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Abstract

To increase modularity, aspect-oriented programming pro-
vides a mechanism based on implicit invocation: An aspect
can influence runtime behavior of other modules without the
need that these modules refer to the aspect. Recent stud-
ies show that a significant part of reported bugs in aspect-
oriented programs are caused exactly by this implicitness.
These bugs are difficult to detect because aspect-oriented
source code elements and their locations are transformed or
even lost after compilation. We investigate four dedicated
fault models and identify ten tasks that a debugger should
be able to perform for detecting aspect-orientation-specific
faults. We show that existing debuggers are not powerful
enough to support all identified tasks because the aspect-
oriented abstractions are lost after compilation.

This paper describes the design and implementation of a
debugger for aspect-oriented languages using a dedicated in-
termediate representation preserving the abstraction level of
aspect-oriented source code. We define a debugging model
which is aware of aspect-oriented concepts. Based on the
model, we implement a user interface with functionalities
supporting the identified tasks, like visualizing pointcut eval-
uation and program composition.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids; D.3.2 [Language Classifica-
tions]: Very high-level languages

General Terms Language, Design

Keywords Debugger, AOP, visualization, advanced-dispat-
ching, fine-grained intermediate representation

1.

Aspect-oriented programming (AOP) allows programmers
to modularize concerns which would be crosscutting in
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object-oriented programs into separate aspects. An aspect
can define functionality and when it must be executed, i.e.,
other modules do not have to explicitly call this functional-
ity. Due to this implicitness, it is not always obvious where
and in which ways aspects apply during the program execu-
tion. A recent study carried out by Ferrari et al. [12] focuses
on the fault-proneness in evolving aspect-oriented programs.
They investigated the aspect-oriented (AO) versions of three
medium-sized applications. It shows that 42 out of 104 re-
ported AOP-related faults were due to the lack of awareness
of interactions between aspects and other modules.

For locating faults in aspect-oriented programs, a pro-
grammer can inspect the source code and browse static rela-
tionships. This is supported by tools like the Aspect] Devel-
opment Tools (AJDT)! and Asbro [17]. To detect a fault in
this way, programmers are required to inspect multiple files
and mentally construct the dynamic program composition,
which is a tedious and time-consuming task. Furthermore,
connections between aspects and other modules are often
based on runtime states which cannot be presented by static
tools. Debuggers are, thus, needed for inspecting to the run-
time state to help programmers understanding the program
behavior and eventually finding a fault.

Aspect-oriented languages are nowadays compiled to the
intermediate representation (IR) of an established non-AO
language; this usually entails transforming code already pro-
vided in that IR [3], a compilation strategy often called
weaving. A typical example is Aspect] which is compiled
to Java bytecode.

Because of that approach, it is possible to use a debugger
existing for the underlying non-AO language, like the Java
debugger in the case of Aspect]. But a consequence of that
weaving approach is that the aspect-oriented source code
is compiled to an IR whose abstractions reflect the module
concepts of the so-called base language, but not those of the
AOP language. Therefore, what is inspected in the described
approach is actually the woven and transformed code instead
of the source code.

Several research works discuss AOP debuggers to pro-
vide information closer to the source code, such as the com-
posite source code in Wicca [11], the aspect-aware break-

I'See http://www.eclipse.org/ajdt/.



point model in AODA [10], or the identified AOP activities
in TOD [18]. Nevertheless, all of these debuggers use only
the woven IR of the underlying language. AOP-specific ab-
stractions, such as aspect-precedence declarations, and their
locations in the source code are partially or even entirely lost
after compilation.

While, e.g., the Aspect] language provides runtime-
visible annotations that can represent all aspect-oriented
source constructs, these annotations are not suitable to alle-
viate the above mentioned limitations. Also in the presence
of these annotations, bytecode is woven and it is not always
possible to retrieve the annotations that have influenced cer-
tain instructions during debugging.

In this paper, we introduce our concept and implementa-
tion of a dedicated debugger for AO programs which is able
to support locating all types of dynamic AO-related faults
identified in previous research like the one by Ferrari, men-
tioned above. Our debugger is aware of aspect-oriented con-
cepts and presents runtime states in terms of source level
abstractions, e.g., pointcuts and advices. It allows program-
mers to perform various tasks specific to debugging aspect-
oriented constructs. Examples of such tasks are inspecting
an aspect-aware call stack, locating AO constructs in source
code, excluding AO definitions at runtime, etc. Our debug-
ger is integrated into Eclipse and provides visualizations il-
lustrating, e.g., pointcut evaluation and advice composition.

