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Abstract

UML state machines are widely used for modeling software
behavior. Due to the low-level character of the language,
UML state machines are often poorly modularized and hard
to use. High-Level Aspects (HILA) is an aspect-oriented ex-
tension of UML state machines which provides high-level
language constructs for behavior modeling. HILA consid-
erably improves the modularity of UML state machines by
extending them by semantic aspects. This paper presents the
weaving process for HILA that we have shown to be sound
with respect to the transition-system semantics of HILA.
In particular, we show how our weaving process deals with
implicit state activation (and deactivation), maps semantic
pointcuts to syntactic elements, and resolves potential con-
flicts between different aspects. The process has been imple-
mented in an extension of the Hugo/RT UML translator and
model checker, the correctness of our weaving is validated
by model checking.

Categories and Subject Descriptors D2.2 [Software Engi-
neering]: Design Tools and Techniques—State diagrams

Keywords Aspect-Oriented Modeling, UML, Algorithms

1.

UML state machines [15] are widely used for modeling soft-
ware behavior. They are considered as simple and intuitive,
and are even deemed to be “the most popular modeling lan-
guage for reactive components” [7]. However, UML state
machines exhibit modularity problems, and even some sim-
ple behaviors may be hard to model, see [17] for examples.
Proposals have been made [3, 5, 12, 14] to use aspect-
oriented modeling to tackle the modularity problems of
UML state machines. In the prevalent proposals, aspects
define model transformations, most commonly graph trans-
formations: an aspect specifies in its pointcut a fragment
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of the base model, and defines in its advice a graph to re-
place the parts of the base model matched by the pointcut.
The weaving is then the process of actually performing the
transformation.

Aspects in these proposals are therefore syntactic con-
structs: they define how to modify (the syntax tree of) the
base model. While these approaches provide a means for
modeling parts of the system separately, they hardly help to
reduce the complexity of the model, because, even though
the factorization provided by the match-and-replace seman-
tics might eliminate some redundancy, the modeler still has
to define the system behavior in every little detail. Moreover,
the aspects (which are in fact model transformations) are de-
fined in syntactic terms, and do not have a behavioral seman-
tics. When they are applied to behavioral models like state
machines, the semantics of the overall system can therefore
be only obtained by carefully studying the weaving result.

Our approach, High-Level Aspects (HILA), in contrast,
extends UML state machines by semantic aspects. In HILA,
a pointcut defines specific points of time in the execution of
the base machine, and the advice defines some additional
or alternative behavior to execute at these points of time.
The behavior of HILA aspects can therefore be understood
independently of any weaving process, and indeed the se-
mantics of HILA is defined by a transition-system model
rather than by a graph transformation that weaves aspects
into the base state machine, see [17]. State machines using
HILA aspects are therefore easier to read and also easier
to construct than their graph-transformation-based counter-
parts, since the modeler only has to define what to do instead
of how to do it.

To implement HILA aspects it would therefore be pos-
sible to develop an interpreter that directly implements the
semantics of HILA. In order to leverage the sophisticated
possibilities for formal analysis and code generation offered
by the Hugo/RT system!, and to avoid the overhead of eval-
uating the dynamic activation and deactivation of aspects
specified by the semantics of HILA at run time, we have
opted to implement HIL A by weaving aspects and base state
machine together. Given the nature of HILA aspects, this
weaving process is more elaborate than the one required by
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graph-transformation-based aspect systems: The modeler no
longer directly specifies the elements that have to be mod-
ified by the weaver; instead the weaver has to determine
which model elements are modified by HILA aspects. This
is rather challenging, as even a simple aspect may touch
many model elements that are scattered throughout the state
machine.

In this paper, we present the weaving algorithms of HILA
aspects. In particular, we show how we handle syntax vari-
ations of UML state machines, how the semantic pointcuts
are mapped to syntactic elements, and how we resolve con-
flicts between aspects. The presented algorithms have been
implemented as an extension of the model checker Hugo/RT,
model checking HIL A aspects is thus an easy task. Many of
the issues encountered by weaving aspects for HILA also
apply to the implementation of semantic aspect systems for
concurrent, state-based languages in general. Therefore, the
techniques presented in this paper are not only a description
of the implementation strategy we have used for our current
HILA system, they can also serve as guideline for imple-
mentors of other aspect-oriented languages. We will address
one example of this in Sect. 6.

The rest of this paper is structured as follows: In the next
two sections we give short introductions to UML state ma-
chines and HIL A. The fourth section, the core of this paper,
details the weaving algorithm; it is followed by a discussion
of the implementation in Hugo/RT and some remarks on for-
mal validation of the weaving results. Finally, we present re-
lated work and conclude.

2. UML State Machines

A UML state machine provides a model for the behavior of
an object or component. Figure 1(a) shows a state machine
modeling (in a highly simplified manner) the behavior of a
player during a part of a game. The player—a magician—
starts in a state where she has to chose a NewLevel. Upon
completion of the preparations she is transferred into the Play
state which contains two concurrent regions, corresponding
to two parallel threads of execution. The upper region de-
scribes the possible movements of the player, the lower re-
gion specifies her behaviors. After completing the current
level, the player can go to the next level which has the same
topology and general gameplay.

