
Two-Way Traceability and Conflict
Debugging for AspectLTL Programs ∗

Shahar Maoz
RWTH Aachen University, Germany

maoz@se-rwth.de

Yaniv Sa’ar
Weizmann Institute of Science, Israel

yaniv.saar@weizmann.ac.il

Abstract
Tracing program actions back to the concerns that have
caused them and blaming specific code artifacts for con-
cern interference are known challenges of AOP and related
advanced modularity paradigms. In this work we address
these challenges in the context of AspectLTL, a temporal-
logic based language for the specification and implementa-
tion of crosscutting concerns, which has a composition and
synthesis-based weaving process whose output is a correct-
by-construction executable artifact. When a specification is
realizable, we provide two-way traceability information that
links each allowed or forbidden transition in the generated
program with the aspects that have justified its presence or
elimination. When a specification is unrealizable, we pro-
vide an interactive game proof that demonstrates conflicts
that should be fixed. The techniques are implemented and
demonstrated using running examples.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords Aspect-oriented programming, linear temporal
logic, synthesis

∗ This research was supported by The John von Neumann Minerva Center
for the Development of Reactive Systems at the Weizmann Institute of
Science. In addition, part of this research was funded by an Advanced
Research Grant awarded to David Harel of the Weizmann Institute from
the European Research Council (ERC) under the European Community’s
7th Framework Programme (FP7/2007-2013). Finally, the first listed author
acknowledges support from a postdoctoral Minerva Fellowship, funded by
the German Federal Ministry for Education and Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25-30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

1. Introduction
Separation of concerns at the source code level supports
cleaner, modular designs, but may also make the traceabil-
ity and debugging of the implementations more technically
challenging. Thus, tracing program actions back to the con-
cerns that have caused them and blaming specific code arti-
facts for concern interference are known challenges related
to AOP and other advanced modularity paradigms.

AspectLTL [17] is a temporal-logic based language for
the specification and implementation of crosscutting con-
cerns in open reactive systems – discrete event systems that
maintain ongoing interaction with their environment. An
AspectLTL specification is made of a base system, given
as a finite-state machine specified in SMV [23] format,
and a set of LTL aspects, each of which is specified in a
similar SMV-like format, containing a symbolic represen-
tation of the aspect’s added behaviors (transitions) and a
related LTL specification. The language has a composition
and synthesis-based weaving process, based on GR(1) syn-
thesis [19], whose output is a correct-by-construction exe-
cutable artifact. An implementation of AspectLTL that pro-
duces a stand-alone Java controller was described in [17].

In this work we address the traceability and debugging
challenges in the context of AspectLTL. When a specifica-
tion is realizable, we provide two-way traceability informa-
tion that links each allowed or forbidden transition in the
generated program with the aspects that have justified its
presence or elimination. When a specification is unrealiz-
able, we provide an interactive game proof that demonstrates
conflicts that should be fixed.

AspectLTL uses a declarative, symbolic programming
style. For specifications that consist of several aspects and
describe some possibly crosscutting concerns, traceability
and debugging are very different than their counterparts in
imperative programming languages. In particular, the pres-
ence or elimination of a behavior (i.e., a transition from one
state to another) in the program, may be the result of the ap-
plication of several, possibly overlapping, non-independent
concerns. To support traceability, we use symbolic opera-
tions to check for intersections between the transitions that
can or cannot be taken and the formulas defined in the LTL

35

aspects. To support conflict debugging in unrealizable spec-
ifications we use the notion of counterstrategies [13]. By re-
versing the roles of the system and the environment in the
synthesis game, we are able to generate a winning strat-
egy for the environment. We use this strategy to produce a
counter-implementation: an interactive program, whose runs
show exactly how any generated system can be forced by an
(adverse) environment to violate the specifications.

One may question the need for traceability and debugging
for a language with a ‘correct-by-construction’ implementa-
tion: if the implementation is ‘correct-by-construction’, who
needs debugging? Correctness, however, is relative to the
specification: if the engineer writes a conflicting, unrealiz-
able specification, no correct implementation can be gener-
ated. Instead, a conflict debugging technique should be used
to prove unrealizability and point the engineer to conflicts in
her specification. Thus, the ‘correct-by-construction’ imple-
mentation does not eliminate the need for debugging: it lifts
debugging from the concrete implementation to the higher-
level, declarative specification.

Further, one may question the need for traceability for
realizable specifications: if the specification is realizable
and the implementation is ‘correct-by-construction’, who
needs traceability? Correctness of a realizable specification
is, however, relative to the engineer’s intention: when run-
ning the generated controller (the generated Java program)
of a realizable specification, the engineer may experience
some behavior she had not intended to be possible or miss
some behavior she had intended to be performed. This means
that although the specification is consistent, that is, mathe-
matically, it is too permissive or too restrictive with regard
to the engineer’s intention. If the generated program does
something that was not intended, the engineer can use trace-
ability to check which part of the specification allows it.
If the generated program does not do something that was
intended, the engineer can use traceability to check which
aspect has prevented it.

The new traceability and debugging techniques are imple-
mented in the AspectLTL plug-in, available from our web-
site [2], together with several running examples. We encour-
age the interested reader to try them out.

Finally, in a related line of research we are working on the
addition of environment assumptions to AspectLTL syntax
(in a dedicated LTLSPECENV section) and semantics (in the
synthesis phase), thus taking full advantage of the expressive
power of GR(1) [19]. In this paper, however, we chose to
focus on the traceability and debugging techniques and limit
most of the discussion to the AspectLTL fragment defined
in [17], which does not contain environment assumptions.
Nevertheless, where relevant, we mention assumptions in
several places in the paper and discuss their possible effect
on the traceability and debugging techniques.

Sect. 2 provides background on AspectLTL. Sect. 3
presents the running example we use. Sect. 4 defines and

demonstrates traceability, Sect. 5 extends our example with
additional aspects that are used in Sect. 6, which defines and
demonstrates conflict debugging. Implementation and evalu-
ation are presented in Sect. 7. Sect. 8 discusses related work
and Sect. 9 concludes.

2. Preliminaries
2.1 An overview of AspectLTL
AspectLTL [17] is a language for the specification and im-
plementation of crosscutting concerns, based on linear tem-
poral logic (LTL) [20]. The aspects of AspectLTL, called
LTL aspects, enable the declarative specification of expres-
sive crosscutting concerns. These include the specification
of safety properties, which may be used to prevent a base
system from visiting ‘bad states’, the specification of live-
ness properties, which may be used to force a base system to
visit ‘good states’ (infinitely often), and the addition of new
behaviors to a base system, which is done by specifying the
existence of new transitions and new states as necessary. To
use the categorization by Katz [11], LTL aspects can specify
spectative, regulative, and invasive aspects.

