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Abstract

Many dynamic analysis tools for programs written in man-

aged languages such as Java rely on bytecode instrumenta-

tion. Tool development is often tedious because of the use

of low-level bytecode manipulation libraries. While aspect-

oriented programming (AOP) offers high-level abstractions

to concisely express certain dynamic analyses, the join point

model of mainstream AOP languages such as AspectJ is not

well suited for many analysis tasks and the code generated

by weavers in support of certain language features incurs

high overhead. In this paper we introduce DiSL (domain-

specific language for instrumentation), a new language es-

pecially designed for dynamic program analysis. DiSL of-

fers an open join point model where any region of byte-

codes can be a shadow, synthetic local variables for effi-

cient data passing, efficient access to comprehensive static

and dynamic context information, and weave-time execu-

tion of user-defined static analysis code. We demonstrate the

benefits of DiSL with a case study, recasting an existing dy-

namic analysis tool originally implemented in AspectJ. We

show that the DiSL version offers better code coverage, in-

curs significantly less overhead, and eases the integration of

new analysis features that could not be expressed in AspectJ.

Categories and Subject Descriptors D.3.3 [Program-

ming Languages]: Language Constructs and Features—

Frameworks

General Terms Languages, Measurement, Performance

Keywords Bytecode instrumentation, dynamic program

analysis, aspect-oriented programming, JVM
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1. Introduction

Dynamic program analysis tools support numerous software

engineering tasks, including profiling, debugging, testing,

program comprehension, and reverse engineering. Despite

of the importance of dynamic analysis, prevailing techniques

for building dynamic analysis tools are based on low-level

abstractions that make tool development, maintenance, and

customization tedious, error-prone, and hence expensive.

For example, many dynamic analysis tools for the Java Vir-

tual Machine (JVM) rely on bytecode instrumentation, sup-

ported by a variety of bytecode engineering libraries that of-

fer low-level APIs resulting in verbose implementation code.

In an attempt to simplify the development of dy-

namic analysis tools, researchers have explored the use of

aspect-oriented programming (AOP) languages, such as As-

pectJ [16]. Examples of aspect-based dynamic analysis tools

are the DJProf profilers [20], the RacerAJ data-race detec-

tor [10], and the Senseo Eclipse plugin for augmenting static

source code views with dynamic information [21]. However,

as neither mainstream AOP languages nor the correspond-

ing weavers have been designed to meet the requirements

of dynamic program analysis, the success of using AOP for

dynamic analysis remains limited. For example, in AspectJ,

join points that are important for dynamic program analysis

(e.g., the execution of bytecodes or basic blocks) are miss-

ing, access to reflective dynamic join point information is

expensive, data passing between woven advice in local vari-

ables is not supported, and the mixing of low-level bytecode

instrumentation and high-level AOP code is not foreseen.

In this paper, we introduce DiSL, a new domain-specific

language for bytecode instrumentation. DiSL relies on AOP

principles for concisely expressing efficient dynamic analy-

sis tools. The language provides an open join point model

defined by an extensible set of bytecode markers, efficient

access to static and dynamic context information, optimized

processing of method1 arguments, and synthetic local vari-

1 In this paper, “method” stands for “method or constructor”.

239



ables for efficient data passing. While DiSL significantly

raises the abstraction level when compared to prevailing

bytecode manipulation libraries, it also exposes a low-level

API to implement new bytecode markers. The DiSL weaver

guarantees complete bytecode coverage to ensure that anal-

ysis results represent overall program execution. DiSL fol-

lows similar design principles as @J [8], an AOP lan-

guage for dynamic analysis, which however lacks an open

join point model and efficient access to method arguments.

Compared to high-level dynamic analysis frameworks

such as RoadRunner [13] or jchord2 that restrict the loca-

tions that can be instrumented, DiSL offers the developer

fine-grained control over the inserted bytecode; that is, DiSL

is not tailored for any specify dynamic analysis task, but pro-

vides constructs for concisely expressing any bytecode in-

strumentation. Instrumentation sites can be specified with a

combination of bytecode markers, scoping expressions, and

guards; guards represent static analyses executed at weave-

time. Instrumentation code is provided in the form of snip-

pets, that is, code templates that are instantiated for each se-

lected instrumentation site and inlined. Snippets may access

synthetic local variables to pass data from one instrumenta-

tion site to another. Snippets may access any static or dy-

namic context information; they may also process an arbi-

trary number of method arguments in a custom way.

The scientific contributions of this paper are twofold:

1. We present our design goals, the DiSL language con-

structs, and the implementation of the DiSL weaver.

2. We present a case study to illustrate the benefits of DiSL.

We recast Senseo [21, 22] in DiSL; Senseo is an AspectJ-

based profiling tool that supports various software main-

tenance tasks. In contrast to the former AspectJ imple-

mentation, the DiSL version of the tool features complete

bytecode coverage, introduces significantly less over-

head, and can be easily extended to collect additional dy-

namic metrics on the intra-procedural control flow.

This paper is structured as follows: Section 2 describes

the design goals underlying DiSL. Section 3 gives a detailed

overview of the DiSL language constructs. The software ar-

chitecture of the DiSL weaver and its implementation are

discussed in Section 4. Our case study is introduced in Sec-

tion 5 and evaluated in Section 6. Section 7 discusses related

work, Section 8 summarizes the strengths and limitations of

DiSL, and Section 9 concludes.

2. Design of DiSL

Designing a good language for instrumentation-based dy-

namic program analysis is challenging, because we need

to reconcile three conflicting design goals: (1) high expres-

siveness of the language, (2) a convenient, high-level pro-

gramming model, and (3) high efficiency of the developed

2 http://code.google.com/p/jchord/

analysis tools. On the one hand, existing bytecode manip-

ulation libraries meet the first and the third goal, but pro-

vide only low-level abstractions that make tool development

cumbersome. On the other hand, mainstreamAOP languages

achieve the second goal, but lack expressiveness (e.g., lack

of join points that would allow tracing the intra-procedural

control flow) and suffer from inefficiencies (e.g., access to

dynamic reflective join point information may require the

allocation of unnecessary objects). The design of DiSL aims

at bridging the gap between low-level bytecode manipula-

tion frameworks and high-level AOP. Below, we motivate

the main design choices underlying DiSL.

Open join point model. DiSL allows any region of byte-

codes to be used as a join point, thus following an open

join point model. That is, the set of supported join point

shadows [15] is not hard-coded. To enable the definition of

new join points, DiSL provides an extensible mechanism for

marking user-defined bytecode regions (i.e., shadows).