In each level the player initially starts in an entrance hall
(Hall), from there she can move to a room in which magic
crystals are stored (CrystalRoom) and on to a room contain-
ing a Ladder. From this room the player can either move
back to the hall or, after excavating a treasure consisting of
gold coins, exit the level. After starting the level, the player
first has to acquire enough magical power (PowerUp), then
cast a Spell that, make here invisible, or transforms her into
an Enchanted state. Once she is in this enchanted state, the
player may either try to fight the guard of the treasure (Fight),
collect the treasure (CollectTreasure) and then exit the level
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via the ladder, or she may use her magical power to exit the
current level without fighting the guard and collecting the
gold (in which case she may encounter the guard again later
on in the game). The player may lose the fight against the
guard in which case she is transferred back to one of the pre-
vious states, depending on the severity of the defeat.

2.1 Syntax and Informal Semantics

We briefly review the syntax and semantics of UML state
machines according to the UML specification [15] by means
of Fig. 1(a). A UML state machine consists of regions which
contain vertices and transitions between vertices. We require
every state machine to have a top-level region called top.> A
vertex is either a state, where the state machine may dwell
in and which may show hierarchically contained regions; or
a pseudo state regulating how transitions are compound in
execution. Transitions are triggered by events and describe,
by leaving and entering states, the possible state changes of
the state machine. The events are drawn from an event pool
associated with the state machine, which receives events
from its own or from different state machines.

A state of a state machine is simple, if it contains no re-
gions (such as NewLevel in Fig. 1(a)); a state is composite,
if it contains at least one region; a composite state is said
to be orthogonal if it contains more than one region, visu-
ally separated by dashed lines (such as Play). Each state may
show an entry behavior (like spellHex in Spell), an exit be-
havior (like takeCrystal in CrystalRoom), which are executed
on activating and deactivating the state, respectively; a state
may also show a do activity (like in NewLevel) which is ex-
ecuted while the state machine sojourns in this state. Tran-
sitions are triggered by events (toCrystalRoom, fight), show
guards (fightLost), and specify effects to be executed when
a transition is fired (losePower). Completion transitions (e.g.,
the transition leaving NewLevel) are triggered by an implicit
completion event emitted when a state completes all its in-
ternal activities. Events may be deferred (e.g., fight and hide
in NewlLevel), that is, put back into the event pool if they
are not to be handled currently. By executing a transition its
source state is left and its target state entered; transitions may
also be declared to be internal (not shown in this example),
thus skipping the activation-deactivation scheme. An initial
pseudo state, depicted as a filled circle, represents the start-
ing point for the execution of a region. A final state, depicted
as a circle with a filled circle inside, represents the comple-
tion of its containing region; if the region top of a state ma-
chine is completed the state machine terminates. Junction
pseudo states, also depicted as filled circles (see lower re-
gion of Play), allow for case distinctions. Transitions to and
from different regions of an orthogonal composite state can
be synchronized by fork (not shown here) and join pseudo

2 This was required by UML 1.x. In UML 2.x, this restriction was dropped.
However, we can always put a top-level region around a state machine
without changing its semantics.
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Figure 1. UML state machine for a magician in a computer game

states, presented as bars. For simplicity, we omit the other
pseudo state kinds (entry and exit points, shallow and deep
history, choice, and terminate).

At run time, states get activated and deactivated as a
consequence of transitions being fired. The active states at
a stable step in the execution of the state machine form
the active state configuration. Active state configurations are
hierarchical: when a composite state is active, then exactly
one state in each of its regions is also active; when a substate
of a composite state is active, so is the containing state
too. The execution of the state machine can be viewed as
different active state configurations getting active or inactive
upon the state machine receiving events.

For example, an execution trace, given in terms of active
state configurations, of the state machine in Fig. 1(a) might
be (NewLevel), (Play, Hall, PowerUp), (Play, Hall, Spell), (Play,
Hall, Enchanted, Fight), (LevelWon), followed by the final
state, which terminates the execution.

2.2 Modularity Problems

Models of plain UML state machines may exhibit modu-
larity problems, in particular when modeling synchroniza-
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tion of parallel regions or history-based behaviors, see [17,
18]. For simplicity, we show only an example of modeling
mutual-exclusion.