AspectLTL has a synthesis-based weaving process, whose
output is a correct-by-construction executable artifact. Fol-
lowing a composition of the specified aspects with a base
system, using symbolic disjunctive and conjunctive oper-
ations, we formulate the problem of correct weaving as a
synthesis problem [21], essentially a game between the en-
vironment and the (augmented) base system. An algorithm
based on [19] is used to solve the game, that is, to provide
the augmented system with a winning strategy, if any.

If a winning strategy is found, it is presented as a de-
terministic, executable automaton, which represents an aug-
mented base system whose behavior is guaranteed to adhere
to the specified aspects, in all possible environments. If a
winning strategy is not found, we know that it does not ex-
ist, that is, that no system exists which is based on the base
system and can adhere to the specified LTL aspects in all en-
vironments. Thus, LTL aspect composition and synthesis is
sound and complete.

An AspectLTL specification is made of a base system
and a set of LTL aspects. The base is given as a finite-
state machine specified in SMV [23] format. Each of the LTL
aspects is specified in a similar SMV-like format, containing
a symbolic representation of the aspect’s added behaviors
(transitions) and a related LTL specification.

AspectLTL is supported by an Eclipse plug-in, developed
on top of JTLV [22], a framework for the development of
verification algorithms, using BDD-based symbolic mecha-
nisms. The plug-in is available from our website [2], with
several examples and a programmer’s guide. It includes sup-
port for editing and synthesizing AspectLTL programs, that
is, it uses the results of the synthesis to generate an exe-
cutable artifact in the form of stand-alone controller written
in Java. As part of our work in the present paper, we have

36

implemented the traceability and debugging features we de-
scribe and have integrated them into the plug-in.

A thorough and formal account of AspectLTL appears
in [17]. Here we provide only the definitions that are re-
quired in the later parts of the paper.

2.2 Definitions (from [17])
We use the usual LTL notations (defined in [16, 20]), X
(next), F (eventually) and G (globally), abbreviations of
the Boolean connectives ∧,→ and↔, and the usual defini-
tions for true and false.

A discrete system (DS) [12] is a symbolic representation
of a transition system with finitely many states. Formally, a
DS D = 〈V, θ, ρ〉 consists of the following components:

• V = {v1, ..., vn} : A finite set of Boolean variables. 1 A
state s is an interpretation of V , i.e., s ∈ ΣV .

• θ : The initial condition. This is an assertion over V
characterizing all the initial states of the DS. A state is
called initial if it satisfies θ.

• ρ : A transition relation. This is an assertion over the
variables in V ∪ V ′, relating a state s ∈ ΣV to its D-
successors s′ ∈ ΣV′ , i.e., (s, s′) |= ρ.

We define a run of the DS D to be a maximal sequence
of states σ = s0, s1, . . . satisfying (i) initiality, i.e., s0 |= θ,
and (ii) consecution, i.e., for every j ≥ 0, (sj , sj+1) |= ρ.
A sequence σ is maximal if either σ is infinite or σ =
s0, . . . , sk and sk has no D-successor, i.e., for all sk+1 ∈ Σ,
(sk, sk+1) 6|= ρ. We say that a DS D satisfies a specification
ϕ, denoted D |= ϕ, if every run of D satisfies ϕ.

Given a subset of variables X ⊆ V , a DS D is determinis-
tic with respect to X , if (i) for all states s, t ∈ ΣV , if s |= θ,
t |= θ, and both s and t have the same projection to the vari-
ables in X , then s = t, and (ii) for all states s, s′, s′′ ∈ ΣV ,
if (s, s′) |= ρ, (s, s′′) |= ρ, and both s′ and s′′ have the same
projection to the variables in X , then s′ = s′′. Otherwise, D
is called non-deterministic. Note that conventional programs
(i.e., “real” programs) are deterministic with respect to their
input variables.

Given a subset of variables X ⊆ V , a DS D is complete
with respect to X , if (i) for every assignment sX ∈ ΣX ,
there exists a state s ∈ ΣV such that its projection to X
is sX , and s |= θ, and (ii) for all states s ∈ ΣV and
assignments s′X ∈ ΣX , there exists a state s′ ∈ ΣV such
that its projection to X is s′X , and (s, s′) |= ρ.

A deterministic and complete discrete system is called a
controller.

We are interested in open systems, that is, systems that in-
teract with their environment. We model an open system by
a discrete system whose variables are divided between envi-
ronment controlled variables (inputs) and system controlled
variables (outputs). A specification for an open system is in-

1 In our work we use variables that range over any finite domain. These can
be reduced to the Boolean variables used in the theoretical framework here.

tended to hold for all possible environments. That is, to sat-
isfy a specification, the system should guarantee that all its
runs satisfy the specification, regardless of the environment’s
choice of assignments to input variables.

Given a specification, realizability amounts to checking
whether there exists a controller that satisfies it. If the spec-
ification is realizable, then the construction of such a con-
troller constitutes a solution for the synthesis problem. As-
pectLTL is based on the synthesis of LTL specifications that
are written (or can be rewritten) in the form defined below.

DEFINITION 1.
Let X be a set of input variables, and Y be a set of output

variables. We define the following fragment of LTL formu-
lae2of the form

ϕ : ϕi ∧ ϕt ∧ ϕg (1)

where

(i) ϕi is a Boolean formula which characterizes the initial
states of the implementation.

(ii) ϕt is a formula of the form
∧

i∈I GBi where each Bi

is a Boolean combination of variables from X ∪Y and
expressions of the form X v where v ∈ X ∪Y . ϕt char-
acterizes the transition relation of the implementation.

(iii) ϕg is a formula of the form
∧

i∈I GFBi where each
Bi is a Boolean formula. ϕg characterizes liveness
requirements for the implementation.

[19] presented an efficient polynomial time algorithm for
the realizability and synthesis of specifications of the class
of Generalized Reactivity(1) formulae (GR(1)). The GR(1)
fragment contains formulas of the form defined in Equ. 1
and thus the solution presented in [19] is good for our needs.