2. Problem Analysis and Requirements

Recently fault models for AOP languages have been re-
searched with the target to systematically generate tests
which execute all potentially faulting program elements. We
can use the results of these studies to derive the capabilities
required from a debugger to locate all faults in a program
related to (dynamic) features of aspect-orientation. In the
following subsections, we summarize the work on AO fault
models, discuss tasks required to localize the faults, evaluate
the capabilities of existing debuggers and formulate require-
ments for a debugger with full support for AOP.

2.1 AOP Fault Models

We have investigated four fault models proposed in the lit-
erature and summarize them in table 1. In our study, we ex-
clude faults related to static features like inter-type decla-
rations because the static code inspection tools offered by
modern development tools like the AJDT are already suffi-
cient for localizing these faults. The first column shows the
fault model by Alexander et al. [1] which contains exam-
ples of AOP-specific faults, like incorrect pointcut strength.
Ceccato et al. [16] extend this model with three types con-
cerning exceptional control flow and inter-type declarations
(ITD). Ferrari et al. [13] proposed a fault model, presented in
the second column, reflecting where a fault originates, i.e., in
pointcuts, advices, ITDs or the base program. Column three
shows the fault model of Baekken [4] which follows a simi-
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lar approach; he focuses on Aspect] [15] programs and sys-
tematically considers its syntactic elements as potential fault
origins. In the last column, we define a category name sum-
marizing the fault kinds described in literature and presented
in the same row.

2.2 Detecting faults

When a programmer encounters an error during the execu-
tion of an Aspect] program, this can be caused by a faults in
one of the categories presented in the previous sub-section.
But the observed error does not yet tell the programmer what
the actual fault is. To figure this out, a debugger should be
applied. In the following, we discuss tasks to be provided by
an ideal debugger for identifying a fault in each of the fault
categories. We tag these tasks in the format “T#”.

If a pointcut-advice definition is faulty, the programmer
needs to (T1) set a breakpoint at the join point?, rerun the
program, analyze program states, and eventually (T2) locate
faulty constructs.

2.2.1 Detecting pointcut-related faults

If the programmer finds out that an advice is unexpectedly
executed or not executed, she knows that the pointcut evalu-
ated to the wrong value at one join point. To understand the
exact cause why the pointcut matches or fails to match, the
programmer needs to further (T3) evaluate sub-expressions
of this pointcut and to check the structure of the pointcut. As
the right-most column in table 1 shows, possible causes are
incorrect pointcut composition, incorrect pattern, incorrect
designator, or incorrect context.

Incorrect pointcut composition  First, the programmer can
consider the correctness of the pointcut structure which may
include references to named pointcuts and composition oper-
ators. To inspect the actual pointcut expression that is evalu-
ated, pointcut references must be (T4) substituted with their
definition. To check the composition operators &&;, ||, and !,
the programmer needs to (T3) determine the evaluation re-
sult of sub-expressions, perform further evaluations on them
and check whether the structure violates the intention.

Incorrect pattern From the above inspection, it may turn
out that a pointcut designator like call or get, which defines
a pattern matching a signature, is wrong. Patterns are com-
posed of sub-patterns; thus, the programmer needs to (TS)
evaluate each sub-pattern to find the actual fault. As an ex-
ample, consider the Aspect] pattern = Customer.payFor(x); it
matches any method named payFor in the Customer class that
takes one argument with any type and returns any type.
When debugging the evaluation of that pattern at a join point
with the signature void Customer.payFor(int, boolean), a pro-
grammer should be able to determine that the parameters
sub-pattern causes the pattern to fail.

2In this paper, we use the term join point to refer to a code location (often
also called join-point shadow) and to its execution.



Alexander et al. (extended by Cec-
cato et al.)

Ferrari et al.

Incorrect strength in pointcut pat-
terns

Incorrect aspect precedence

Incorrect changes in control depen-
dencies

Incorrect changes in exceptional con-
trol flow (extended)

Failure to establish expected post-
conditions
Failure to preserve state invariants

Advice bound to incorrect pointcut

Incorrect matching based on excep-
tion throwing patterns

Base program does not offer required
join points

Incorrect use of primitive pointcut
designators

Incorrect matching based on dy-
namic values and events

Incorrect advice-type specification

Incorrect control or data flow due to
execution of the original join point
Infinite loops resulting from interac-
tions among advices

Incorrect advice logic, violating in-
variants and failing to establish ex-
pected postconditions