Assume in the example above an additional rule that the
player cannot enter the crystal room while she is enchanted
(because, for instance, she might damage the room). That
is, in Fig. 1(a) the states CrystalRoom and Enchanted must
not be simultaneously active. In plain UML, this rule has to
be modeled imperatively. An example is given in Fig. 1(b),
where a variable c is introduced and used to control the ac-
cess to the two critical states: it is initialized as 0 in the
entry action of Play, increased whenever CrystalRoom or
Enchanted is activated, and decreased whenever one of the
two states is deactivated. The three transitions that activate
the two states (from Hall to CrystalRoom, from Spell to Fight,
and from Spell to CollectTreasure) are extended by a guard,
such that they are only fired when c equals 0, which means
that the other critical state is currently inactive and the mu-
tual exclusion rule is satisfied. A subtle point is that we have
to declare the events toCrystalRoom and fight to be deferrable
in the states Hall and Spell, respectively, and we also have
to declare the completion event of state Invisible to be de-
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Figure 2. HiLA: concrete syntax

ferrable (we use the notation */defer for deferring the com-
pletion event; UML provides no standard syntax for this). In
this way the transitions are only postponed if the other criti-
cal state is active, and will be automatically resumed without
requiring the events to be sent again. Otherwise the events
would be lost in case exactly one of the critical states were
active, since the event would then be taken from the event
pool without firing a transition.

It is obviously unsatisfactory that modeling even such a
simple mutual exclusion rule requires modification of many
model elements, which are scattered over the state machine.
Furthermore, it is easy to introduce errors which are hard to
find, as evidenced by the need to defer events. Such mod-
eling makes maintenance difficult, the models are complex
and prone to errors.

3. HiLA in a Nutshell

As a possible solution of UML state machines’ modularity
problems, the language High-Level Aspects (HILA, [17])
was defined as an aspect-oriented extension for UML state
machines. HILA provides high-level constructs for declara-
tive behavior modeling. The concrete syntax of a HILA as-
pect is shown in Fig. 2 and explained in the following.

Syntactically, a HILA aspect is a UML template con-
taining at least a name, a pointcut and an advice. The tem-
plate parameters allow easy customization, so that aspects
for functionalities such as logging, transactions or mutual
exclusions can easily be reused in many places.

An aspect is applied to a UML state machine, which is
called the base machine. An aspect defines some additional
or alternative behavior of the base machine at some points
in time during the base machine’s execution. The behavior
is defined in the advice of the aspect; the points in time to
execute the advice are defined in the pointcut. The advice
(stereotype <advice> in Fig. 2) also has the form of a state
machine, except that the final states may carry a label. The
“body” of the advice, i.e. the part without the initial vertex,
the final states, and the connecting transitions, models the
behavior to carry out. A label on a final state names the
state that should be activated when the advice is finished
and the execution of the base machine should be resumed.
We refer to this state as the resumption state of the final
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Figure 3. HiLA aspects

state. The label may optionally be guarded by a resumption
constraint, which is indicated by the keyword if and has the
form (like|nlike) StateName* where StateName is the set of
qualified names of the base machine’s states. like S is true iff
after the resumption all states contained in S will be active,
otherwise nlike S is true.

The pointcut (<pointcut>) specifies the points in time
when the advice is executed. These points in time may be
1) when a certain state of the base machine is just about to
become active or 2) a set of states has just been left.® The se-
mantics of a pointcut can be regarded as a selection function
of the base machine’s transitions: a pointcut <before> s se-
lects all transitions in the base machine whose firing makes
state s active, and a pointcut <after> S selects those transi-
tions whose firing deactivates S. Note this does not mean “a
pointcut «<before> s selects all transitions whose target is s”
or “a pointcut <after> S selects all transitions whose source
is a state contained in S”. The semantics of UML state ma-
chines is actually more involved, which makes the weaving
more complex, see Sect. 4.

Overall, an aspect is a graphical model element stating
that at the points in time specified by the pointcut the advice
should be executed, and after the execution of the advice
the base machine should resume execution by activating the
state given by the label of the advice’s final state, when
the conditions given there are satisfied. For <before> and
<after> pointcuts, this “point in time” is always the firing
of a transition; we say that this transition is advised by the
advice.

3 Actually there is still another kind of pointcut, <whilst>, which defines
the time spans during which certain states are active, see [17]. For simplic-
ity, <whilst>> pointcut is not discussed in this paper.



For example, aspect LogSpell in Fig. 3(a) states that a log
message is written whenever the player has just cast a spell,
i.e., when state Spell has just turned inactive (<afters). At
such points of time, i.e., whenever the transition from Spell to
Enchanted should be fired, the advice of the aspect LogSpell
is executed: the state Log is activated and writes a log mes-
sage, then the final state of the advice is activated, and the
base machine continues the advised transition and goes to
the original target state. Since no constraint is specified for
the label of the final state, the original transition will be re-
sumed as soon as the advice is finished.

To show a more involved example, we now consider an
additional behavior of the magician. Suppose the magician
is not always allowed to be enchanted by casting a spell,
he also need a certain amount of power (we abstract from
details of the magician gaining or losing power). This feature
is realized by the aspect Repel in Fig. 3(b). Aspect Repel
activates state ProbePower whenever state Enchanted is just
about to turn active. This state sets the boolean variable c to
true when the player is more powerful than the guard and to
false otherwise. The aspect then either proceeds to Enchanted
(goto tgt) if c is true, or it returns to the source of the advised
transition (label goto src).