DEFINITION 2 (Base system).
A base system is a discrete system B = 〈VB = Ve

B∪Vs
B , θB ,

ρB〉 consisting of the following components:

• Ve
B = {u1, ..., vm} : A finite set of environment variables.

• Vs
B = {v1, ..., vn} : A finite set of system variables.

• θB : An assertion over VB characterizing the initial
states of B.

• ρB : An assertion over VB ∪ V ′B characterizing the tran-
sition relation of B.

Note that we do not require a base system B to be de-
terministic (although our generated controller should be
deterministic and complete with respect to Ve

B). In cases
where the base system represents a ‘real’ concrete imple-
mentation, it would indeed be deterministic. Supporting non-
deterministic base systems is useful because it enables the
use of abstractions.

DEFINITION 3 (LTL aspect).
An LTL aspect is a structure A = 〈VA = Ve

A ∪ Vs
A, θA, ρA,

Ls
A〉 consisting of the following components:

2 also known as the temporal semantics of just discrete systems (JDS) [12].

37

• Ve
A : A finite set of variables. Ve

A consists of environment
variables that are defined at the base and used in the as-
pect, denoted by Veext

A , and of new environment variables
introduced by the aspect, denoted by Venew

A .
• Vs

A : A finite set of variables. Vs
A consists of system

variables defined at the base and are used in the aspect,
denoted by Vsext

A , and of new system variables introduced
by the aspect, denoted by Vsnew

A .
• θA : An assertion over VA characterizing initial values

added by A.
• ρA : An assertion over VA∪V ′A characterizing transitions

added by A.
• Ls

A : The aspect’s LTL specification given as a formula
in the form of Equ. 1 (defined inside Defn. 1) over the
variables in VA.

Any or all the components may be empty. If Ls
A is not speci-

fied it is considered to be true.

DEFINITION 4 (AspectLTL specification).
An AspectLTL specification is a structure S = 〈B,A〉 where
B is a base system and A = {A1, A2, .., Ak} is a set of LTL
aspects.

We omit obvious syntactic constraints, type checking, and
name space issues, e.g., that for all Ai ∈ A, the external
variables of Vs

A are indeed defined by the base system, i.e.,
that Vsext

A ⊆ VB , and that the domains of these variables,
as defined in the aspects, are subdomains of the variables’
domains as defined in the base.

DEFINITION 5 (AspectLTL implementation).
A discrete system C = 〈VC , θC , ρC〉 is an implementation

of an AspectLTL specification S = 〈B,A〉 iff the following
hold:

• VC = VB ∪
⋃

A∈A VA
• θC characterizes the set of initial states θB ∨

∨
A∈A θA

• ρC is a subset of the transition relation satisfying ρB ∨∨
A∈A ρA

• C is deterministic with respect to Ve
B ∪

⋃
A∈A Ve

A

• Each run of C satisfies
∧

A∈A Ls
A.

Note that a specification defines no order between its
aspects and indeed, the semantics of AspectLTL defined
above is agnostic to aspect order.

DEFINITION 6 (AspectLTL realizability).
An AspectLTL specification is realizable iff it has an imple-
mentation.

3. A running example
Our running example is a printer management software,
specified using a base and several aspects. The base de-
scribes a simple finite state machine over several system
variables (state, setup, print) and a single environment

1 MODULE PrinterBase

2 VARENV -- environment variables (inputs)

3 newJob : boolean;

4 VAR -- system variables

5 state : {ini ,idle ,work};

6 setup : {nil ,warm ,chk ,done};

7 print : {nil ,start ,output ,done};

8 ASSIGN

9 init(state) := ini;

10 init(setup) := nil;

11 init(print) := nil;

12
13 next(state) := case

14 state=ini & setup=done : {ini ,idle};

15 state=idle & newJob : {idle ,work};

16 state=work & print=done : {work ,idle};

17 1 : state;

18 esac;

19 next(setup) := case

20 state=ini & setup=nil : warm;

21 state=ini & setup=warm : {warm ,chk};

22 state=ini & setup=chk : {chk ,done};

23 state!=ini : nil;

24 1 : setup;

25 esac;

26 next(print) := case

27 state=work & print=nil : start;

28 state=work & print=start : output;

29 state=work & print=output : done;

30 state=work & print=done : nil;

31 1 : print;

32 esac; 	�
Listing 1. The code for the printer base system

controlled variable (newJob). Roughly, the printer starts in
an ini state and following several steps can move to the
idle state. Then, whenever a printing request is sent (the
environment sets newJob), the system moves to work state,
the request is printed (in several steps), and the system goes
back to the idle state. The base serves as a blue print for the
system to be. We show its code in List. 1.

Note that the base system is not deterministic. For exam-
ple, when state=ini and setup=warm, it can either stay in
setup=warm or move to setup=chk (representing ‘check’
phase) (line 21). As another example, when state=idle

and the environment sets newJob, the system can move to
work state or stay in state=idle. Such nondeterminism
forms an abstraction for a set of states whose details are not
yet specified. Still, the result of synthesis will be a concrete
implementation, representing a deterministic controller.

Several features are defined on top of the base, and each
is specified using a separate LTL aspect. We describe two of
them here and leave two additional ones to Sect. 5.

The aspect PrinterCancelJob (List. 2) adds a can-
cel feature. Roughly, when the system is in state=work

and the environment sets cancel to true (the user pressed
the cancel button), the printer should immediately move
to state=idle. More formally, this is specified in two
parts. The TRANS section adds a transition to set the next

38

1 ASPECT PrinterCancelJob

2 VARENV

3 new cancel : boolean;

4 VAR

5 ext state : {idle , work};

6 ext setup : {nil};

7 ext print : {nil};

8 TRANS

9 cancel & next(state)=idle &

10 next(print)=nil & next(setup)=nil;

11 LTLSPEC

12 [] ((cancel & state=work)

13 -> next(state)=idle) &

14 [] ((cancel & state=work)

15 -> next(setup)=nil) &

16 [] ((cancel & state=work)

17 -> next(print)=nil); 	�
Listing 2. The PrinterCancelJob LTL aspect

value of state to idle and of setup and print to nil.
The LTLSPEC section is broken into three safety formu-
las: it must be globally true that immediately after cancel
& state=work the system would satisfy state=idle,
setup=nil, and print=nil. Thus, when state=work and
cancel is true, this forces the system to follow the transition
that was added in the TRANS section.