Compatibility with Java and the JVM. DiSL is a domain-

specific embedded language which has Java as its host lan-

guage. DiSL instrumentations are implemented in Java, and

annotations are used to express where programs are to be in-

strumented. Dynamic analysis tools written in DiSL can be

compiled with any Java compiler and executed on any JVM.

Advice inlining and data passing in synthetic local vari-

ables. Advice in DiSL are expressed in the form of code

snippets that are inlined, giving the developer fine-grained

control over the inserted code. DiSL instrumentations (cor-

responding to aspects in AOP) describe where snippets are to

be inserted into the base program. Thanks to inlining, snip-

pets woven into the same method are able to efficiently com-

municate data through synthetic local variables [6].

Efficient access to complete static and dynamic context in-

formation. In DiSL, all static context information is exposed

to the developer. This feature is similar to AspectJ’s static

reflective join point information (offering class and method

properties), but exposes additional information at the basic

block and bytecode level. DiSL also supports user-defined

static analysis to compute further static context information

at weave-time. In addition, DiSL provides a simple, yet pow-

erful reflective API to gather dynamic context information

which gives access to local variables and to the operand

stack, supporting also efficient access to an arbitrary num-

ber of method arguments.

No support for around advice. Mainstream AOP lan-

guages support advice execution before, after, and around

join points. Three common use cases of around advice are

(1) passing data around a join point, (2) skipping a join point,

and (3) executing a join point multiple times. As we assume

that instrumentations do not alter the control flow in the base

program, only the first use is relevant for us. However, for

the first use case, the same behavior can be achieved with

before and after advice using synthetic local variables [6].
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Hence, DiSL only supports before and after advice, which

helps keep the weaver simple.

Complete bytecode coverage. DiSL is designed for weaving

with complete bytecode coverage. That is, the DiSL weaver

ensures that all methods that have a bytecode representation

can be woven, including methods in the standard Java class

library. To this end, the DiSL weaver relies on implementa-

tion techniques developed in previous work [19].

3. Language Features

In this section we give an overview of the language features

of DiSL. In Section 3.1 we introduce DiSL instrumentations

specified in the form of snippets; markers determine where

snippets are woven in the bytecode. The mechanism to con-

trol the inlining order of snippets is explained in Section 3.2.

Synthetic local variables for efficiently passing data between

woven snippets are presented in Section 3.3, and efficient ac-

cess to thread-local variables is discussed in Section 3.4. In

Section 3.5 we introduce static context to provide static re-

flective information, and we present the reflective API for

obtaining dynamic context information in Section 3.6. In

Section 3.7 we explain DiSL’s support for method argu-

ments processing. In Section 3.8 we introduce guards that

enable the evaluation of conditionals at weave-time to decide

whether a join point is to be captured, as well as a scoping

construct to restrict weaving.

3.1 Instrumentations, Snippets, and Markers

DiSL instrumentations are Java classes. An instrumenta-

tion can only have snippets that are static methods an-

notated with @Before, @After, @AfterReturning, or

@AfterThrowing. Snippets are defined as static methods,

because their body is used as a template that is instantiated

and inlined at the matching join points in the base program.

Snippets do not return any value and must not throw any ex-

ception (that is not caught by a handler in the snippet).

Because of DiSL’s open join point model, pointcuts are

not hardcoded in the language but defined by an extensible

library of markers. Markers are standard Java classes im-

plementing a special interface for join point selection. DiSL

provides a rich library of markers including those for method

body, basic block, individual bytecode, and exception han-

dler. In addition, the developer may extend existing markers

or implement new markers from scratch.

The marker class is specified in the marker attribute in

the snippet annotation. The weaver takes care of instantiating

the selected marker, matching the corresponding join points,

and weaving the snippets.

In addition to the predefined markers, DiSL offers join

point extensibility by exposing the internal representation of

method bodies to the developer, who has to implement code

to mark the bytecode regions defining the shadows for the

new join points.

3.2 Control of Snippet Order

It is common that several shadows coincide in the start-

ing instruction, that is, several snippets may apply to the

same join point. Similar to AspectJ’s advice precedence

resolution, DiSL provides a simple mechanism to control

snippet ordering through the order attribute in the snip-

pet annotation. The order is specified as a non-negative

integer value. For @Before, snippets with higher order

are inlined before snippets with lower order. For @After,

@AfterReturning, and @AfterThrowing, snippets with

lower order are inlined before snippets with higher order.

Thus, the order indicates “how close” to the shadow the snip-

pet shall be inlined.

3.3 Synthetic Local Variables

DiSL provides an efficient communication mechanism to

pass arbitrary data between snippets. The mechanism relies

on inlining so as to store the data in a local variable, which

is therefore visible in the scope of the woven method body.

DiSL provides the @SyntheticLocal annotation to spec-

ify the holder variable. Synthetic local variables must be de-

clared as static fields and can be used in any snippet. The

weaver takes care of translating the static field declared in

the instrumentation into a local variable in each instrumented

method, and of replacing the bytecodes that access the static

field with bytecodes that access the introduced local vari-

able. For details, we refer to [6].

3.4 Thread-local Variables

DiSL supports thread-local variables with the

@ThreadLocal annotation. This mechanism extends

java.lang.Thread by inserting the annotated field. While

the inserted fields are instance fields, thread-local variables

must be declared as static fields in the instrumentation class,

similar to synthetic local variables. These fields must be

initialized to the default value of the field’s type.3 The DiSL

weaver translates all access to thread-local variables in snip-

pets into bytecodes that access the corresponding field of the

currently executing thread. An inheritable flag can be

set in the @ThreadLocal annotation such that new threads

“inherit” the value of a thread-local variable from the creat-

ing thread. Note that the standard Java class library offers

classes with similar semantics (java.lang.ThreadLocal

and java.lang.InheritableThreadLocal). However,

accessing fields directly inserted into java.lang.Thread

results in more efficient code.