An even more complex feature involves mutual exclu-
sion, as discussed in Sect. 2.2. That is, the magician should
not be able to enter CrystalRoom while being Enchanted.
Since mutual exclusion is a very common requirement in
parallel systems, we define a HIL A template to model it, see
Fig. 3(c). The template takes two State parameters, S and T.
The pointcut is a shortcut of “<before> S or <before> T”,
and specifies all the points in time when either S or T is
just about to get active. In such moments the advice is ex-
ecuted, which contains an empty body and simply conducts
the base machine to resume the advised transition (by going
to its target), when after the resumption the states S and T
would not be both active (condition nlike S, T). Compared
with the UML solution, the imperative details of mutual ex-
clusion are now transparent for the modeler, the modeling is
non-intrusive, the semantics of the aspect (template) is much
easier to understand hence less error-prone. Instantiating the
template by binding S to Enchanted and T to CrystalRoom
elegantly prevents our magician from entering the crystal
room while being enchanted and also from becoming en-
chanted while in the CrystalRoom.

4. Weaving

Weaving is the process of transforming the base machine
to incorporate the behaviors defined in aspects. It includes
determining (according to the pointcut) which transitions are
advised, and to advise these transitions correctly (so that the
behavior of the advice is executed and then the base machine
is resumed correctly).

Due to the semantic nature of HILA aspects, the final
check whether a transition is actually advised by some as-
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[else]
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T

(b) Result

Figure 4. Weaving a single aspect A

pect, and therefore if the advice should be executed, can
only be performed at run time. However, given an aspect
A, we can statically determine the set C(A) of candidate
transitions that may be advised by A. Our weaving process
actually applies a transformation to each candidate transi-
tion to implement the run-time logic that checks dynamically
whether the transition is advised and, if so, executes the ad-
vice and returns to the base machine according to the label
of the final state.

In the following, we first define in Sect. 4.1 some notation
that we need for the discussion. Then, in Sect. 4.2, we con-
sider the case that there is only one aspect to weave. Even on
this simplistic stage, some rather elaborate techniques are
required to calculate C'(A), implement the check whether
a transition is actually advised, and resume the base ma-
chine by activating the states demanded by the label. These
techniques will be extended in Sect. 4.3 to handle the more
realistic situation of a multitude of aspects being applied
simultaneously. In particular, our weaving is designed in
such a way that minimizes possible conflicts between as-
pects, and remaining conflicts at least can be detected at run
time. To keep the size of the examples manageable we use
a simplified excerpt from the state machine in Fig. 1(a) to
demonstrate the weaving process. In this excerpt, shown in
Fig. 7(a), we have removed some transitions which are not
essential to show features of the normalization and weaving
process.

4.1 Notation

The abstract syntax of UML state machines and HILA is
defined in Fig. 5. When discussing the weaving algorithms,
we use the usual UML convention and write prop(el) to re-
fer to the property prop of el. In order to better focus on the
weaving process, we use a simplified metamodel of UML
and do not consider entry and exit points, history, choice and
terminate vertices. History and choice vertices can be simu-
lated using other model elements, and terminate vertices can
be included by a simple extension of our weaving, see [17].
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Figure 6. Elimination of junction vertices

Moreover, we require the base machine to be free of junction
vertices,* which can be achieved performing the transforma-
tion shown in Fig. 6 to eliminate undesired junctions.

Given states s and z, and transition ¢, we write src(t)
for source(t), tgt(t) for target(t), LCR(s, z) for the least
region containing both s and z. Given region r, we write
substate™ (r) to represent all states (directly or recursively)
contained in 7. For a state s, we write substate®(s) to
represent |, ¢ egion(s) substate™ () and write substate®(s)

for substate™ (s) U {s}.

4.2 Weaving A Single HILA Aspect

The transformation applied to the candidate transitions in
the case of weaving one single aspect is described in Fig. 4.
Given an aspect A, where we assume it has the very general
advice as given in Fig. 2, we introduce for each transition
in the candidate set C(A) (we call its source state X and
its target state Y) a composite state, which we call Asp here

4 Except the targets of the transitions leaving initial vertices, if these are
junctions. Note that every region may contain an initial vertex.
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and in actual weaving is assigned a unique name. The state
Asp contains a slightly modified copy of the advice where:
1) labels of final states are removed (in plain UML state
machines there are no labels), 2) gotos are implemented by
storing the state that should be activated in the resumption
variable gt, and 3) an additional case distinction is added,
which is carried out when Asp is activated and ensures that
the advice body is only executed when the transition is really
advised. The construction of the condition to check here,
cond(A), will be explained in Sect. 4.2.2. After the execution
of Asp, the transition to fire is selected depending on the
value of gt. The transition from the junction to the final
state in Fig.4(b) is called the bypass transition of aspect
A. Tt ensures that the advice body is skipped if cond is not
satisfied.

In the following, we show in detail how we implement 1)
the selection defined by the pointcut and 2) the resumption
conditions. For both tasks, we first need to introduce trace
variables into the base machine to trace its execution.

4.2.1 Trace Variables

In plain UML state machines, no information is provided on
which states (in different regions) are currently active or on
which states have just turned inactive. Since HIL A aspects
may define behaviors to be executed just after a multitude
of states have been active, we must make such information
explicit by introducing additional variables.