Baekken Category
Incorrect or missing composition op-  Incorrect
erator pointcut
Inappropriate or missing pointcut composition
reference
Incorrect method/ constructor/ field/ Incorrect
type/ modifier/ identifier/ parameter/  pattern
annotation pattern
Mixed up pointcuts method call and  Incorrect
execution, object construction and designator
initialization, cflow and cflowbelow,
this and target
Incorrect arguments to pointcuts this/  Incorrect
target/ args/ cflow/ cflowbelow/ if/ context
within/ withincode
Incorrect advice type Incorrect
composition
control
Incorrect or missing position of pro- Incorrect
ceed flow change
Incorrect arguments to proceed
Violated
requirements

Table 1. A systematic fault model for aspect-oriented programs

Incorrect designator The programmer may also encircle
the fault in a pointcut designator specifying a dynamic con-
dition instead of a pattern, like target constraining the type
of a runtime value, or cflow specifying the currently execut-
ing methods. Then the programmer needs to (T6) check the
runtime values on which the evaluation of that pointcut des-
ignator depends; or she must (T7) inspect the current control
flow, i.e., the join points which are currently executing on the
stack.

Incorrect context When a pointcut designator depends on
a runtime value and the evaluation result is unexpected, the
programmer needs to (T6) inspect the context value to which
the designator refers and (T3) evaluate the restriction on
this value specified by the pointcut designator. As an exam-
ple, consider the pointcut sub-expression target(Customer);
the callee object is required to be an instance of the type
Customer. The programmer must be able to inspect the value
and type of the callee object to determine if the pointcut is
specified wrongly or the program uses the wrong object.

2.2.2 Detecting advice-related faults

An error can also occur when an advice is neither missing
nor redundant at a join point but the advice does not behave
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as expected. Possible faults leading to such an error are
incorrect program composition, incorrect flow change and
violated requirements.

Incorrect program composition There are three types of
composition control in Aspect] influencing the execution or-
der of advices at shared join points: advice-type specifica-
tion, precedence declaration and lexical order. Advice-type
specification, e.g., the keywords before or after, define the or-
der between advices relative to the join point. Precedence
declaration (declare precedence) defines the partial order be-
tween different aspects. The precedence of advice defined in
the same aspect is determined by their lexical order.

To detect this type of fault, a programmer needs to (T8)
inspect how programs are composed at a join point, be able
to (T9) reason about the composition controls affecting that
composition, and (T2) locate the definition of the composi-
tion controls.

Incorrect flow change The execution of an advice at a join
point may alter the control flow or the data flow at that join
point. Take the around advice as an example: It can skip
the join point execution or modify runtime values from the
dynamic context of the join point by invoking proceed.



To determine which advice is responsible for the wrong
control or data flow, the programmer needs to (T7) inspect
the stack of executing join points including (T8) the com-
position of advices applicable at each join point. To observe
data flow, she needs to (T6) inspect the runtime values.

Violated requirements Advice may also violate require-
ments, like post conditions or state invariants, of the modules
they apply to. To localize such faults, the programmer may
need to (T6) inspect runtime values. Another technique of-
ten used for localizing faults is to run the program with one
or more modules disabled; if the error disappears, the fault
most likely lies in the disabled module. To be able to apply
this technique, the programmer must be allowed to (T10)
disable single pointcut-advice, ideally at runtime.’

2.3 State-of-the-art

Table 2 summarizes the required debugging tasks identified
in the previous sub-sections and gives them short names.
In the following we discuss how these tasks are supported
by the traditional Java Debugger and by AOP debuggers
proposed in the literature.

Tag Task Name

T1  Setting AO breakpoints

T2  Locating AO constructs

T3  Evaluating pointcut sub-expressions
T4  Flattening pointcut references

TS5  Evaluating pattern sub-expressions
T6  Inspecting runtime values

T7  Inspecting AO-conforming stack traces
T8  Inspecting program compositions

T9  Inspecting precedence dependencies
T10 Excluding and adding AO definitions

Table 2. Tasks that an ideal AOP debugger should perform

The Java debugger is the most commonly used tool for
debugging Aspect] programs which are compiled to pure
Java bytecode. Some elements of the aspect definition are
partially evaluated during compilation and drive a series of
code transformations applied to the aspect and non-aspect
modules. Thus, there is no one-to-one mapping between ele-
ments in the source code and in the bytecode; because of this
and due to limitations of the Java bytecode format, the con-
tained debugging information is not sufficient to store source
location information about all aspect-oriented elements that
are compiled. Thus, tasks are either only partially supported
(T1, T6, T7) or not at all (T2, T3, T4, T5, T8, T9, T10). For
example, the stack trace (T7) becomes misleading when it

3 Dynamic (de-)activation of aspects or advice bears the risk to leave the
aspect in a wrong state, .g., when join points at which the aspect performs
an initialization have already passed. But often aspects are less complex
and being able to (de-)activate them at runtime is an efficient debugging
technique—it must be used with caution, though.
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involves the execution of advices. A stack frame represent-
ing the execution of an advice indicates that this execution
is invoked by the method represented by the previous frame.
However, this method does not contain this invocation but
the advice is implicitly triggered by a pointcut defined in an-
other piece of code.