The aspect PrinterGuarantees (List. 3) forces the
printer to (1) eventually complete its initialization and
(2) eventually process jobs set by the environment. This
is done by specifying liveness properties in the form of
two response formulas: (1) globally, if state=ini then
eventually state=idle and setup=done, and (2) glob-
ally, if state=idle and newJob is set, then eventually
state=work. It could have been a better design to refac-
tor these two guarantees into separate aspects (this would
have no semantic consequences). We chose not to separate,
so as to demonstrate that AspectLTL aspects can specify
more than one liveness formula and that our traceability and
debugging information is accurate: it points to specific for-
mulas within the aspects.

Finally, the printer example is relatively small and simple.
We use it to demonstrate two-way traceability and conflict

1 ASPECT PrinterGuarantees

2 VARENV

3 ext newJob : boolean;

4 VAR

5 ext state : {ini , idle , work};

6 ext setup : {done};

7 LTLSPEC

8 // guarantee to finish ini.

9 [] (state=ini

10 -> <> (state=idle & setup=done)) &

11 // guarantee to respond to newJob.

12 [] ((state=idle & newJob)

13 -> <> state=work); 	�
Listing 3. The PrinterGuarantees LTL aspect

debugging, which are the focus of the paper. AspectLTL
programs can be larger and much more complex.

4. Traceability
When an AspectLTL specification is realizable, traceability
amounts to providing information that traces each allowed
or forbidden transition in the resulting deterministic discrete
system back to the aspects that have justified its presence
or elimination. Below we formally define and demonstrate
the concepts of positive and negative justifications and show
how they are computed.

4.1 Positive justification
DEFINITION 7 (Positive justification).
Let S = 〈B,A〉 be an AspectLTL specification, let C = 〈VC ,
θC , ρC〉 be a DS that implements it, and let t ∈ ρC be
a transition in the implementation. We say that an aspect
A ∈ A positively justifies t iff t |= ρA. We say that the
base B positively justifies t iff t |= ρB . We denote the set of
aspects (and base, if applicable) that positively justify t by
pos(t).

By definition of AspectLTL semantics, every transition in
an implementation must be positively justified by the base or
by at least one of the aspects, that is, ∀t ∈ ρC , pos(t) 6= ∅.
A transition may be positively justified by several aspects.

For example, consider the specification S = 〈PrinterBase,
{PrinterCancelJob, PrinterGuarantees}〉. When in state
state=idle & cancel, the synthesized implementation
includes the self transition to remain in state=idle. Com-
puting positive justifications shows us that this transition
is justified by the base PrinterBase as well as by the
PrinterCancelJob aspect. As another example, when in
state=work, the synthesized implementation includes the
transition to state=idle even when print!=done. This
transition, however, is justified only by the PrinterCancelJob
aspect.

4.2 Negative justification
Negative justification is defined for transitions that cannot
be part of the implementation. We distinguish two kinds,
explicit and implicit. Explicit negative justification happens
when a safety formula disallows a transition. Implicit neg-
ative justification happens when a transition is disallowed
because it leads to a losing state, i.e., a state from which the
system cannot win the synthesis game. Formally:

DEFINITION 8 (Negative justification).
Let S = 〈B,A〉 be an AspectLTL specification, let C = 〈VC ,
θC , ρC〉 be a DS that implements it, and let t be a transition
from a state in the implementation to a losing state.

• We say that t is explicitly negatively justified by the spec-
ification S iff (1) t |= ρB ∨

∨
A∈A ρA and (2) there exists

A ∈ A such that t 6|= ϕt where ϕt is the transition part
(safety formula) of Ls

A.

39

• We say that t is implicitly negatively justified by the speci-
fication S iff (1) t |= ρB∨

∨
A∈A ρA, (2) it is not explicitly

negatively justified, and (3) it leads to a losing state, i.e.,
a state from which the system cannot guarantee to win
the synthesis game (the environment can win).

As an example, consider the specification S = 〈Printer-
Base, {PrinterCancelJob, PrinterGuarantees}〉. When
cancel is set by the environment, the safety conjunct (lines
12-13) in PrinterCancelJob aspect LTLSPEC section, pre-
vents state=work from staying in state=work, even if a
newJob is set. Thus, this transition is explicitly negatively
justified by PrinterCancelJob.

As another example, in the same specification, when a
newJob is set in state=idle, the implementation cannot
follow the transition that stays in state=idle (as allowed
by PrinterBase at line 15) because this would lead to a
losing state. For example if the environment chooses to reset
the newJob and never set it again, the system will not be
able to satisfy its response guarantee to eventually arrive to
state=work (line 12-13 of PrinterGuarantees).

Note that not all transitions that are not in the implemen-
tation have to be negatively justified, explicitly or implicitly.
Some such transitions may be not available in the implemen-
tation because they are not included in any of the transition
relations defined by the base or the aspects, or because of
choices made by the synthesis computation [19].

Finally, note that our definition of positive and negative
justifications does not consider the possible effect of envi-
ronment assumptions (see our remark at the end of Sect. 1).
For example, in the presence of environment assumptions,
additional traceability information that links the choice of
transitions in the implementation to specific assumptions
would be useful.

4.3 Computing two-way traceability
We compute positive justifications by iterating over the
states of the implementation. For each transition from a state
to a successor state, and for each of the TRANS sections of
the aspects, we perform a single symbolic check to deter-
mine whether it is positively justified.

We compute explicit negative justifications by iterating
over the states of the implementation. For each state in the
implementation we identify the set of transitions that are
allowed by the base or the TRANS sections of the aspects,
but are blocked by safety formulas from some LTLSPEC

sections. Computing implicit negative justifications is done
by a similar symbolic operation, with respect to a ‘safety
formula’ representing the set of transitions to all losing states
(the symbolic representation of this set is a byproduct of
the synthesis algorithm). To avoid exhaustive enumeration,
we can either report the symbolic representation of each
identified negative justification, or extract a witness.

Note that the traceability results point not only to the rele-
vant aspects but also to their specific subformulas that partic-

1 ASPECT PrinterPause

2 VARENV

3 new pause : boolean; -- new input

4 VAR

5 ext print : {}; -- no value is assumed

6 TRANS

7 pause & print=next(print);

8 LTLSPEC

9 [] (pause -> print=next(print)); 	�
Listing 4. The PrinterPause LTL aspect

ipate in the justifications. We use the same results to provide
traceability in the other way too: given a subformula from
one of the aspects, we identify all transitions it has positively
or negatively justified relative to a specific implementation.
For example, our technique shows that the subformula in the
TRANS section of the PrinterCancelJob aspect (lines 9-
10), has positively justified many transitions in the imple-
mentation, e.g., a transition to state=idle, print=nil,
and setup=nil, from many states where state=work &

cancel=true, and from many states where state=idle &

cancel=true.
All traceability results are collected so that they can be

reported and presented in the plug-in UI (see Sect. 7).