For each state s of the base machine, we introduce a
variable ag, and set it to true in the entry action of s, and
to false in the exit action. We initialize all variables a, with
false. Obviously, a is true iff state s is active.

The basic idea of tracking states that have just turned
inactive is also to introduce for each state s a variable [.
ls is set to true by the exit action of s and set to false by
the exit action of the state activated after s. Since there may
be several transitions leaving s, and we cannot determine
statically which one will actually be fired (and therefore
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which state will be the next active one), we set [ to false
in the exit action of each state that may turn active after s.
Seen from the target’s point of view: for all states z and =,
we set the variable [,, to false in the exit action of z if z may
have been active just before z turns active.

Note, however, that generally states may be composite
and contain several orthogonal regions. State , which “may
have been active just before 27, is not necessarily the source
of some transition leading to z. Instead, for each state z, we
set in its exit action variable [, to false, for each state x such
that there is a transition entering z from x, from an ancestor
state of x, or from any state contained in any ancestor state
of z.

For example, we introduce for the state LevelWon in Fig. 1
the entry action @ evewon = true, setting variable a; cyemwon to
true to indicate that state LevelWon is currently active.

The exit action of LevelWon is more complex:

lLevelWon = true
lLadder = false; lEnchanted = false;
lrigne = false; lcoliectTreasure = false;
lp|ay = false; lHaII = false;
lCrystaIRoom = false; lLadder = false;

The first line indicates that after the execution of the exit ac-
tion LevelWon is the state (more generally, one of the states)
that has just turned inactive; the second line indicates that
Ladder and Enchanted are no longer such states (these are the
states from which—uvia a join vertex—LevelWon is directly
reached); the other three lines indicate that the substates of
Enchanted, as well as the states contained in the other region
of Play are no longer such states either. It is not necessary
to set IpowerUp OF Ispell to be false, because they cannot have
been the last active states before LevelWon turned active.

4.2.2 Pointcut

Equipped with trace variables, we are now in the position to
implement pointcuts.
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cY = false
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(c) Fork and assignments of false removed

Figure 8. Normalization of fork vertices

<before> A pointcut of the form <«before> s advises all
transitions which activate the state s. In UML, a transition t
may active a state s iff one of the two following cases is true:

1. tgt(t) = s, (for example, in Fig. 1, the transition T from
NewLevel to Hall activates state Hall),

2. (recall s may be a composite state) tgt(t) € substate™(s),
(transition T also activates Play).

To solve the problem of capturing both transitions (in
particular the second one), we first transform the base ma-
chine to eliminate the second form of state activation. The
transformation is straightforward. For each transition ¢ “goes
into” (see below) some state, we “redirect” ¢ to the container
state of tgt(t) by setting tgt(t) < state(container(tgt(t))),
and setting a fresh variable to indicate what to do when the
container state of tgt(¢) turns active. This variable is called
an initial variable and will be checked by the initial tran-
sition to determine the (first) state to activate after the con-
tainer’s activation. We say that a transition ¢ “goes into” a
state s iff s = state(container(tgt(¢))) and s is contained in
LCR(src(t), tgt(t)). When a transition ¢ of this kind is fired,
it activates not only tgt(t), but also the container state s. Our
transformation above removes such transitions.

After this transformation, every state is activated iff a
transition leading to the state is fired. Since a pointcut
<before> s does not contain any other constraints, we set
cond(s) simply to be true. That is, the aspect advises exactly
all the transitions leading to s. Therefore we do not need a
bypass transition for <before> aspects.

For example, if an aspect with pointcut «<before> Enchanted
is applied to Fig. 7(a), the base machine is first transformed
to Fig. 7(b), and the aspect advises the transitions from Spell
and Invisible to Enchanted. The variables cF and cC are used
to indicate whether to activate Fight or CollectTreasure when
Enchanted gets active.

Forks Note that the normalization step described above
has to be extended if the source of the transition going into
state s is a fork. For example, when Fig. 8(a) is normalized,
the result (Fig. 8(b)) will be violating the constraint that “all



transitions outgoing a fork vertex must target states in differ-
ent regions of an orthogonal state” [15, p.556]. Therefore, to
all such transitions, we apply an additional transformation
to remove the fork as well as those assignments where initial
variables are set to false. The final result is given in Fig. 8(c).

Differently than in the case of «<before>, a point-
cut of the form «after> S selects all transitions that are fired
just after the configuration S gets inactive.> Obviously, we
have to check if any state contained in S is deactivated. In
UML, a state s can be deactivated by any one of the follow-
ing transitions

<after>

1. all transitions ¢, such that src(t) s (for example,
in Fig. 1, when the Transition 7 from Enchanted to
LevelWon is fired, Enchanted is deactivated),

2. all transitions ¢, such that src(t) € substate™(s) and
tgt(t) ¢ substate™ (s) (7 also deactivates Play),

3. all transitions ¢, such that 3S € subvertex(L),L =
LCR(src(t), tgt(t)), tet(t) ¢ substate™(S) - s,src(t) €
substate™ (S) (7 also deactivates all states in the upper
region of Play).