3.5 Static Context Information

Accessing static context information is essential for dy-

namic analyses, for example, gathering information about

3During JVM bootstrapping, in general, inserted code cannot be executed

because it may introduce class dependencies that can violate JVM assump-

tions concerning the class initialization order. Hence, threads created during

bootstrapping could not initialize inserted thread-local fields in the begin-

ning.
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Figure 1. Gathering static context information at weave-

time

the method, basic block, or bytecode instruction that is exe-

cuted. Because of the open join point model of DiSL, there

is no bound static part of a join point as in AspectJ. In

DiSL, the programmer can gather reflective static informa-

tion at weave-time by using various static contexts. DiSL

provides a library of commonly used static contexts such

as MethodStaticContext, BasicBlockStaticContext,

and BytecodeStaticContext. The developer may also

implement custom static context classes.

For every snippet, the programmer can specify any num-

ber of static contexts as argument. Each static context

class implements the StaticContext interface and pro-

vides methods without argument that must return a value of

a Java primitive type or a string. The reason for this restric-

tion is that DiSL stores the results of static context methods

directly in the constant pool of the woven class. Static con-

texts receive read-only access to the shadow containing the

following reflective information: the class and method under

instrumentation, the snippet, and the beginning and ending

positions of the current shadow.

Figure 1 depicts the reflective approach for gathering

static context information. After shadow marking according

to the selected marker, the snippet is parsed to locate invo-

cations to static context methods (step 1). Static contexts

are then instantiated by the weaver and the corresponding

methods are invoked for every shadow (step 2). Static con-

text methods access the exposed reflective data to compute

the static information to be returned (step 3). The weaver

replaces the invocation of the static context methods in the

snippet with bytecodes to access the computed static infor-

mation (step 4). The snippet code is inlined before or after

the matching shadows (step 5).

Figure 2 shows how static contexts are used in an in-

strumentation for calling context-aware basic block analysis.

The goal is to help developers find hotspots in their programs

taking both the inter- and intra-procedural control flow into

public class CallingContextBBAnalysis {

@ThreadLocal

static CCTNode currentNode;

@SyntheticLocal

static CCTNode callerNode;

@Before(marker = BodyMarker.class, order = 1)

static void onMethodEntry(MethodStaticContext msc) {

if ((callerNode = currentNode) == null)

callerNode = CCTNode.getRoot();

currentNode =

callerNode.profileCall(msc.thisMethodFullName());

}

@After(marker = BodyMarker.class)

static void onMethodCompletion() {

currentNode = callerNode;

}

@Before(marker = BasicBlockMarker.class, order = 0)

static void onBasicBlock(BasicBlockStaticContext bbsc) {

currentNode.profileBB(bbsc.getBBIndex());

}

}

Figure 2. Sample instrumentation for calling context-aware

basic block profiling (class CCTNode is not shown)

account. The presented instrumentation collects statistics on

basic block execution for each calling context.

For storing inter-procedural calling context information,

a Calling Context Tree (CCT) [3] is used. For each thread,

the current CCT node is kept in the thread-local variable

currentNode that is updated upon method entry and com-

pletion (onMethodEntry(...) and onMethodCompletion()
snippets using the BodyMarker). The synthetic local vari-

able callerNode is used to store the CCT node correspond-

ing to the caller. The CCTNode.getRoot() method returns

the root node of the CCT. The method profileCall(...)
takes a method identifier as argument and returns the corre-

sponding callee node in the CCT. The method identifier is

obtained from the MethodStaticContext; it is inserted as

a string in the constant pool of the woven class.4

The onBasicBlock() snippet captures all basic block

join points using the BasicBlockMarker. The idea is to

count how many times each basic block is executed, so as

to detect hot basic blocks. To this end, the snippet uses the

BasicBlockStaticContext for gathering the index of the

captured basic block. This value is used to increment the

corresponding counter in the CCT node (not shown). Note

that the order of the @Before snippets ensures that the

initialization of the synthetic local variable callerNode and

the update of the thread-local variable currentNode are

done at the very beginning of the method body, before they

are accessed in the first basic block.

3.6 Dynamic Context Information

Access to dynamic join point information (e.g., getThis(),
getTarget(), and getArgs() in AspectJ) requires gath-

ering data from local variables and from the operand

4 This is similar to the use of JoinPoint.StaticPart in AspectJ. While

AspectJ inserts static fields in the woven class to hold reflective static join

point information, DiSL avoids structural modifications of the woven class.
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public interface DynamicContext {

<T> T getLocalVariableValue(int index,

Class<T> valueType);

<T> T getStackValue(int distance, Class<T> valueType);

Object getThis();

}

Figure 3. DynamicContext interface

public class ArrayAccessAnalysis {

@Before(marker = BytecodeMarker.class, args = "aastore")

static void beforeArrayStore(DynamicContext dc) {

Object array = dc.getStackValue(2, Object.class);

int index = dc.getStackValue(1, int.class);

Object stored = dc.getStackValue(0, Object.class);

Analysis.process(array, index, stored); // not shown

}

}

Figure 4. Profiling array access

stack [15]. DiSL provides an API to explicitly access

this information. Figure 3 shows the DynamicContext

API which provides reflective information through the

getLocalVariableValue(...) to access a local variable,

getStackValue(...) to access a stack value, and getThis()
returning this object or null in the case of a static method.

Similar to static contexts, the DynamicContext can be

passed to snippets as an argument. The programmer must

provide the index and the type of the data to access. Note

that the use of DynamicContext is not restricted to any par-

ticular marker. The developer must know how to access the

correct data from local variables or from the operand stack.

The weaver takes care of translating calls to the API methods

into bytecode sequences to retrieve the desired values.

An example of the use of DynamicContext is access

to the return value of a method, which is on top of the

stack upon normal method completion. The programmer

may implement an @AfterReturning snippet with the

BytecodeMarker (for different return bytecodes) and use

getStackValue(0, ...) to retrieve the return value. The in-

dex zero indicates the top of the stack.

The combination of DynamicContext with the

BytecodeMarker provides a powerful mechanism to

gather join point information for implementing dynamic

analysis tools, such as memory profilers. For example,

Figure 4 shows how to capture array accesses, which is

not possible in AspectJ. The beforeArrayStore(...)
snippet captures all objects being stored in arrays, where the

element type is a reference type. The profiler can keep track

which object has been stored at which position of an array.

Before every aastore bytecode, the snippet gets the array,

the index5 where the element will be stored, and the object

to be stored from the operand stack (at positions 2, 1, and

0, respectively). The process(. . .) method processes the

collected information (not shown).