The Aspect Oriented Debugging Architecture (AODA) by
De Borger et al. [10] is built based on a debugging inter-
face which restores some source-level abstractions from the
bytecode. Entities comprising the debugging interface model
many Aspect] concepts, such as join points, advices, etc. The
debugging interface allows to query advices applied on a
join point, the stack trace with advice execution history, and
so on. Besides, the AODA contains an aspect-aware break-
point model which allows programmers to set a breakpoint
to aspect-related operations like the instantiation of an as-
pect. However, their model is not fine-grained enough; it
lacks entities which cannot be represented in a non-AO IR
like patterns, precedence declarations. Thus, tasks T2, T3,
T6 are partially supported and TS, T9 are not supported by
AODA. Due to the compile-time weaving strategy fostered
by AODA, it is impossible to exclude AO definitions at run-
time (T10).

Wicca [11] is a dynamic AOP system for C# applications
that performs source weaving at runtime. For debugging
purposes, the woven source code can be inspected, e.g.,
for checking if programs are correctly composed. Wicca
also allows to enable/disable aspects at runtime. Though
Wicca fully supports T8, T10, it poorly supports our other
identified tasks because it debugs the woven code. Although
the presented C# source code is more easy to understand
than woven bytecode which is available in other systems, it
does not contain the AO source-level abstractions anymore.

Pothier and Tanter [18] implemented an AO debugger
based on an open source omniscient Java debugger called
TOD. TOD records all events that occur during the execution
of a program and the complete history can be inspected and
queried offline after the execution. Programmers can choose
to present all, part or none of the aspect activities carried
out during runtime. It can show the execution history of join
points related to particular AO elements, e.g., where a point-
cut matched or did not match. However, the granularity of
such elements in TOD is as coarse as in the other presented
approaches for debugging woven code. Therefore, only T1,
T2, T6, T7, T8 are partially supported in TOD.

2.4 Requirements for an AOP Debugger

Based on the above observations and discussions, we for-
mulate requirements for a dynamic debugger dedicated to
aspect-oriented programs. In the following three sections,
we describe how we achieve each of these.

¢ An intermediate representation must be provided that
preserves all AO constructs found in the source code as
well as their source location.
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Figure 1. The LIAM meta-model of advanced dispatching

® A fine-grained debugging interface must be provided to
allow observation of and interaction with the execution at
the granularity of AO abstractions.

® The debugging infrastructure should be integrated with
an integrated development environment (IDE) to provide
a dedicated user interface on which all tasks listed in table
2 can be performed.

3. Debugging Information

We choose to base the implementation of the debugger on
our previous work, a generic implementation architecture of
so-called advanced-dispatching (AD) languages which in-
cludes AOP languages. One of the main components of this
ALIA4J architecture* [7] is a meta-model of AD declara-
tions, called LIAM>. When implementing, e.g., Aspect] in
ALIA4]J, an advanced-dispatching declaration corresponds
to a pointcut-advice definition. A model instantiating the
LIAM meta-model is an intermediate representation (IR) of
the AO program elements.

For our debugger, we have extended LIAM to store de-
tailed source-location information with every element in the
IR. Since ALIA4J keeps the IR as first-class objects at run-
time, it can be accessed by our debugger to observe the pro-
gram execution in an AO-specific way. This fact as well as
the declarative and fine-grained nature of LIAM facilitate the
support for all identified debugging tasks.

3.1 Aspect-Oriented Intermediate Representation

The meta-model, LIAM, itself defines categories of con-
cepts and how these concepts relate, e.g., a dispatch may
be ruled by atomic predicates which depend on values in
the dynamic context of the dispatch. LIAM has to be refined
with the concrete language concepts like the cflow or target
pointcut designators.

Figure 1 shows the meta-entities of LIAM, discussed
in detail by Bockisch et al. [6, 7], which capture the core

4The Advanced-dispatching Language Implementation Architecture for
Java. See http://wuw.alia4j.org.

3The Language-Independent Advanced-dispatching Meta-model. See
http://www.aliadj.org/aliadj-liam/.
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concepts underlying the various dispatching mechanisms.
The meta-entities Action, AtomicPredicate and Context can
be refined to concrete concepts; we provide refinements for
several languages, including AspectJ [7].