Given an «afters S aspect, its candidate set is therefore
T = U,es(T1(s) U Ta(s) U T3(s)), where T1(s) = {t |
src(t) = s}, Ta(s) = {t | src(t) € substate™ (s) A tgt(t) ¢
substate™ (s)}, T3(s) = {t | s,src(t) € S forsome S €
subvertex(LCR(src(t), tgt(t)))} suchthatt ¢ substate™(S).

On each transition ¢ contained in the candidate set, we
still need to implement the run-time check whether t is
actually advised by a pointcut <after> S. When ¢ is fired,
we know that one of the states contained in S has just turned
inactive, we still have to check whether all states in .S were
active before the transition was fired. This is the case iff
(at run time) z = A . as V I, is true, i.e. for each state
s contained in S, either s is active, or s has just turned
inactive. Recall that when this check is performed, i.e. when
any transition ¢ € T is fired, it is not possible that all states
in S are active.

Finally, the constraint of the pointcut is also integrated
(by conjunction) into cond(A) to ensure the aspect is only
executed when the condition was satisfied. We therefore set
condition c in Fig. 4(b) to be cond(A) = z A cons(A). Recall
cons(A) is the OCL constraint of the <after> pointcut, see
Fig. 5(b).

Joins The above definition of 7" works fine if the base
machine does not contain any join vertex. In order to in-
clude joins as well, we extend the definition of the can-
didate to {t € T | tgt(t) isnotjoin} U 1", where T is
defined above, and 7" contains all transitions such that
src(t) is a join and for which ¢’ and X exist, such that
tgt(t) src(t), X € subvertex(LCR(src(t),tgt(t))),
src(t') € substate™(X) and 3s € S - s € substate™ (X).

5 Actually, S getting inactive is caused by the transitions being fired.
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The basic idea here is that if a transition’s target is not a join,
then the definition above works fine, and if the target is a
join, then we select the section leaving the join.

For example, let the base machine be given by Fig. 1(a),
an aspect «<afters Enchanted would advise the transitions
from Enchanted and the join to LevelWon, as well as from
Fight to Spell and PowerUp. Recall that since no constraint of
the pointcut is explicitly given, the default is true.

4.2.3 Resumption

When the execution of the aspect is finished (at a final state
of the advice), control is given back to the base machine by
activating the state specified in the label of the final state,
provided that the condition of the goto label is satisfied.

This is implemented as follows: we store in a resumption
variable the state to activate, introduce transitions from the
aspect state to all possible states (i.e. all states indicated by
all the final states in the advice), and decide where to go by
checking the value of the resumption variable at run time.

On every transition leading to a final state f of the as-
pect a (except the bypass b(a), see the introduction part of
Sect.4.2), we assign the state of label(f) to the resumption
variable. If a final state does not contain a label, the resump-
tion variable is set to be the target of the advised transition.
This variable will be used to determine the control flow of
the base machine when the advice is finished. The bypass
transition b(a) does not carry an effect, so that the default
value of the resumption variable is the target of the advised
transition.

We also have to make sure the condition of the final state
is satisfied before control is given back to the base ma-
chine. To this end, we guard the transitions leaving the as-
pect state by the condition cond(f). The oclConstraint part
of the condition can be copied into the guard. The other part,
cfgConstraint, which ensures that after the resumption a cer-
tain state configuration is (or is not) active, is implemented
by checking if all states contained in the given configuration
are active except for the target of the transition. In the imple-
mentation this amounts to checking the trace variables that
were introduced in Sect. 4.2.1.

Note that we also declare the completion event of the
aspect state to be deferrable®, to make sure that this event
is not lost even if the condition is not satisfied when the
execution of the aspect state is finished.

For example, Fig. 9 shows the result of weaving Fig. 3(b)
to the base machine Fig. 7(b). Note that both transitions
from Spell and Invisible to Enchanted are advised, and that the
resumption variables in the different aspect states are given
unique names (by the weaver).

4.3 Multiple Aspects

Obviously, in any non-trivial system multiple aspects are
needed to model the different features. For this reason, it is

6 Using the syntax */defer, as before.
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Figure 9. Weaving result of Fig. 3(b) to Fig. 7(b)

essential to design the weaving in a confluent way, i.e. the
result is independent of the order of the individual aspects
being woven. Particular care has to be taken for two kinds of
conflicts: created joinpoints and shared joinpoints.

4.3.1 Created Joinpoints

After the execution of an aspect, if state x should be acti-
vated, the HIL A semantics considers this also as a situation
to execute the <before> x aspects, if any. Our weaving al-
gorithm should ensure that in such cases, after the execu-
tion of the aspect and before state x is actually activated, all
<before> x aspects are really executed.

