1 Metadata PersistentCpp<Package p>
2 Class c in p
3 Where(class *Model)
4 c += #pragma
5 #pragma.object = c.name
6 #pragma.table = (c.name=∼s/Model$//)
7 Field<c>
8 Metadata Field<Class c>
9 Field f in c

10 Where (* *)
11 Method m in c
12 Where((get+(f.name=∼s/ˆ[a-z]/[A-Z]/))==m.name)
13 f += #pragma
14 #pragma.member = c.name + "::FMGL(" + f.name + ")"
15 #pragma.column = (f.name=∼s/[a-z]/[A-Z]/)
16 Where (* *Id ())
17 #pragma.id = true
18 PersistentCpp<"model">

Figure 22. PBSE for transparent persistence in C++.

analytic expansions. The implementation is real and current:
it follows the strategy outlined by White and Head-Gordon
[25] which was recently enhanced by Lashuk et al. [14]. The
getDirectEnergy method sums the value of direct energy—
directEnergy—on line 4 for all pairs of atoms. This opera-
tion requires only that atoms be already assigned to boxes,
and can be executed in parallel with the other steps of the
algorithm.

The ability to transparently persist a program’s data can
be used in multiple scenarios. For class Fmm3d, a program-
mer may want to optimize the execution by keeping a persis-
tent cache of known values of thisPlaceEnergy. The cache
must be persistent if different processes invoking the algo-
rithm are to take advantage of it. The required functionality
can be added to the program by using the PBSE specifica-
tion from the motivating example (Figure 2). Based on this
specification, our approach generates all the required meta-
data for the ORM system at hand, for either the Java or C++
backend, as well as X10 API through which the programmer
can explicitly save and retrieve the persisted state. The gen-
erated X10 Application Programming Interface (API) that
provides various platform-independent convenience meth-
ods for interfacing with the platform-specific implementa-
tions. The API is represented as a single X10 class, TP (short
for TransparentPersistence). For example, to restart a pro-
gram from a saved state, the X10 programmer can use the

provided TP API class as follows:
val pobj = TP.getModel().getModelObj(latestCheckID).
Therefore, our approach shields the programmer from the
idiosyncrasies of platform-specific NFC implementations.

In this case study, we reused two mainstream, commercial
ORM systems for Java and C++, JDO and ODB. While JDO
uses XML files or Java annotations as its metadata format,
ODB uses C/C++ pragmas. Nevertheless, our approach was
able to seamlessly support these disparate metadata formats.
Furthermore, the metadata specifications for both Java and
C++ backends were automatically generated from the same
PBSE X10 specification.

Figure 19 depicts a segment of the generated JDO XML
deployment descriptor. To generate this deployment descrip-
tor, our approach uses the PBSE depicted in Figure 20. Pa-
rameterized with this descriptor, the JDO runtime can trans-
parently persist the specified X10 fields when the program
is compiled to Java. Figure 21 depicts a segment of the gen-
erated ODB pragma definitions. To generate these pragmas,
our approach uses the PBSE depicted in Figure 22. Parame-
terized with a file containing these pragmas, the ODB com-
piler generates the functionality required to transparently
persist the specified X10 fields when the program is com-
piled to C++. Both JDO and ODB can create a relational
database table to store the transparently persistent state. Fur-
thermore, both backends share the same database schema. In
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other words, if an X10 program is compiled to both Java and
C++ backends, both of them will share a database schema
and thus can interoperate with respect to their persistent
state. If the Java backend persists its state, it can then be
read by the C++ backend and vice versa.

5. Related Work
Our approach to reusing NFCs across languages is rooted
in metadata translation, expressing NFCs via AOP, and code
generation—an extensive body of related work. Thus, next
we discuss only the closely related state of the art.

Metadata Translation Similarly to our approach, several
prior approaches also leverage metadata translation, albeit
not across languages. Godby et al. [6] translate among the
common metadata schemas by using syntactic transforma-
tion and semantic mapping to retrieve and create heteroge-
neous databases in the digital library’s web service. Mining-
Mart [18] presents a metadata compiler for preprocessing
their metadata M4 to generate SQL code while providing
high-level query descriptions for very large databases.