An Attachment corresponds to a unit of dispatch decla-
ration, roughly corresponding to a pointcut-advice pair in
Aspect]. Action specifies functionality that may be executed
as the result of dispatch (e.g., the body of an advice). Spe-
cialization defines static and dynamic properties of state on
which dispatch depends. Pattern specifies syntactic and lex-
ical properties of the dispatch site. Predicate and Atomic
Predicate entities model conditions on the dynamic state a
dispatch depends on. Context entities model access to val-
ues like the called object or argument values. The Schedule
Information models the time relative to a join point when
the action should be executed, i.e., before, after or around.
Finally, Precedence Rule models partial ordering of actions
and Composition Rule models the applicability of actions at
a shared join point; for example, overriding can be expressed
by this.

3.2 XML-based LIAM model

Figure 2 shows the life cycle of the debugging information
related to AO features in our approach. Following the bold
directed lines, AO-specific information is first written in the
source code of aspects and then compiled into a separate
XML file containing serialized LIAM-based declarations.
At runtime, the XML file is deserialized and the program
is executed taking the aspect definitions into account.

eflec

A

Aspects

U "
compile compile
Runtime

Debugger

XML
Byte A
Code

M PO

load

Figure 2. Debugging information life cycle

This approach requires a specific compiler to generate the
IR. In the context of this paper, we just elaborate on our
implementation of an Aspect] compiler based on the abc
compiler [3]. As an example of the compilation, consider the
Aspect] code in listing 1. After compilation, it is transformed
into an Attachment XML element presented in listing 2.

There is a many-to-many relationship between source
language constructs and LIAM entities. For example in list-
ing 1 the pointcut designator target(b) is transformed to two
LIAM entities because it plays two roles: It specifies a dy-
namic condition under which the pointcut matches a join
point (represented by the AfomicPredicate in lines 4—13, list-
ing 2), as well as a value that is exposed to associated advice
(represented by the Context in lines 14—-17). The pointcut



designator, and thus also the atomic predicate, additionally
depends on the declaration of the formal advice parameter
Base b: The callee object must be an instance of type Base.
Thus, the atomic predicate is influenced by two locations in
the source code which both are stored in our IR, as shown
on lines 5-6 and 10-11 in listing 2.

With our intermediate representation presented above,
we support the task locating constructs (T2) presented in
section 2.3.

1/ aspect Azpect {
2 before(Base b) : call(x Base.foo()) && target(b) { ... }

!

The ADDWP is implemented as two agents running on
the debugger and debuggee sides respectively. It has a simi-
lar structure and working mechanism as the JDWP but sends
and receives AD-specific information. The following sub-
sections describe the execution environment and the ADDI
in detail. The Ul is explained in the next section.

Runtime
Debugger VM

<& |
[ e==reflect:

User Interface ‘

present ADDI 1DI
JPDA

Aspects

compile compile

Listing 1. An aspect example in Aspect]

1 <attachment>

2 <specialization>

3 <pattern> ... </pattern>

4 <atomicPredicate type="InstanceofPredicate” >
5 <requiredTypeName file="Azpect.aj” line="2"
6 column="9" endLine="2" endColumn="13">
7 test.Base

8 < /required TypeName>

9 <context type="CalleeContext”

10 file=""Azpect.aj" line="2" column="25"

1 endLine="2" endColumn="50">

12 < /context>

13 < /atomicPredicate>

14 <context type="_CalleeContext”

15 file=""Azpect.aj" line="2" column="25"

16 endLine="2" endColumn="50">

17 < /context>

18 </specialization>

1 <action> ... </action>

20  <schedulelnfo> ... </schedulelnfo>
21 </attachment>

Listing 2. XML-based AO intermediate representation

4.

Extending figure 2, the overall structure of our debugger is
presented in the figure 3. It consists of a debuggee side and a
debugger side; both sides communicate via the Java Plat-
form Debugger Architecture (JPDA)® and the Advanced-
Dispatching language Debugging Wire Protocol (ADDWP).
The debuggee-side virtual machine runs the debuggee pro-
gram and sends debugging data and events via the two chan-
nels. Our user interface (debugger side) presents this infor-
mation and provides controls to the programmer to inter-
act with the debuggee. These controls are implemented by
using the Java Debug Interface (JDI) and the Advanced-
Dispatching Debug Interface (ADDI). As our debug inter-
face is based on ALIA4J’s meta-model of advanced dis-
patching, we reuse that terminology in our infrastructure.
Nevertheless, our goal is to support aspect-oriented pro-
grams and our case study is based on Aspect].

Infrastructure of the AOP debugger

6 See http://java.sun.com/javase/technologies/core/
toolsapis/jpda/.
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Figure 3. The architecture of our AOP debugger

4.1 Debuggee Side

In the ALIA4J approach, the execution environment is an
extension to the Java Virtual Machine (JVM). The extension
allows deploying and undeploying LIAM dispatch declara-
tions and derives an execution strategy per call site that con-
siders all dispatch declarations present in the program.