For the implementation, we introduce another normaliza-
tion step: before any weaving, we first “unify” the transitions
leading to the same states. That is, we introduce for each
state s a junction, which we call b4(s), introduce a transi-
tion tb(s) from b4(s) to s with no trigger, no guard and no
effect, and make all transitions entering s lead to b4(s). In
other words, we replace every transition from state x to s by
two transitions: one from x to b4(s), as well as tb(s). Given
an aspect with <before> s, the set of candidate transitions
T'(s) contains then only tb(s). We also implement goto s by
a transition from the aspect state to b4(s).” This way, when
an aspect is finished with goto s, the transition tb(s), and
therefore «before> s aspects do get executed.

Note that a prerequisite for this normalization is, in the ef-
fect of the transition from x to b4(s), to store the source state
of the original transition in a variable, otherwise the label
goto src of the advice could not be implemented correctly.

For example, applying this idea to Fig. 7(a), and then
weaving Fig. 3(b) to it, the result is shown in Fig. 10. Vari-
able s is used to indicate the (source of the) transition actu-
ally leading to the junction and then to AspEnchanted. The
value is then read in AspEnchanted for the implementation
of goto src.

7Except s is the target of the advised transition. In this case goto s is
implemented by a transition leading to s.
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Figure 11. Weaving: unifying transitions leading to the
same state

4.3.2 Shared Joinpoints

In non-trivial systems, joinpoints selected by (the pointcuts
of) two or more aspects are generally not disjiont. In the con-
text of HILA, this happens when at a certain point in time
in the execution of the base machine, two or more aspects
are all supposed to run. In aspect-oriented approaches, it is
important yet challenging to make sure that the weaving re-
sult does not (semantically) depend on the order in which the
aspects with shared joinpoints are woven, and that possible
conflicts between the aspects are minimized, see [1].

In HILA, we benefit from the concurrent nature of UML
state machines, and weave aspects with shared joinpoints
into orthogonal regions of the aspect state. At run time, the
aspects (that is, their advices) will be executed in parallel,
and no goto is executed until all of the aspects are finished.
This weaving is beneficial in that

e the weaving result is semantically independent of the
order in which the individual aspects are woven, since
different weaving orders only result in permutations of
the regions of the aspect state. At run time, all the regions
are, independently of their relative position, executed in
parallel,

¢ and possible conflicting gotos of different aspects can be
detected at latest at run time.



AspEnchanted

entry / gtE = ’E;

Enchanted

[cF && 1cC] w

Collect
PS ( ProbePower \[c] Treasure
fight d [otE =="E] [cC && IcF]
Spell /ch —tue c enoughPower() |9 = E .
gc= ,=Sfalse [else]
hide /9tE =5
Invisible 7cC = true;
cF = false
s=l
[gtE =="1]
[9tE =="S]
Figure 10. Normalization: before-section
) AspEnchanted Enchanted ®
entry / gtE1='E; gtE2="E; gtE3 ='E {E1 = 'E [cF 88 1cC) W ollec
° ( ProbePower \[c] ® &g g;E% =E @=6— = Fig Treasure
Spell ) fight . 40/ enoughPower() [9E1=E _Christal] [cC 8& IcF]
exit /cF =true; | O
/1_A=true | C 5 false [else]
— s='S /QtE1 =5
hide
Log [er e ®
S L4 JQE3=E ®
Asplnvisible
entry /gtl ="l
LA [else]
[gtl =="1]
Invisible 76C =true:
cF = false
$="l  [giE1=="I 8& gIE2 =’ && GIE3 =[]
[gtE1 =="S && gtE2 ='S && gtE3 =="S]

Figure 12. Weaving: shared joinpoints

For example, the result of weaving all three aspects de-
fined in Fig. 3, with (S, T) bound to (Enchanted, CrystalRoom),
to Fig. 7(a) is given in Fig. 12.

The idea of parallel execution of aspects is also valuable
in other transition systems, beyond UML state machines. An
example if given in Sect. 6.

5.

As a proof of concept, the above weaving process has been
implemented in Hugo/HILA, an extension of the UML
translator and model checker Hugo/RT. The case studies de-
scribed in [10, 19], as well as several smaller examples have
been translated and model checked using this implementa-
tion. Model checking the weaving result has helped validate
our weaving algorithms: we discovered some subtle errors in
earlier definitions of weaving and our implementation of the
weaver when model checking did not produce the expected
results. Having used our weaver in these small to medium

Implementation and Validation
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Figure 13. Base machine

scale projects demonstrated not only the advantages of ap-
plying aspect-oriented techniques to state-machine models,
but also that the implementation approach described in this
paper can be applied to non-trivial examples.