5 The use of Java generics in the API results in autoboxing of primitive

values (e.g., index) in the compiled snippet. The DiSL weaver removes the

unnecessary boxing code before inlining.

public interface ArgumentProcessorContext {

Object getReceiver(ArgumentProcessorMode mode);

Object[] getArgs(ArgumentProcessorMode mode);

void apply(Class<?> argumentProcessor,

ArgumentProcessorMode mode);

}

public enum ArgumentProcessorMode {

METHOD_ARGS, CALLSITE_ARGS

}

Figure 5. Argument processor API

3.7 Argument Processors

Method arguments are retrieved from local variables or,

in the case of call sites, from the operand stack. DiSL’s

DynamicContext can be used to access these values when

the argument index and type are known, which is not always

the case. DiSL also provides a reflective mechanism, called

argument processor, to process all arguments by their types.

The ArgumentProcessorContext interface (see Fig-

ure 5) can be used within snippets to access method

arguments; it is to be passed to snippets as an ar-

gument, similar to static contexts or DynamicContext.

Two modes can be specified, to process either ar-

guments of the method where the snippet is inlined

(METHOD ARGS), or arguments of a method invocation

(CALLSITE ARGS). The getReceiver(...) method returns

the receiver, or null for static methods. The getArgs(...)
method returns all arguments in an object array, similar to

JoinPoint.getArgs() in AspectJ for execution respec-

tively call pointcuts. However, if the programmer needs to

selectively access arguments, or does not want them to be

wrapped in an object array (e.g., for performance reasons

or to preserve the original type for arguments of primitive

types), the API provides the apply(...) method, where the

programmer can specify an argument processor class that

handles the generation of code to access the arguments.

Argument processors are classes annotated with

@ArgumentProcessor. At weave-time, DiSL checks

which argument processor is selected in the snippet, and for

each matching join point, generates the code to process the

arguments according to their types.

Argument processors must implement static void meth-

ods, where the first parameter is required and additional (op-

tional) parameters may be passed. The type of the first pa-

rameter selects the type of argument to be captured. The

first parameter’s type can only be java.lang.Object or a

primitive type. For each argument of the woven method,

the weaver checks whether the selected argument proces-

sor has a method where the first parameter type matches

the current method argument type. In this case, the weaver

generates the code to access the corresponding argument,

which is eventually inlined within the snippet. As additional

parameters, the argument processor method can take any

static context, DynamicContext, or ArgumentContext.

ArgumentContext is an interface to access argument type,

argument position, and the total number of arguments.
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Figure 6. Processing of integer arguments

Figure 6 illustrates the weaving of a snippet before a

join point in method foo(...). In this example, the devel-

oper only wants to process arguments of type int. For

method foo(...), only two of the arguments will match

the intProc(...) processor method (i1 and i2). First, the

weaver finds out which argument processor and mode should

be applied to the snippet (step 1). Then, the invocation

to apply(...) in the snippet is replaced with the expanded

method bodies of the processor for each matching argument

(step 2). In the example, the generated code will give ac-

cess to the two integer arguments, i.e., the snippet will con-

tain expanded processor code to access the values i1 and

i2. Finally, the expanded snippet is inlined (step 3). For

METHOD ARGS, the generated code retrieves the arguments

from local variables; for CALLSITE ARGS, the arguments are

taken from the operand stack. The use of CALLSITE ARGS

throws a weave-time error if the snippet is not woven before

a method invocation bytecode.

There are several advantages of using argument proces-

sors compared to, for example, JoinPoint.getArgs() in

AspectJ. Firstly, there is no need for creating objects that

hold dynamic join point information. DiSL efficiently takes

the correct values directly from local variables or from the

stack. Secondly, argument types are preserved. The values

of primitive types are not boxed as in AspectJ. Finally, it is

straightforward to apply argument processors to a subset of

arguments, without requiring complex pointcuts to be writ-

ten. We will illustrate these advantages in more detail with

our case study and evaluation in Sections 5 and 6.

3.8 Guards and Scope

DiSL provides two complementary mechanisms for restrict-

ing the application of snippets. The first one, guard, is based

on weave-time evaluation of conditionals. The second one,

scope, is based on method signature matching.

Guards allow us to evaluate complex weave-time restric-

tions for individual join points. A guard has to implement

a static method annotated with @GuardMethod. The guard

method may take any number of static contexts as argu-

ments. The guard method returns a boolean value indicating

whether the current joint point is to be instrumented. Static

public class ArgumentAnalysis {

@Before(marker = BodyMarker.class,

guard = MethodReturnsRef.class)

static void onMethodEntry {

... // inlined only if the method returns an object

}

}

public class MethodReturnsRef {

@GuardMethod

static boolean evalGuard(ReturnTypeStaticContext rtsc) {

return !rtsc.isPrimitive();

}

}

Figure 7. Snippet guard restricting weaving to methods that

return objects

contexts can be used to expose reflective weave-time infor-

mation to the guard. The guard has to be specified with the

guard attribute of the snippet annotation.

In contrast to AspectJ’s if pointcut, the evaluation of

guards is done for each join point at weave-time. This avoids

runtime overhead due to the evaluation of statically known

conditionals. To illustrate this point, let’s consider the ex-

ample shown in Figure 7. The programmer wants to re-

strict weaving only to methods returning objects; methods

returning values of primitive types (or void, which we

consider a primitive type here) shall not be woven. The

evalGuard(...) method of the MethodReturnsRef guard

uses ReturnTypeStaticContext to determine whether

the return type of the instrumented method is primitive.

Because this evaluation is performed at weave-time, the

onMethodEntry(...) snippet will be inlined only in meth-

ods that return objects.

Another interesting example of weave-time conditional

evaluation is the use of data flow analysis within guards. This

feature helps avoid inlining snippets that would otherwise

access uninitialized objects (passing an uninitialized object

to another method as argument would be illegal and cause a

verification failure). For example, the programmer may cap-

ture all putfield bytecodes in constructors, where the tar-

get is a properly initialized object. Consequently, putfield

bytecodes that write to the object under initialization before

invocation of the superclass constructor will not be captured.