The execution strategy consists of the so-called dispatch
function (for details see Sewe et al. [19]) that characterizes
which actions should be executed as the result of the dispatch
in a given program state. This function is represented as a bi-
nary decision diagram (BDD) [8], where the inner nodes are
the atomic predicates used in the predicate definitions and
the leaf nodes are labeled with the actions to be executed.
For each possible result of dispatch, the BDD has one leaf
node, representing an alternative result of the dispatch, i.e.,
which actions to execute and in which order.

Our current implementation of the debugger is based on
the ALIA4J NOIRIn execution environment [7], which is
implemented as a Java 6 agent intercepting the execution of
the base program to perform the dispatch. NOIRIn can inte-
grate with any standard Java 6 JVM, therefore our approach
does not require using a custom virtual machine.

4.2 Advanced-Dispatching Debug Interface

The Advanced-Dispatching Debug Interface (ADDI) is the
debugger-side interface of the debugging infrastructure. It
provides various functionalities to perform the tasks identi-
fied in section 2.3, which it implements in collaboration with
the debuggee virtual machine. A simplified UML class dia-
gram of ADDI is presented in figure 4.

The Java Debug Interface (JDI) provides mirrors for ev-
ery runtime entity in a Java program, like objects, classes,
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Figure 4. A simplified UML class diagram of the Advanced-Dispatching Debug Interface

or threads. The ADDI extends the JDI by additionally pro-
viding mirrors for the LIAM entities which exist in the de-
buggee virtual machine and which represent the pointcut-
advice definitions. Since LIAM entities are plain Java ob-
jects, the ADDI mirrors are implemented by aggregating the
JDI mirrors of those objects.

ADDI’s breakpoints do not wrap existing Java break-
points. When a breakpoint is set, the debugger-side sends the
breakpoint information to the execution environment at the
debuggee side. The execution environment registers a break-
point event according to the received information. When a
registered breakpoint event occurs, the execution environ-
ment sends the JDI command for suspending the virtual ma-
chine. Below, we discuss the top-level mirrors of the ADDI:

ADPointcutBreakpoint provides the interface for setting
breakpoint by utilizing pointcut expressions (T1).

ILocatable is an interface for locating entities. In our imple-
mentation of ADDI, subclasses of ActionMirror, Atomic-
PredicateMirror, PatternMirror, AttachmentMirror, Dispatch-
FrameMirror, and PrecedenceRuleMirror implement this in-
terface. Therefore, corresponding constructs can be lo-
cated in the source code at runtime (T2).

ADEvaluator can perform evaluation on given pointcut ex-
pressions or sub-expressions (T3). It takes strings as in-
put, sends them to the back-end. The back-end compiler
compiles received strings into LIAM entities, evaluates
their value according to the current program state and re-
turns the result to the debugger side. If the expression is
syntactically incorrect, an error message is returned.

DispatchFrameMirror reifies a stack frame containing the
execution strategy at a join point (T7). It provides inspec-
tion of the call context (T6) and of the program compo-
sition (T8) at the current join point.

65

AtomicPredicateMirror performs evaluations to pointcut
sub-expressions (T3).

ActionOrderElementMirror reifies the program composi-
tion (T8). It consists of four parts, namely before, after,
around, and inner. The before, around, and after parts
point to advice (respectively the action representing the
join point operation) which are sequentially executed at
a join point. The inner part refers to the actions to be
executed when the around advice performs the proceed
operation.

AttachmentMirror first provides access to the three parts
of an attachment declaration (corresponding to a point-
cut-advice): action, specialization (corresponding to the
pointcut) and schedule information. Second, it can be
activated or deactivated at runtime (T10).

PrecedenceRuleMirror represents ordering relations be-
tween attachments (T9). This includes precedence de-
fined in Aspect] through the declare precedence statement,
through the before, after or around keywords, and through
the lexical order of advice definitions.

SpecializationMirror reifies static and dynamic sub-expres-
sions of pointcuts which are decomposed into a pattern,
a predicate, and contexts.” Referenced named pointcuts
are resolved and inlined in the specialization (T4).

PatternMirror can be used to perform evaluations to pat-
terns used in pointcuts. As illustrated by the example of
method patterns in figure 4, patterns consist of smaller
sub-patterns which are separate entities in ADDI and can
be evaluated respectively (T5).

7See Bockisch et al. [5] for a detailed discussion of how to transform any
Aspect] pointcut to our data structure.