Ruotsalo et al. [22] transform across different metadata
formats to achieve knowledge representation compatibil-
ity in different domains by means of domain knowledge.
Hernández et al. [9] translate their custom metadata specifi-
cations for database mapping and queries.

Popa et al. [21] generate a set of logical mappings be-
tween source and target metadata formats, as well as trans-
lation queries while preserving semantic relationships and
consistent translations, focusing on capturing the relation-
ship between data/metadata and metadata/data translations.

These metadata translation approaches are quite power-
ful and can avoid inconsistencies when translating metadata.
Our approach follows similar design principles but focuses
on cross-language metadata and provides meta-metadata to
encode the translation rules. The objective of our approach
is to bring the power of metadata translation to emerging
source-to-source compiled languages, enabling the program-
mer to reuse complex NFC implementations declaratively.

Reusing Non-Functional Concerns with AOP Aspect-
oriented Programming [12] is the foremost programming
discipline for implementing NFCs. It has been debated
which NFCs can be treated separately [13]. However, our
approach reuses only those NFCs that have already been
expressed separately in target languages. Even though our
approach does not use any mainstream AOP tools, it follows
the general AOP design philosophy of treating cross-cutting
concerns separately and modularly.

AOP tools, including AspectJ 5 [1] and JBoss AOP [10],
can introduce metadata to programs (e.g., declare annot-
ation and annotation introduction), thereby implement-
ing NFCs. However, these means of introducing metadata
are not easily reusable as they are not parameterizable. As
compared to AspectJ 5 and JBoss AOP, PBSE captures the

structural correspondences between program constructs and
metadata, and as a function of the program constructs can be
reused across multiple programs.

Code Generation Much of the effectiveness of our ap-
proach is due to its heavy reliance on automatic code gener-
ation. The benefits of this technique are well-known in dif-
ferent domains.

Milosavljević et al. [16] map Java classes to database
schemas by generating database code given an XML de-
scriptor. XML schema elements translate to Java classes,
fields, and methods. Our approach relies on standardized,
mainstream implementations of NFCs. Instead of generat-
ing database code directly, our approach generates metadata
that enables the target program to interface with platform-
specific ORM systems.

DART [7] is an automated testing technique that uses pro-
gram analysis to generate test harness code, test drivers, and
test input to dynamically analyze programs executing along
alternative program paths. Based on an external description,
the generated test harness systematically explores all feasi-
ble program paths by using path constraints. Our approach
to reusing unit testing is similar in employing an external
specification to describe tests. However, the X10 program-
mer still writes test harness code by hand. As future work,
we may explore whether our approach can be integrated with
a unit test generator such as JCrasher [4].

Devadithya et al. [5] add reflection to C++ by adding
metadata to the compiled C++ binaries. Metadata classes
are generated by parsing input C++ class and traversing the
resulting syntax trees. Our approach can be thought of as
a cross-platform reflection mechanism, albeit limited to the
program constructs interfacing with NFC implementations.
Although our reflective capabilities are not as powerful and
general, we support both Java and C++ as our source-to-
source compilation platforms.

6. Conclusions
In this paper, we have presented a novel approach to reusing
NFC implementations across languages. Our approach en-
ables emerging language programmers to take advantage of
such implementations in the target languages of a source-to-
source compilation process. As a specific application of our
approach, we added unit testing and transparent persistence
to X10 programs, thereby reusing four existing, mainstream,
NFCs implementations in Java and C++.

This paper contributes an approach to reusing NFCs im-
plemented in a mainstream language from an emerging lan-
guage program, when the emerging language is source-to-
source compiled to the mainstream one; automated cross-
language metadata translation—a novel approach to trans-
lating metadata alongside compiling the source language;
meta-metadata that declaratively specify mappings between
metadata formats; and the ability to unit test and transpar-
ently persist X10 programs for both Java and C++ backends.
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The ongoing quest to bridge programmer imagination
and computing capabilities motivates the continuous emer-
gence of new programming languages. When an emerging
language is source-to-source compiled to a mainstream one,
the NFC implementations of the mainstream language re-
main inaccessible to the emerging language programmers.
The presented novel approach reuses NFCs in mainstream
languages by automatically translating metadata alongside
compiling the source language. By eliminating the need to
reimplement NFCs in emerging languages, our approach
saves development effort.
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