Even though guards are expressive, in many common

cases, a more concise scoping expression is sufficient. In

DiSL, scope is a simplified signature pattern matching point-

cut designator. The scope attribute of the snippet annotation

specifies which methods shall be instrumented. Scope ex-

pressions specify method, class, or package names and may

contain wildcards (e.g., scope= ”∗ java.io.∗ (..)”). Typ-
ically, scope evaluation is faster than guard evaluation, as it

is done only once for each method. In contrary, a guard has

to be invoked (using reflection) for each join point in the

method. The best combination is the usage of scope expres-

sions for fast method filtering and of guards for fine-grained

joint point selection.
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4. Implementation

DiSL is implemented in Java using the ASM6 bytecode

manipulation library in about 100 classes and 8000 lines

of code. The DiSL weaver7 runs on top of jBORAT8, a

lightweight toolkit providing support for instrumentation

with complete bytecode coverage [19]. jBORAT uses two

JVMs: an instrumentation JVM where bytecode instrumen-

tation is performed and an application JVM that executes

the instrumented application. This separation of the instru-

mentation logic from the instrumented application reduces

perturbations in the application JVM (e.g., class loading and

initialization triggered by jBORAT or by the DiSL weaver

do not happen within the application JVM). DiSL simpli-

fies deployment with scripts, hiding the complex JVM setup

from the user.

Figure 8 gives an overview of the DiSL weaver running

on top of jBORAT. During initialization, DiSL parses all

instrumentation classes (step 1). Then it creates an inter-

nal representation for snippets and initializes the used mark-

ers, guards, static contexts, and argument processors. When

DiSL receives a class from jBORAT (step 2), the weaving

process starts with the snippet selection. The selection is

done in two phases, starting with scope matching (step 3)

and followed by shadow creation and selection. Shadows

are created using the markers associated with the snippets

selected in the previous scope matching phase. Shadows

are evaluated by guards and only snippets with at least one

valid shadow are selected (step 4). At this point, all snippets

that will be used for weaving are known. Static contexts are

used to compute the static information required by snippets

(step 5). Argument processors are evaluated for snippets, and

argument processor methods that match method arguments

are selected (step 6). All the collected information is finally

used for weaving (step 7). Argument processors are applied,

and calls to static contexts are replaced with the computed

static information. The weaver also generates the bytecodes

to access dynamic context information. Finally, the woven

class is emitted and passed back to jBORAT (step 8).

5. Case Study: Senseo

In this section, we illustrate the benefits of DiSL by recasting

Senseo [21], a dynamic analysis tool for code comprehen-

sion and profiling. Senseo uses an aspect written in AspectJ

for collecting calling context-sensitive dynamic information

for each invoked method, including statistics on the runtime

types of method arguments and return values, the number

of method invocations, and the number of allocated objects.

These metrics are visualized by an Eclipse plugin9 that en-

6 http://asm.ow2.org/

7 http://disl.origo.ethz.ch/

8 jBORAT stands for Java Bytecode Overall Rewriting and Analysis

Toolkit.
9 http://scg.unibe.ch/research/senseo
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Figure 8. Overview of DiSL weaving process

riches the static source code views with the collected dy-

namic information. Senseo helps developers understand the

dynamic behavior of applications and locate performance

problems.

The original version of Senseo has two main limita-

tions: (1) lack of intra-procedural profiling and (2) high

overhead for metrics collection. Both limitations stem from

the use of AspectJ to express the instrumentation. Be-

cause of the absence of join points at the level of ba-

sic blocks, dynamic metrics on the intra-procedural con-

trol flow are missing, making it difficult for the developer

to locate hot methods with complex intra-procedural con-

trol flow that are not invoked frequently. Moreover, ac-

cess to dynamic join point information is inefficient due

to the boxing of primitive values and because of the allo-

cation of object arrays, notably for processing method ar-

guments. For example, although only the first argument of

method paint(Object o, int x, int y) could receive ob-

jects of different runtime types, the AspectJ implementation

of Senseo collects the runtime types of all three arguments

upon each invocation, because JoinPoint.getArgs() re-

turns all arguments in a newly created object array, boxing

values of primitive types.

Figure 9 shows the (simplified) DiSL instrumenta-

tion Senseo2 that overcomes the limitations of the pre-

vious AspectJ implementation. To collect dynamic met-

rics for each calling context, the onMethodEntry(...) and

onMethodCompletion() snippets reify the calling context

in a similar way as explained in Section 3.5 (Figure 2). Each

CCT node stores the dynamic information collected within

the corresponding calling context, as explained below.

Number of method executions. The counting of method ex-

ecutions is subsumed in the onMethodEntry(...) snippet

and performed in the profileCall(...) method by incre-

menting a counter. This information is used to compute the

number of method calls for each calling context.

Number of allocated objects and arrays. To count the num-

ber of allocated objects and arrays, the onAllocation()
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public class Senseo2 {

@ThreadLocal

static CCTNode currentNode;

@SyntheticLocal

static CCTNode callerNode;

@Before(marker = BodyMarker.class, order = 1)

static void onMethodEntry(MethodStaticContext msc,

ArgumentProcessorContext proc) {

if ((callerNode = currentNode) == null)

callerNode = CCTNode.getRoot();

currentNode =

callerNode.profileCall(msc.thisMethodFullName());

proc.apply(ReferenceProcessor.class,

ProcessorMode.METHOD_ARGS);

}

@After(marker = BodyMarker.class, order = 2)

static void onMethodCompletion() {

currentNode = callerNode;

}

@AfterReturning(marker = BodyMarker.class, order = 1,

guard = MethodReturnsRef.class)

static void onReturnRef(DynamicContext dc) {

Object obj = dc.getStackValue(0, Object.class);

currentNode.profileReturn(obj);

}

@AfterReturning(marker=BytecodeMarker.class, order=0,

args = "new,newarray,anewarray,multianewarray")

static void onAllocation() {

currentNode.profileAllocation();

}

@Before(marker = BasicBlockMarker.class, order = 0)

static void onBasicBlock(BasicBlockStaticContext bbsc){

currentNode.profileBB(bbsc.getBBIndex());

}

}

@ArgumentProcessor

public class ReferenceProcessor {

static void objProc(Object obj, ArgumentContext ac) {

Senseo2.currentNode.profileArgument(ac.getPosition(),

obj);

}

}

Figure 9. DiSL instrumentation for collecting runtime in-

formation for Senseo

snippet uses the BytecodeMarker to capture allo-

cation bytecodes for both objects (new) and arrays

(newarray, anewarray, and multianewarray). The

profileAllocation() method updates an allocation

counter in the current CCT node.

Runtime argument and return types. To collect runtime

type information only for arguments of reference types, the

onMethodEntry(...) snippet uses the argument processor

ReferenceProcessor. Since this argument processor only

defines the objProc(...) method to process arguments of

reference types, all arguments with primitive types are au-

tomatically skipped. The objProc(...) method invokes the

profileArgument(...) method of the current CCT node,

passing the position of the argument and the reference.