5. User Interface

The front-end of our debugger is integrated into the Eclipse
IDE, although any IDE with a comparable infrastructure
would also be applicable. Our AOP debugger extends the
Eclipse Java debugger with additional user interfaces. These
are Eclipse views specific to visualizing and interacting with
ALIA4J’s representation of pointcut-advice in order to sup-
port the tasks discussed in section 2. The developed debug-
ger provides three new views, namely the Join Point view,
the Attachments view, and the Pattern Evaluation view.

Throughout this section, we illustrate the functionality
of our debugger by means of the example Aspect] program
shown in listing 3 and listing 4. There are four advices (on
line 5, 8, 12, and 15, listing 4) declared in Azpect. Suppose
the program is currently suspended at line 16 of listing 4. We
introduce each view in this scenario in the following sub-
sections.

1 package test;
2 public class Base {

3 private int someField;

4 public static void main(String [] args) {
5 Base b = new Base();

6 b.normalMethod();

7

8 public void normalMethod() {
9 advicedMethod();

10

11 public void advicedMethod() {
12 someField = 1;

13}

1}

Listing 3. An example base program

1 package aspects;
2 import test.Base;
3 public aspect Azpect {
4 pointcut base() : call(x Base.advicedMethod());
5, before() : base() && target(Base) {
6 System.out.printIn(" before—target” );
7
}
8 Object around() : base() {
9 proceed();
10 return null;

}
12 before() : base() && !target(Base) {
13 System.out.printIn(" before—ltarget” );

15 after() : set(* Base.someField) {
16 System.out.printin(" after—set”);

v}

Listing 4. An example aspect

5.1 Join Point View

The Join Point view is the central view of the debugger
showing runtime information about the join point at which
the debuggee is currently suspended. A snapshot of the Join
Point view is given in figure 5.
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Structure of the Join Point View The view has several
parts to allow the programmer interacting with the debuggee.
The top left panel displays the stack of join points that are
currently executed when the debuggee is intercepted. For
each such join point, the signature and the source location
of the corresponding join-point shadow are presented (T7).

The bottom left panel gives a graphical representation
of the execution strategy for the join point selected in the
top left panel (T8). Each label represents an action that
has been executed, is executing, or will be executed at this
join point. In figure 5, it displays one composition with
two sequential actions which are a field assignment and an
advice execution. In Aspect], advices do not have names.
Therefore, we choose to use the name of the aspect and
the line number where an advice is defined to uniquely
identify the advice, like Azpect.after@line15(). The label with
green (highlighted) background indicates that the action it
represents is currently executing.

The top right panel of the Join Point view uses a tree
viewer to show all context values needed to evaluate the join
point’s execution strategy and exposed to the actions (T6).
The bottom right panel gives a string description of the item
currently selected in the tree view.

Graphical Representation of Dispatch The graphical rep-
resentation of a join point visualizes the execution strategy
applied by the ALIA4J execution environment and allows
navigating to the corresponding definitions in the source
code. For illustration consider that the second frame is se-
lected in the example. Figure 6 shows the join point visual-
ization for this case.

&F set{private int testBasesomeField) Base,java line: 12
£Z call(public void test.Base.advicedMethod()) Basejava line: 9
£E call(public void test.Base.normalMethod()

—|AtomicPredicate
Calies is a (subjtype of test Base

Base.java line: 6

jAction Jiaction

void aspects Azpect.before@lineSi) java.lang.Object aspects Azpect.around@lines( |
ava.lang.Object aspects. Azpect.around@lined ()

fvoid aspecls Azpeci before@ineT2(}
Figure 6. A graphical representation of dispatch

{void test Base.advicedhethod()

This graphical representation consists of an AtomicPred-
icate testing whether the callee object at this call site is an
instance of test.Base and two Action nodes with different pro-
gram compositions according to the evaluation result of the
AtomicPredicate (T3). The blue (bold) path indicates the
evaluation result of the atomic predicates and the composi-
tion of actions to be performed at the current join point. The
highlighted Action node first performs Azpect.before®line5()
and then Azpect.around@line8(); when the latter proceeds,
Base.advicedMethod() is executed. The dashed box surround-
ing Base.advicedMethod() visualizes the fact that the surround-
ing action may not execute proceed and thus may leave out
the execution of this action. Double-clicking on a label rep-
resenting an atomic predicate or an action reveals the corre-
sponding source location (T?2).