5. Extending the example
We now present additional aspects that we will use in Sect. 6.

The aspect PrinterPause (List. 4) adds a pause printing
feature: When the user presses the pause button, the printer
should stop changing its print status. The aspect includes
a new environment variable pause, representing the input
from a pause button. It is defined in two parts: the TRANS

section adds a transition to preserve the value of print when
pause is true, and the LTLSPEC section specifies a safety
formula, to force the system to pause in this case.

The aspect PrinterInkManagement (List. 5) adds ink
related functionality: updating the ink cartridge state and dis-
allowing printing when no ink is left. It defines two new vari-
ables (1) an environment variable fillCartridge and (2) a
system variable ink representing the level of ink in the car-
tridge. The aspect constrains the initial value of the new ink

variable and the related transitions: either fillCartridge
is set and the ink level is correspondingly set to 7 (represent-
ing the maximal ink level), or the level of ink is decreased
by one after print=output. Moreover, the aspect forbids
the printer from printing when ink=0 (there is no ink left),
using a safety formula.

6. Conflict debugging
Some specifications are unrealizable: no implementation ex-
ists that can satisfy all their required guarantees in all en-
vironments. Deciding realizability, however, is not enough.
We are interested in generating a proof that shows how an
adverse environment can force the system to violate its spec-
ification and identify the conflicting aspects to blame. The

40

1 ASPECT PrinterInkManagement

2 VARENV

3 new fillCartridge : boolean;

4 VAR

5 ext print : {start , output };

6 new ink : 0..7;

7 LTLSPEC

8 ink = 7 &

9 [] (next(ink) = case

10 fillCartridge : 7;

11 ink >0 & print=output : ink - 1;

12 1 : ink;

13 esac);

14 LTLSPEC

15 [] (! (ink=0 & print=start)); 	�
Listing 5. The PrinterInkManagement LTL aspect

proof we generate is interactive: it is an executable counter-
implementation of the specification, which the engineer can
not only manually statically analyze, but also ‘play against’.
The interactive, guided debugging session, illustrates to the
engineer how, regardless of her choices, she will eventually
end up violating one or more of the required specifications.

DEFINITION 9 (AspectLTL counter-implementation). A dis-
crete system C = 〈VC , θC , ρC〉 is a counter-implementation
of an AspectLTL specification S = 〈B,A〉 iff the following
hold:

• VC = VB ∪
⋃

A∈A VA
• θC characterizes the set of initial states θB ∨

∨
A∈A θA

• ρC is a subset of the transition relation satisfying ρB ∨∨
A∈A ρA

• C is deterministic with respect to Vs
B∪

⋃
A∈A Vs

A (i.e., the
system variables rather than the environment variables
as in Defn. 5)

• Each run of C satisfies
∨

A∈A ¬Ls
A (i.e., falsifying one of

the LTL specifications).

LEMMA 1. An AspectLTL specification is unrealizable iff it
has a counter-implementation.

The Lemma follows from the fact that the synthesis game
is determined, that is, for every game instance there is a win-
ning strategy for one of the players: either we can synthesize
a controller or we can produce a counter-implementation.

The key to computing a counter-implementation is to set
up a game with reversed roles. A solution to this game is
an artifact representing an environment behavior that will
eventually lead to violating the specification, no matter how
the system will react. Such an artifact is a proof that the
specification is unrealizable, as required.

Moreover, we accompany the counter-implementation
with additional information. First, traceability information
(as in the case of realizable specifications), which shows jus-
tifications to the transitions in the counter-implementation.
Second, at each of the states in the counter-implementation,

Figure 1. Debug information for Example I

we give pointers to the violated AspectLTL statements, i.e.,
to the specific liveness formulas, from the different aspects,
that do not hold in the state. This information points to the
exact aspects to blame.

We give two examples of unrealizable specifications with
generated counter-implementations, as computed by the As-
pectLTL debugger.

6.1 Example I
As a first example, consider the AspectLTL specification
S = 〈PrinterBase, {PrinterCancelJob, PrinterGuar−
antees, PrinterPause}〉. Is this specification realizable?

Our debugging technique identifies that this specification
is unrealizable and generates a short counter-implementation,
as illustrated in the diagram shown in Fig. 1. In the diagram
we use abbreviated notation: S for state, U for setup, P
for print. To make it more readable we use an abstrac-
tion: in the states we show only the values of the system
variables. The values of environment controlled variables
(inputs) for the next state are shown on its incoming tran-
sition as guards. A transition without a guard means that
it is taken for a value that the environment chose from its
possible winning strategies (i.e., the actual input value cho-
sen by the environment makes no difference in this case for
our example of proving unrealizability). We now explain the
counter-implementation in detail.

From states 0 to 3, the system is in state=ini. In these
states, the system guarantee to eventually reach state=idle
(as specified in the PrinterGuarantees aspect, lines 9-10
of List. 3) is not met, so the environment allows the system
to stay in these states as long as it wishes (with self tran-
sitions); if the system chooses to stay there forever, it will
‘lose the game’, because this guarantee will not be satisfied.

In state 4, the environment sets newJob to true (the en-
vironment sends a new print job). Now the system has two
choices: either to start working on the new printing job (have
state=work in state 6) or remain in state=idle in state 5.
Both alternatives are, however, not good.

41

If the system chooses to stay in state=idle, the en-
vironment immediately resets newJob to false: the system
is forced to stay forever in state 5, where the ‘response to
new job’ guarantee specified in the PrinterGuarantees

aspect (lines 12-13 of List. 3) is not met. If the system
chooses to start working on the new job, the environ-
ment blocks it by setting the cancel and pause inputs to
true (pressing the cancel and pause buttons at the same
time!). Now, in state 7, the system reaches a deadlock,
caused by a conflict between the safety formulas from the
PrinterCancelJob and PrinterPause aspects: the first
requires that the next state will have print=nil (lines 16-
17 of the PrinterCancelJob aspect), while the second
requires that in the next state the value of print will stay
the same (line 9 of the PrinterPause aspect), i.e., in this
case, remain print=start.