Currently Hugo/HILA does not support the graphical
notation of HILA. Instead, we have extended ute, the textual
input format of Hugo/RT, to accept aspects as well. As an
example, the ute definition of the simple base machine in
Fig. 13 is shown in Fig. 14, and the ute presentation of the
(instantiated) mutual-exclusion aspect in Fig. 3(c) is given



statemachine M1 {

states { transitions {
initial INIT; INIT -> FORK{}
fork FORK; FORK -> X.a.A1{}
state X { FORK -> X.b.B1{}
region a { X.a.Al -> X.a.A2 {}
state A1{} X.a.A2 > X.a.A1l {}
state A2{} X.b.B1 -> X.b.B2 {}
3 X.b.B2 -> X.b.B1 {}
region b { }
state B1{} }
state B2{}
}
}
}

Figure 14. UTE: base machine

aspect BeforeAspect {
before config {
state X.a.A2; states {
state X.b.B2; initial AI;
} labeledfinal AaF {
goto tgt
f nlike {A2, B2}

advice {

}
}
transitions {
AI -> AaF{}
}
}
}

Figure 15. UTE: instantiated aspect

in Fig. 15, with S and T being bound to A2 and B2. That is,
we implement a mutual-exclusion rule to prevent A2 and B2
from being active simultaneously.

After weaving, we ask Hugo/HILA if in the weaving re-
sult it is still possible for the states A2 and B2 to be active
simultaneously, i.e. whether or not the states are really mu-
tually excluded. This is expressed by the following formula
in linear temporal logic (LTL):

F (inState(X.a.A2) and inState(X.b.B2))

The operator F (finally) states that the formula given as its
argument will eventually hold, in this case that the states
A2 and B2 will be active simultaneously at some point in
time during the execution of the state machine. Hugo/HILA
answers that this is no longer possible, which confirms that
the mutual-exclusion aspect performs its intended function.

On the other hand, we also want to be sure that the aspect
does not break other properties of the base machine. For
example, we can also ask Hugo/HILA if it is still possible
for the states Al and B2 to be simultaneously active in the
weaving result. This is expressed by the formula

F (inState(X.a.Al) and inState(X.b.B2))

and Hugo/HIL A answers that this result is indeed still pos-
sible.
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6. Related Work

Prevalent approaches of incorporating aspect-orientation
into UML state machines, such as [3, 5, 12, 14], are mainly
syntactic: their semantics are typically defined by graph
transformation systems, such as Attributed Graph Grammar
(AGG, [16]). In contrast, HILA has a transition-system se-
mantics that is independent of any particular implementation
strategy. We can therefore define the semantics of aspects in
a purely behavioral manner and show that the weaving pro-
cess described in this paper is sound with respect to the
semantics; see [17] for details. Similar considerations apply
to weaving processes for systems like Mealy-automata [4]
or UML activity diagrams.

In static approaches, consistency checks are supported by
a confluence check of the underlying graph transformation,
see e.g. [12]. Due to the syntactic character of the aspects,
this check is also syntactic: there may be false alarms if
different weaving orders lead to syntactically different but
semantically equivalent results. In contrast, in our approach
described in Sect. 4.3.2, the error state is only entered when
the resumption variables are really conflicting.

The pointcut language JPDD [9] also allows the mod-
eler to define “stateful” pointcuts. Compared with HILA, a
weaving process is not defined. State-based aspects in re-
active systems are also supported by the Motorola WEAVR
tool [6, 20]. Their aspects can be applied to the modeling
approach Rational TAU®, which supports flat, “transition-
centric” state machines. In comparison, HILA is also ap-
plicable to UML state machines, that in general include con-
currency. Moreover, HIL A also considers hierarchical states
and comes up with a more elaborate weaving process.

Ge et al. [8] give an overview of an aspect system for
UML state machines. They do not give enough details for
a thorough comparison, but it appears that the HILA lan-
guage is significantly stronger the theirs, and that the issues
presented in this paper are not addressed by their solution.

The position of HILA in a model-driven software devel-
opment process is described in [2]. HILA has been success-
fully applied to model a crisis management system [10] and
in the area of Web Engineering [19].

7. Conclusions and Future Work

We have presented HILA, a high-level aspect language for
UML state machines, and in particular the weaving process
underlying the HILA implementation in Hugo/RT. By es-
chewing a purely graph-transformation based approach in
favor of a semantic one, HILA provides powerful, reusable
abstractions that can greatly increase the modularity of state-
machine models. Therefore HILA serves as an example of
how a carefully designed aspect system can improve the ex-
pressive power and modularity of the base language. By bas-
ing our implementation on Hugo/RT it becomes possible to

8http://ibm.com/software/awdtools/tau/



validate the desired properties of model and aspects as well
as the correctness of the weaving process.

The normalization step presented in this paper is heavily
dependent on the semantics of UML state machines. It con-
verts them into a form that is well-suited to static analysis
since it clarifies the relationship between transitions and the
states they activate and deactivate. Therefore this work may
also be useful for static analysis of UML state machines.

Meanwhile, the issues addressed by the weaving process
described in this paper are generally applicable to languages
that support concurrency and hierarchical states. For exam-
ple, we are involved in the development of the POEM lan-
guage [11], an aspect-oriented modeling language for self-
aware, autonomic ensembles. Aspects in POEM pose similar
semantic challenges as aspects in HILA, and we expect that
the implementation of POEM will utilize the mechanisms
described in this paper.

Currently, a graphical editor for HILA aspects is under
development [13] which will automate the translation step
from graphical models to the textual ute notation, and there-
fore make HIL A easier to use in software development.
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