For collecting runtime return types, the

onReturnRef(...) snippet uses the MethodReturnsRef

guard (see Figure 7 in Section 3.8) to ensure that the

DiSL AspectJ ASM

Physical lines-of-code 74 44 489
Logical lines-of-code 44 19 338

Table 1. Lines-of-code for three implementations of Senseo

return type of a woven method is a reference type. Because

the returned object reference is on top of the operand

stack upon method completion, it is accessed with the

DynamicContext API.

Basic-block metrics. As the execution of basic blocks

cannot be captured with AspectJ, the following in-

formation is collected only by the DiSL version of

Senseo. The onBasicBlock(...) snippet captures ev-

ery basic block using the BasicBlockMarker; the

BasicBlockStaticContext provides the index of the cap-

tured basic block (getBBIndex()). This allows us to keep

track how many times a basic block is executed in each call-

ing context.

Comparing different Senseo implementations. For a com-

parison of DiSL with low-level bytecode manipulation li-

braries and with AOP, it is interesting to consider the

lines-of-code (LOC) used in the different implementations

of the same tool. Hence, we implemented a third version

of Senseo with the ASM bytecode manipulation library and

compared the source code of the DiSL, AspectJ, and ASM

versions. In contrast to the DiSL and ASM versions, the As-

pectJ version lacks basic block profiling, that is, it offers less

functionality.

Table 1 summarizes the physical and logical LOC met-

rics of the three implementations, considering only the code

related to the actual instrumentation logic (and disregard-

ing the Java code for analysis at runtime, which is com-

mon to all three implementations). Compared to ASM, the

DiSL and AspectJ versions are significantly smaller, as the

direct manipulation of bytecodes requires much more devel-

opment effort than relying on the high-level pointcut/advice

mechanism of AspectJ and DiSL. The higher LOC number

of the DiSL implementation compared to the AspectJ ver-

sion is mainly due to the separation of the code that is eval-

uated at weave-time (guards) from the instrumentation code

(snippets). However, weave-time evaluation brings signifi-

cant performance gains as we will show in Section 6.

In summary, our case study illustrates how DiSL enables

the concise implementation of a practical dynamic analysis

tool, thanks to DiSL’s open join point model, efficient access

to both static and dynamic context information, weave-time

evaluation of conditionals, and argument processors. Dy-

namic analysis tools written in DiSL are much more concise

than equivalent tools developed with bytecode manipulation

libraries.

6. Performance Evaluation

In this section, we evaluate the runtime performance of the

DiSL instrumentation presented in the Senseo case study.
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Reference
SenseoAJ SenseoDiSL Senseo2

application only application only full coverage application only full coverage
[s] [s] ovh. [s] ovh. [s] ovh. [s] ovh. [s] ovh.

avrora 5.11 30.96 6.06 12.61 2.47 12.41 2.43 13.66 2.67 14.62 2.86
batik 1.28 2.70 2.11 1.78 1.39 2.47 1.93 2.14 1.67 3.09 2.41

eclipse 16.16 152.92 9.46 70.73 4.38 81.52 5.04 152.41 9.43 163.36 10.11
fop 0.35 3.36 9.60 1.68 4.80 3.09 8.83 2.07 5.91 3.93 11.23
h2 5.84 63.25 10.83 25.27 4.33 31.78 5.44 29.55 5.06 41.81 7.16

jython 2.67 5.70 2.13 3.89 1.46 28.28 10.59 4.29 1.61 34.21 12.81
luindex 0.90 7.06 7.84 2.71 3.01 3.31 3.68 3.45 3.83 4.30 4.78
lusearch 1.98 13.09 6.61 5.49 2.77 6.57 3.32 6.19 3.13 8.85 4.47

pmd 2.05 10.09 4.92 5.10 2.49 7.60 3.71 6.54 3.19 10.31 5.03
sunflow 3.45 57.24 16.59 21.44 6.21 20.49 5.94 24.57 7.12 25.37 7.35
tomcat 1.97 4.46 2.26 3.16 1.60 6.70 3.40 3.87 1.96 9.32 4.73

tradebeans 5.56 71.48 12.86 30.76 5.53 76.43 13.75 42.90 7.72 117.40 21.12
tradesoap 6.77 25.40 3.75 12.80 1.89 53.60 7.92 17.30 2.56 76.12 11.24

xalan 1.11 20.39 18.37 8.15 7.34 11.38 10.25 10.08 9.08 17.33 15.61

geo. mean 6.47 3.09 5.26 3.91 7.19

Table 2. Execution times and overhead factors for SenseoAJ, SenseoDiSL, and Senseo2

First, we compare the previous AspectJ implementation with

an equivalent DiSL instrumentation (i.e., without basic block

metrics). In addition, we evaluate our DiSL instrumentation

with full bytecode coverage, collecting also basic block met-

rics. Second, we explore the different sources of the mea-

sured overhead. Third, we investigate the differences in the

collected profiles, considering the number of intercepted

join points, when weaving only application code, respec-

tively when weaving with full bytecode coverage. Fourth,

we study weaving time and overall class loading latency due

to jBORAT and DiSL.

For our measurements, both the DiSL weaver and the

AspectJ weaver run on top of jBORAT. This ensures ex-

actly the same weaving coverage for application code (oth-

erwise, the AspectJ load-time weaver would exclude some

application classes from weaving). Both the instrumentation

JVM and the application JVM run on the same host. We use

the benchmarks in the DaCapo suite (dacapo-9.12-bach)10

as base programs in our evaluation. All measurements cor-

respond to the median of 15 benchmark runs within the

same application JVM. The measurement machine is an In-

tel Core2 Quad Q9650 (3.0 GHz, 8 GB RAM) that runs

Ubuntu GNU/Linux 10.04 64-bit. We use AspectJ 1.6.1111,

DiSL pre-release version 0.9, and Oracle’s JDK 1.6.0 27

Hotspot Server VM (64-bit) with 7 GB maximum heap size.

Table 2 reports the runtime overhead for the original

AspectJ version of Senseo (SenseoAJ), for the equivalent

instrumentation in DiSL, that is, without basic block metrics

(SenseoDiSL), and for the DiSL instrumentation including

basic block metrics (Senseo2). On average (geometric mean

for DaCapo), the overhead factor introduced by SenseoAJ

is 6.47, while for SenseoDiSL, with the same code cover-

age, the overhead is only a factor of 3.09. With full byte-

code coverage, the average overhead of SenseoDiSL is a

factor of 5.26; surprisingly, the overhead is still lower than

for SenseoAJ covering only application code. Finally, the

average overhead introduced by Senseo2 is a factor of 7.19.