6.2 Example II
As a second, somewhat more complex example, consider the
AspectLTL specification S = 〈PrinterBase, {Printer-
InkManagement, PrinterGuarantees, PrinterPause}〉.
Is this specification realizable?

Our debugging technique identifies that this specification
is unrealizable and generates a counter-implementation, as
illustrated in the diagram shown in Fig. 2. Again we use
abbreviated notation: S for state, U for setup, P for print,
and I for ink. We now explain it in detail.

From states 0 to 3, as in the previous example, the sys-
tem is in state=ini. In these states, the system guaran-
tee to eventually reach state=idle (as specified in the
PrinterGuarantees aspect, lines 9-10 of List. 3) is not
met, so the environment allows the system to stay in these
states as long as it wishes (with self transitions); if the sys-
tem chooses to stay there forever, it will ‘lose the game’,
because this guarantee will not be satisfied.

After reaching state 4, where the environment has sent a
new printing job, the system needs to choose between two
alternatives, either start working on the printing job (and
move to state 6 where state=work) or stay in state=idle

and move to state 5. Again, both alternatives are not good.
According to PrinterGuarantees, the new job set in

state 4 requires that eventually state=work. If the sys-
tem chooses not to start working immediately, the environ-
ment resets newJob and the system is forced to not reach
state=work, forever, thus violating this guarantee. If the
system chooses to start work immediately (and move to state
6), the run continues until the print job is done. As the envi-
ronment tries to fail the system, it continues to set newJob
whenever the system is back in state=idle, aiming to
eventually reach a state where ink=0. Whenever newJob is
set, the choice between working or staying in idle state is
repeated (we do not show all repetitions in the diagram).

Finally, in state 17, there is no more ink, and the en-
vironment sets newJob for the last time. Again, if the
system chooses not to handle this immediately and keep

Figure 2. Debug information for Example II

state=idle, it is forced to stay in state 18 forever (the envi-
ronment never sets newJob again) and thus lose the game by
not satisfying the printing guarantee. If the system chooses
to work on the job it moves to state 19 with state=work, the
safety formula of line 15 in the PrinterInkManagement

aspect prevents it from actually start printing (with print=

start) and so it reaches a deadlock.

6.2.1 Unrealizable core
Interestingly, note that in this counter-implementation the
environment did not ‘use’ the input pause, although the
PrinterPause aspect is included in the specification. In-

42

deed, the traceability information that we compute shows
that the specifications of the PrinterPause aspect (the
added transition and the safety formula) neither positively
justified any of the transitions in the counter-implementation
nor removed any negatively justified transitions that could
have been defined as outgoing from the states in the counter-
implementation. Thus, the traceability information shows
that PrinterPause was not necessary in the proof for un-
realizability: the combination of PrinterInkManagement
and PrinterGuarantees is, by itself, unrealizable.

Our approach can identify such unnecessary aspects in
the unrealizability proof, after a counter-implementation is
computed. However, our current technique is not guaranteed
to find a minimal unrealizable subset of the specification.
This relates to the problem of finding an unrealizable core.
See our discussion of future work in Sect. 9.

6.3 Computing a counter-implementation
Computing the counter-implementation is done by solving a
Rabin game where the environment tries to falsify at least
one of the system’s guarantees, following the fixpoint algo-
rithms described in [13, 18]. Roughly, the algorithm starts
from the set of states from which the system has no valid
possible successors. It then iterates ‘backwards’ by adding
states from which the environment can either force the sys-
tem to (1) reach previously found losing states, or (2) con-
stantly violate one of the system’s guarantees (each set of
states where the guarantee is constantly violated, is com-
puted using another nested fixpoint).

The fixpoint is reached when no additional losing states
can be found. If there exists an environment initial choice
for which all the system’s initial choices are in the com-
puted set, then the specification is unrealizable. A counter-
implementation can be constructed from the intermediate
values of the fixpoint computation (see [13, 19]), while
pointing to the system’s guarantee that the strategy is try-
ing to falsify at each state of the counter-implementation.
In the resulting counter-implementation, as presented to the
user, each state is annotated with (1) the system’s guarantee
that the strategy is “currently” trying to falsify, and (2) the
related traceability information as described in Sect. 4.

6.4 Environment assumptions
As mentioned at the end of Sect. 1, most of our discussion
in this paper does not consider environment assumptions.
In the context of conflict debugging, however, the presence
of environment assumptions is significant: as assumptions
limit the environment to certain behaviors, their addition
may make a previously unrealizable specification realizable.

Consider the example presented in Sect. 6.1. Adding a
simple assumption that ‘prevents’ the user from pressing the
cancel and pause buttons at the same time, formally adding
[](!(pause & cancel)) as an assumption, renders the
specification realizable. Indeed, in this case, the AspectLTL

plug-in successfully synthesizes a controller and generates
an implementation.

Consider the example presented in Sect. 6.2. Adding a
simple assumption, specifying that if the ink is empty, then
a refill must occur in the following step, formally adding
[](ink=0 -> next(fillCartridge)) as an assumption,
renders the specification realizable. As in the previous exam-
ple, in this case, the AspectLTL plug-in successfully synthe-
sizes a controller and generates an implementation.

Interestingly, however, note that the assumption we sug-
gested to add to the first example, [](!(pause & cancel)),
involves two environment variables that belong to different
LTL aspects, PrinterCancelJob and PrinterPause! This
assumption is thus not local to any of the aspects alone and
its use may be viewed as violating the very idea of separation
of concerns. We leave this for discussion in future work.

7. Implementation and Evaluation
We have implemented our ideas and integrated them into
the AspectLTL plug-in. The implementation is based on the
APIs of JTLV [22], a framework for the development of
formal verification algorithms using BDD-based mechanism.
The plug-in includes front-end editors with syntax highlight-
ing for AspectLTL, on-the-fly parsing and quick fixes, out-
line, auto-completion, and views and markers to mark trace-
ability information. The plug-in together with related docu-
mentation are available from our website [2]. All examples
shown in this paper and mentioned in the evaluation below
are available with the plug-in, so that all experiments can be
reproduced. We encourage the interested reader to try them.

Fig. 3 shows a screen capture from the AspectLTL plug-
in, displaying a tracing session of the specification S =
〈PrinterBase, {PrinterCancelJob, PrinterGuarantees}〉.
Two aspects are shown in the main editor windows, with
green markers highlighting subformulas that induce positive
justifications and orange markers highlighting subformulas
that induce explicit negative justifications. Note that the sec-
ond safety formula of the aspect PrinterCancelJob is not
marked, meaning that it does not induce any justifications.
The tooltip over the orange marker relates to the third safety
formula and presents the transitions that it negatively justi-
fies, that is, it shows traceability from aspect specification
to program behaviors. The complete list of justifications is
shown in the lower right pane; clicking each item in the ta-
ble leads to its related subformula in one of the aspects, that
is, traceability from program behavior to the specification.
The textual representation of the implemented controller is
shown on the lower left (also annotated with per-state trace-
ability information).

The plug-in supports a graph-based view of the imple-
mentation (or counter-implementation), similar to the graphs
shown in Fig. 1 and Fig. 2. The graph unfolds dynamically,
according to the engineer’s choice of actions at each step.

43

Figure 3. A screen capture of AspectLTL plug-in, displaying traceability information for the specification S =
〈PrinterBase, {PrinterCancelJob, PrinterGuarantees}〉.

An example screenshot showing this graph is available from
our website.

To emphasize the dynamic nature of AspectLTL debug-
ging, a movie showing a typical debugging session that
shows an execution of a generated, interactive counter-
implementation program, is available from our website.

AspectLTL synthesis is based on GR(1) synthesis [19],
whose complexity is cubic in number of states of the imple-
mentation, measured in symbolic steps. The symbolic algo-
rithm allows it to scale well, at least up to medium size speci-
fications [4]. While checking realizability / unrealizability is
completely symbolic, the computation of a concrete imple-
mentation (or counter-implementation) requires the enumer-
ation of states, which in some cases is much slower and does
not scale well (specifically when dealing with data rather
than control). Computing the additional traceability infor-
mation is linear in the number of states and transitions in
the implementation. The complexity of computing a counter-
implementation is the same as that of synthesis.

To give a sense of the feasibility of AspectLTL synthe-
sis, with and without traceability information, we report ini-
tial quantitative results from the performance of AspectLTL

realizability checking and implementation generation.3 The
experiments were performed on a regular computer, Intel
Dual Core CPU, 2.4 GHz, with 4 GB RAM, running 64-bit
Linux. Running times are reported in milliseconds.

Table 1 shows results of experiments on the Printer

system and on two additional systems: ExamService, de-
scribed in detail in [17], and Traffic, a two-cars race prob-
lem. These examples, and some additional ones, are avail-
able with the plug-in. For each system we report on several
configurations. For each configuration we report on the num-
ber of aspects, the number of LTL specs (the total number
of safety and liveness conjuncts) + the number of transi-
tion disjuncts, the state space of the specification, whether
the specification was realizable or not, the time for check-
ing realizability, the size of the implementation (or counter-
implementation), the time for computing the implementa-
tion (or counter-implementation), and the additional time of
computing traceability information. Additional performance

3 We show the concrete performance results in order to give a general, rough
idea about the feasibility of using AspectLTL. We have not made special
efforts to optimize our implementation and do not consider the exact values
shown to be important: optimizing the performance of AspectLTL synthesis
is outside the scope of this paper.

44

Specification # Aspects / State Realizable? Deciding (ms) Impl. Impl. gen. Traceab.
Specs (+ T) space size time (ms) time (ms)

PrinterBase weaved with: CancelJob (CJ), Guarantees (G), Pause (P), InkManagement (IM).

CJ + G 2/5 (+1) 212 true 34 77 81 57
CJ + G + P 3/6 (+2) 213 false 34 9 48 2
CJ + G + P + IM 4/8 (+2) 217 false 62 9 88 5
CJ + G + IM 3/7 (+1) 216 false 53 43 75 27

ExamService weaved with: Tuition (T), AvailabilityBug (AB), Availability (A), FailuresLogging (FL),
AllowQuitting (AQ), ExamProtection (EP), ExamCounter (EC).

T + AB 2/2 (+1) 210 false 10 10 13 1
T + A + FL 3/3 (+1) 212 true 36 64 58 11
T + A + FL + AQ + EP 5/6 (+2) 217 true 34 272 240 81
T + A + AQ + EP + EC 5/8 (+3) 218 true 57 1760 7128 854

TrafficBase weaved with: Goal (G), Safety (S), Obstacle3 (O3), Obstacle4 (O4), ExtraSafety (ES), ReverseGear (RG).

G + S 2/2 (+0) 216 true 65 31 68 8
G + S + ES + O3 + O4 5/6 (+0) 216 false 149 1 243 1
G + S + ES + O3 + O4 + RG 6/7 (+1) 216 true 455 37 459 9

Table 1. Results from running AspectLTL on several examples, checking realizability, generating an implementation (counter-
implementation), and computing traceability information (see Sect. 7)

results are available in supporting materials [2]. The reported
times do not include the marking in the eclipse UI.

The results suggest the following observations. First,
checking for realizability is sometimes much faster and
scales better than generating an implementation. Thus, we
recommend the frequent use of realizability checking, with-
out implementation generation (in the plug-in these features
are intentionally separated). It is best if the engineer com-
putes the implementation only when she wants to interac-
tively execute the generated code, or when she finds that the
specification is unrealizable. Second, the additional compu-
tation of traceability information is sometimes costly (pro-
portional to the implementation size) but still does not carry
a dramatic overhead on top of the implementation genera-
tion time. If it becomes too slow, one may allow to com-
pute it on-demand for user-selected state/transition. Finally,
overall, AspectLTL synthesis, with and without traceability
information, seems to perform in acceptable time for all our
examples. Larger examples may be slower and require the
development of additional techniques, e.g., an incremental
approach. We leave this for future work.

8. Related Work
We now discuss several related studies in the areas of trace-
ability, feature interaction, and model-checking of aspects.

Borger et al. [3] present runtime, dynamic aspect trace-
ability for AspectJ, by inspecting the stack to discover which
pointcut causes a certain advice. Support for static traceabil-
ity is provided, e.g., by AJDT [1], where in the source code
view, the IDE shows which aspects (may) affect certain base
artifacts and statements. In the context of AspectLTL, trace-
ability is very different, in particular because the language
is declarative and not imperative: the high-level motivation
of relating aspect code artifacts with the concrete behavior

they induce is similar, but the setup and technologies used
are completely different.

Checking the realizability of AspectLTL specifications
and the debugging of unrealizable ones, are related to works
that identify feature interactions or use model-checking to
discover aspect interference. We mention some of the most
relevant ones below.