10 http://www.dacapobench.org/

11 http://eclipse.org/aspectj/
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Figure 10. Contributions to the average overhead factor for

different versions of Senseo

application only full coverage increase [%]

Method bodies 5.60E+09 8.84E+09 57.75

Methods returning a ref. 1.76E+08 3.44E+08 95.28

Methods with ref. arg. 1.78E+09 2.57E+09 44.56

Object and array alloc. 1.14E+09 2.00E+09 76.11

Basic blocks 2.21E+10 3.34E+10 51.26

Table 3. Total number of intercepted join points for a single

iteration of the whole DaCapo suite

Figure 10 quantifies the different overhead contribu-

tions. For CCT reification, the DiSL implementation ben-

efits from efficient access to static context information,

from data passing in synthetic local variables, and from

the use of an @ThreadLocal variable (compared to a

java.lang.ThreadLocal variable in SenseoAJ). The over-

heads for capturing allocations and runtime types of return

values are relatively small for both implementations. The

biggest difference between the two implementations is ob-

served for the processing of method arguments; the DiSL in-

strumentation leverages an argument processor, whereas the

AspectJ implementation relies on JoinPoint.getArgs().
As shown in Figure 10, argument processing in the AspectJ

version introduces more than 6 times the overhead of the

equivalent DiSL instrumentation.

Table 3 summarizes the number of intercepted join points

for a single iteration of each considered benchmark, weaving

only application code, respectively weaving with full byte-
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SenseoAJ SenseoDiSL Senseo2

app. only app. only full cov. app. only full cov.

Weaving [s] 54.97 43.28 134.17 65.61 174.73
Latency [s] 66.42 53.86 155.25 75.06 213.71

Table 4. Total weaving time and latency for a single itera-

tion of the whole DaCapo suite

code coverage. For all kinds of join points, full bytecode

coverage results in an increase of 45–95% in the number of

intercepted join points. These results confirm that support-

ing weaving with full bytecode coverage is essential in the

context of dynamic program analysis.

Finally, we compare the total time required to weave

the complete benchmark suite. Table 4 reports (a) the to-

tal weaving time measured in the instrumentation JVM,

and (b) the total weaving latency observed by the applica-

tion JVM. This allows us to know the latency introduced

by jBORAT. Overall, for application only, SenseoAJ is wo-

ven in 54.97s, whereas SenseoDiSL requires only 43.28s.

The DiSL weaver outperforms the AspectJ weaver by a fac-

tor 1.27. With full coverage, SenseoDiSL requires 134.17s,

and adding basic block metrics with Senseo2 increases the

weaving time to 65.61s for application code, and to 174.73s

with full coverage. The latency contribution of jBORAT is

between 14% and 24%, due to client-server communication.

Our evaluation confirms that DiSL enables the develop-

ment of efficient dynamic analysis tools, which often can-

not be achieved with general-purpose AOP languages. For

our case study, the DiSL instrumentation reduces the over-

head by more than factor 2 in comparison with the previous

AspectJ version. Even with full bytecode coverage, the DiSL

instrumentation still outperforms the AspectJ version.

7. Related Work

In previous work, we presented @J [8], a Java annotation-

based AOP language for simplifying dynamic analysis. Sim-

ilar to DiSL, @J uses snippet inlining and provides con-

structs for basic block analysis. However, @J lacks the open

join point model of DiSL (i.e., @J does not support custom

join point definitions), reflective access to weave-time infor-

mation, and support for efficient access to reflective dynamic

join point information (i.e., @J lacks argument processors).

@J supports staged advice where weave-time evaluation of

advice yields runtime residues that are woven. While this

feature can be used to emulate guards in DiSL, it requires the

use of additional synthetic local variables and more complex

composition of snippets.

In [7] we discussed some early ideas on a high-level

declarative domain-specific aspect language (DSAL) for dy-

namic analysis. DiSL provides all necessary language con-

structs to express the dynamic analyses that could be spec-

ified in the DSAL. That is, in the future, DiSL can serve as

an intermediate language to which the higher-level DSAL

programs are compiled.

High-level dynamic analysis frameworks such as

RoadRunner [13] or jchord12 ease composition of a set of

common dynamic analyses. In contrast, DiSL is not tailored

for any specify dynamic analysis task and offers the devel-

oper fine-grained control over the inserted bytecode.

The use of AOP for dynamic analysis [10, 20–22] has re-

vealed some limitations in general-purpose AOP languages

for that particular domain. In [1], a meta-aspect protocol

(MAP) for dynamic analysis is proposed to overcome these

limitations. Similar to our approach, the authors propose a

flexible join point model where shadows are accessible in

advice. Code snippets are used to inject callbacks to advice.

MAP uses a meta object to reify context at runtime. While

MAP allows fast prototyping of dynamic analyses, it does

not focus on high efficiency of the developed analysis tools.

In contrast, DiSL avoids any indirections to efficiently ac-

cess static and dynamic context information.

The AspectBench Compiler (abc) [5] eases the imple-

mentation of AspectJ extensions. As intermediate represen-

tation, abc uses Jimple to define shadows. Jimple has no in-

formation where blocks, statements and control structures

start and end, thus requiring extensions to support new point-

cuts for dynamic analysis. In contrast, DiSL provides an ex-

tensible library of markers without requiring extensions of

the intermediate representation.

Prevailing AspectJ weavers lack support for embedding

custom static analysis in the weaving process. In [18]

compile-time statically executable advice is proposed, which

is similar to static context in DiSL. SCoPE [4] is an AspectJ

extension that allows analysis-based conditional pointcuts.

However, advice code together with the evaluated condi-

tional is always inserted, relying on the just-in-time compiler

to remove dead code. DiSL’s guards together with static con-

text allows weave-time conditional evaluation and can pre-

vent the insertion of dead code.

In [2], the notion of region pointcut is introduced. Be-

cause a region pointcut potentially refers to several com-

bined but spread join points, an external object shared be-

tween the join points holds the values to be passed between

them. DiSL’s markers provide a similar mechanism, and syn-

thetic local variables help avoid passing data through an

external object. In addition, region pointcuts are implicitly

bound to the block structure of the program. In contrast,

DiSL allows arbitrary regions to be marked.