Felty et al. [6] present the specification of features using
LTL and a model-checking based method to automatically
detect conflicts between features. Realizability is approxi-
mated by model-checking only a given scope: if a conflict is
detected, it is a real conflict, and a counter example is pro-
vided. If no conflict is detected, the result is inconclusive,
i.e., conflict detection is sound but incomplete. In contrast,
our realizability checks are sound and complete. Moreover,
when a specification is realizable, we provide a correct-by-
construction implementation, which is not available in [6].

Many approaches specify features using state machines
and consider feature interaction as part of their composition
(see, e.g., [8, 9, 15]). To the best of our knowledge, none
considers a symbolic, declarative representation like the one
used in AspectLTL and most compositions are not sound
and complete like AspectLTL synthesis. We could not find a
description of traceability and debugging features similar to
the ones presented in our work.

Katz and Katz [10] present incremental aspect interfer-
ence analysis. The work models AspectJ-like aspects using
an SMV-like format. Detection of various interferences is
done using model checking. In case of conflict, a counter
example is provided. Our work uses an SMV-like format
to specify aspects. However, rather than using the specifi-
cation for model checking, we use it as an input for syn-
thesis. In case of unrealizability, we provide a counter-
implementation.

45

Li et al. [15] present a methodology that views cross-
cutting features as independent modules and verifies them
against CTL properties as open systems. Features consists
of state machines and composition is done by connecting
them via transitions specified through interfaces. The work
supports the detection of undesirable feature interactions.
Support for traceability and debugging is not described.

In contrast, AspectLTL aspects are defined in a symbolic
and declarative manner. Our method is fundamentally differ-
ent: it not only solves the possible conflicts or interferences
between the specified aspects (if indeed a solution to these
conflicts exists) but also produces an executable correct-by-
construction implementation. If a solution does not exist, we
generate a counter-implementation, annotated with the trace-
ability information that uncovers reasons for unrealizability.

9. Conclusion and Future Work
We presented two-way traceability and conflict debugging
techniques for AspectLTL and demonstrated them on a run-
ning example. To support two-way traceability, we use sym-
bolic operations that check for intersections between the
transitions that can or cannot be taken and the formulas
defined in the LTL aspects. To support debugging of unre-
alizable specifications we reverse the roles of the system
and the environment in the synthesis game, and use the
winning strategy of the environment to produce a counter-
implementation, that is, an interactive program, whose runs
show exactly how any generated system can be forced by
an (adverse) environment to violate the specifications. We
combine traceability and debugging to point at the aspects
to blame. The techniques provide important support for the
development of systems using AspectLTL, making its use
more accessible and informative. The ideas are implemented
in the AspectLTL plug-in, available from [2].

One future work direction deals with the computation
of an unrealizable core. Given an unrealizable AspectLTL
specification, an unrealizable core is a minimal unrealizable
subset of the specification. An unrealizable core is useful
in debugging, as it better identifies and isolates the causes
of failures and enables the generation of smaller counter-
implementations. Some recent works have considered the
computation of unrealizable cores in the context of LTL
(GR(1)) synthesis (see, e.g., [5]). However, computing an
unrealizable core for AspectLTL specifications is particu-
larly challenging due to the non-monotonic nature of the lan-
guage: each aspect may not only restrict the possible behav-
iors (in its LTLSPEC sections) but also add new behaviors
(in its TRANS sections). Another future work is to investi-
gate how our approach to traceability and debugging can be
applied to other aspect languages, e.g., AspectJ, using ab-
stractions similar to the ones of [7, 14], or more generally,
to other feature composition frameworks (e.g., [8, 9, 15]),
where, we believe, similar two-way traceability and conflict
debugging support could be very useful.

References
[1] AspectJ Development Tools. http://www.eclipse.org/ajdt/.

[2] AspectLTL website. http://aspectltl.ysaar.net/.

[3] W. D. Borger, B. Lagaisse, and W. Joosen. A generic and
reflective debugging architecture to support runtime visibility
and traceability of aspects. In AOSD, pages 173–184, 2009.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond.
Inf. Comput., 98(2):142–170, 1992.

[5] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diag-
nostic information for realizability. In VMCAI, 2008.

[6] A. P. Felty and K. S. Namjoshi. Feature specification and auto-
mated conflict detection. ACM Trans. Softw. Eng. Methodol.,
12(1):3–27, 2003.

[7] M. Goldman, E. Katz, and S. Katz. MAVEN: modular aspect
verification and interference analysis. Formal Methods in
System Design, 37(1):61–92, 2010.

[8] J. D. Hay and J. M. Atlee. Composing features and resolving
interactions. In SIGSOFT FSE, pages 110–119, 2000.

[9] M. Jackson and P. Zave. Distributed feature composition: A
virtual architecture for telecommunications services. IEEE
Trans. Software Eng., 24(10):831–847, 1998.

[10] E. Katz and S. Katz. Incremental analysis of interference
among aspects. In FOAL, pages 29–38, 2008.

[11] S. Katz. Aspect categories and classes of temporal properties.
In T. Aspect-Oriented Softw. Dev. I, pages 106–134, 2006.

[12] Y. Kesten and A. Pnueli. Verification by augmented finitary
abstraction. Inf. Comput., 163:203–243, 2000.

[13] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal
specifications using simple counterstrategies. In FMCAD,
pages 152–159, 2009.

[14] S. Krishnamurthi and K. Fisler. Foundations of incremental
aspect model-checking. ACM Trans. Softw. Eng. Methodol.,
16(2), 2007.

[15] H. C. Li, S. Krishnamurthi, and K. Fisler. Verifying cross-
cutting features as open systems. In SIGSOFT FSE, pages
89–98, 2002.

[16] Z. Manna and A. Pnueli. The temporal logic of concurrent
and reactive systems: specification. 1992.

[17] S. Maoz and Y. Sa’ar. AspectLTL: An aspect langauge for
LTL specifications. In AOSD, pages 19–30, 2011.

[18] N. Piterman and A. Pnueli. Faster solutions of rabin and streett
games. In LICS, pages 275–284, 2006.

[19] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1)
Designs. In VMCAI, pages 364–380, 2006.

[20] A. Pnueli. The temporal logic of programs. In FOCS, pages
46–57, 1977.

[21] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In POPL, pages 179–190, 1989.

[22] A. Pnueli, Y. Sa’ar, and L. Zuck. JTLV: A framework for
developing verification algorithms. In CAV, 2010.

[23] SMV model checker.
http://www.cs.cmu.edu/˜modelcheck/smv.html.

46