Javassist [11] is a load-time bytecode manipulation li-

brary allowing definition of classes at runtime. The API al-

lows two different levels of abstraction: source-level and

bytecode-level. In particular, the source-level abstraction

does not require any knowledge of the Java bytecode struc-

ture and allows insertion of code fragments given as source

text. Compared to DiSL, Javassist does not follow a point-

cut/advice model and does not provide built-in support for

synthetic local variables.

12 http://code.google.com/p/jchord/
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Josh [12] is an AspectJ-like language that allows devel-

opers to define domain-specific extensions to the pointcut

language. Similar to guards, Josh provides static pointcut

designators that can access reflective static information at

weave-time. However, the join point model of Josh does not

include arbitrary bytecodes and basic blocks as in DiSL.

The approach described in [17] enables customized point-

cuts that are partially evaluated at weave-time. It uses a

declarative language to synthesize shadows. Because only a

subset of bytecodes is converted to the declarative language,

it is not possible to define basic block pointcuts as in DiSL.

Steamloom [9, 14] provides AOP support at the JVM

level and improves performance of advice execution by opti-

mizing dynamic pointcut evaluation. In DiSL, performance

gains stem from static contexts combined with efficient ac-

cess to dynamic context information. No JVM support is

needed.

8. Discussion

In this section we discuss the strengths and limitations of

DiSL for implementing dynamic analysis tools, comparing

DiSL with the mainstream AOP language AspectJ [16] and

with the low-level bytecode manipulation library ASM.

Expressiveness. AspectJ lacks certain join points that are

important for some dynamic analysis tasks (e.g., bytecode-

level and basic block-level join points). Thus, it is not

possible to implement analysis tools that trace the intra-

procedural control flow. In DiSL, any bytecode region can

be a shadow, thanks to the support for custom markers. Like-

wise, with ASM, any bytecode location can be instrumented.

In AspectJ, the programmer has no control over the in-

serted bytecode. The AspectJ weaver inserts invocations to

advice methods; inlining of advice is not foreseen. In con-

trast, the DiSL programmer writes snippets that are always

inlined. If desired, it is trivial to mimic the behavior of the

AspectJ weaver by writing snippet code that invokes “ad-

vice” methods. Still, if DiSL code is written in Java and

compiled with a Java compiler, the snippets cannot contain

arbitrary bytecode sequences. For example, it is not possible

to write a snippet in Java that yields a single dup bytecode

when inlined. Using ASM, there are no restrictions concern-

ing the inserted bytecode.

Level of abstraction. In comparison with AspectJ, DiSL of-

fers a lower abstraction level. The DiSL programmer needs

to be aware of bytecode semantics, whereas AspectJ does

not expose any bytecode-level details to the programmer.

Nonetheless, DiSL relieves the developer from dealing with

low-level bytecode manipulations such as producing spe-

cific bytecode sequences, introducing local variables, copy-

ing data from the operand stack, etc. Using ASM, the pro-

grammer also needs to deal with such low-level details, re-

sulting in verbose tool implementations.

Compliance of the generated bytecode with the JVM spec-

ification. Weaving any aspect written in AspectJ results in

valid bytecode that passes verification. In contrast, woven

DiSL code may fail bytecode verification; it is up to the pro-

grammer to ensure that the inserted code is valid. For in-

stance, synthetic local variables must be initialized before

they are read, and the stack locations and local variables ac-

cessed through DynamicContext must be valid. Similarly,

bytecode instrumented with tools written in ASM may fail

verification.

While it is usually desirable that woven code passes veri-

fication, violating certain constraints on bytecode sometimes

simplifies analysis tasks. For example, if the analysis needs

to keep track of objects that are currently being initialized

by a thread, the programmer may want to store uninitialized

objects in a data structure on the heap, although the resulting

bytecode would be illegal. Nonetheless, the analysis can be

successfully executed by explicitly disabling bytecode veri-

fication. With AspectJ, such tricks are not possible.

Interference of inserted code with the base program. With

ASM, local variables or data on the operand stack belong-

ing to the base program may be unintentionally altered by

inserted code. In contrast, AspectJ and DiSL guarantee that

instrumentations cannot modify local variables or stack lo-

cations of the base program.

Bytecode coverage. For many analysis tasks, it is essential

that the overall execution of the base program can be an-

alyzed. However, prevailing AspectJ weavers do not sup-

port weaving the Java class library. In contrast, DiSL has

been designed for weaving with complete bytecode cover-

age, which does not introduce any extra effort for the devel-

oper. With ASM, it is possible to develop tools that support

complete bytecode coverage. However, the ASM program-

mer has to manually deal with the intricacies of bootstrap-

ping the JVM with a modified class library and preventing

infinite regression when inserted bytecode calls methods in

the instrumented class library.

9. Conclusion

In this paper we presented DiSL, a new domain-specific lan-

guage for bytecode instrumentation. The language is embed-

ded in Java and makes use of annotations. DiSL allows the

programmer to express a wide range of dynamic program

analysis tasks in a concise manner. DiSL has been inspired

by the pointcut/advice mechanism of mainstream AOP lan-

guages such as AspectJ. On the one hand, DiSL omits certain

AOP language features that are not needed for expressing

instrumentations (e.g., around advice and explicit structural

modifications of classes). On the other hand, DiSL offers

an open join point model, synthetic local variables, compre-

hensive and efficient access to static and dynamic context

information, and support for weave-time execution of static

analyses. These language features allow expressing byte-

code transformations in the form of code snippets that are in-
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lined before or after bytecode shadows as indicated by (cus-

tom) markers, if user-defined constraints specified as guards

are satisfied. As case study, we recasted the dynamic analysis

tool Senseo in DiSL and compared it with the previous im-

plementation in AspectJ. In contrast to the AspectJ version,

the DiSL implementation ensures complete bytecode cov-

erage, reduces overhead, and allows us to gather additional

intra-procedural execution statistics.

In an ongoing research project, we are working on ad-

vanced static checkers for DiSL instrumentations to help de-

tect errors before weaving, on partial evaluation of instanti-

ated snippets before inlining, and on general techniques to

split overlong methods that exceed the maximum method

size imposed by the JVM. In addition, we are exploring the

use of higher-level, declarative domain-specific languages

for dynamic program analysis. We plan to compile such

higher-level languages to DiSL, which will serve us as a con-

venient intermediate language.
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