= Join Point £2
e S

5& set(private int test.Base.someField) Basejava line 12

$E call(public void test.Base.advicedMethod()) Basejava line: 9
£Z call(public void test.Base.normalMethod())  Basejava line:6

Action

set(private int test.Base.someField)

=

§ =

m

&

Value

CallContext (Sid=6)

JoinPoint (Sid=3)

ActionOrderElement (Sid=14)
» executingAction AttachedAction (Sid=15)

wvoid aspects.Azpect.after@linel5()

Name
.+ callContext
joinPoint
. actionsToPerform

Figure 5. A snapshot of the Join Point view

If more complex pointcuts apply to this join point, i.e.,
more atomic predicates are evaluated, the size and complex-
ity of the BDD may grow significantly. To reduce the pre-
sented information the “-” icon in labels representing atomic
predicates can be clicked to collapse subtrees. Furthermore
a more compact tabular representation of the execution strat-
egy is available as detailed in the following.

Textual Representation of Dispatch By clicking the “Ta-
ble” button on the toolbar, the bottom left part is switched
to a table, as shown in figure 7. This table contains several
pieces of information to support T3 and T8: First it lists all
actions that are potentially applicable at this join point, i.e.,
the standard join point action (Base.advicedMethod()) and all
advice whose pointcut statically matches the join point.

Order Evaluation

al void aspects.Azpect.before@lines()
Callee is a (sub)type of test.Base true
2 java.lang.Object aspects.Azpect.around @line8()
a X void aspects.Azpect. before@linel 2()

NOT (Callee is a (sub)type of test.Base) false

Figure 7. A textual representation of dispatch

Second, for all actions whose pointcut dynamically match-
es the join point, the execution sequence as well as nesting
levels (for around actions) are shown. For example, “2.1” for
Base.advicedMethod() means that this action is executed as the
first action when the second action from the level above (ad-
vice Azpect.around@line8 numbered with 2) performs proceed.
Similar to the graph representation, the currently execut-
ing action is highlighted with green background. For those
actions whose pattern statically matched, but where the dis-
patch function determined that they are not applicable at this
call, the table shows an ’X’ in the order column.

Third, the table shows the results of all atomic predicates
of pointcuts that are evaluated at this join point. Compared
to the graphical representation, the table does not show the
process of evaluation and other possible program composi-
tions.

Visualization of Precedence Dependencies To reason
about the composition of advices at a join point (T9), the
precedence relationships between the advices are visualized.
To illustrate how the visualization of precedence dependen-
cies works, we use three additional aspects which are shown
in listing 5. Both aspects, PrecedingAzpect and PrecededAzpect,
declare a before advice. The aspect IrrelevantAzpect defines
the precedence between PrecedingAzpect and PrecededAzpect.
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[1 - void aspects.Azpect.before@iineS(]|

2 - java.lang.Object aspects.Azpect.around@lines()|

[ - void aspects. PrecedingAzpect before@iine4 ()|

de d

4 - void aspecis. PrecededAzpect betore@ine7 ()]

5 - void test. Base.advicedMethod ()|

Figure 8. The graphical representation of precedence de-
pendencies

package aspects;
import test.Base;
aspect PrecedingAzpect {
before() : call(+ Base.advicedMethod()) { ... }

1
2
3
4
5
6 aspect PrecededAzpect {

7 before() : call(x Base.advicedMethod()) { ... }

8

9 aspect IrrelevantAzpect {

10 declare precedence : PrecedingAzpect, PrecededAzpect;

u }

Listing 5. Aspect illustrating precedence dependencies

Consider that the execution is suspended at the call to
advicedMethod() at line 9, listing 3. By clicking the “Prece-
dence” button on the toolbar of the Join Point view, the graph
panel changes to a representation of the precedence depen-
dencies as shown in figure 8.

Labels representing actions are numbered and connected
by directed lines. The direction of a connection indicates
the precedence between two actions. We use the numbers as
substitute for action names in the following paragraph; for
example, “action 1” represents Azpect.before@line5().

There are three types of connection representing prece-
dence declared in different ways: Precedence may be de-
clared explicitly by means of the declare precedence state-
ment, visualized by a bold blue (dark) connection labeled
with “declared”; it may be defined by the lexical order of
advice definitions in the same aspect, visualized by a bold
gray (light) connection labeled with “lexical”; or it may be
determined by the kind of action (i.e., before, after, around
advice or the join point action), visualized by a thin black
connection without label.

Explicitly declared precedence has a source location, like
line 10 in listing 5. The corresponding source location can
be highlighted when the connection is double-clicked (T2).
An example of precedence declaration by means of lexical
order is shown in listing 4: Action 1 is declared on line 5 and,



= Attachments &%
9] # aspects.Azpect before(): (base(..)) && (target(test.Base])
V| 7 aspects.Azpect.before() : (base(...)) && (!(targetitest.Base)))
V| % aspects.Azpect.after() : set(* (Base).someField)
V] & javalang.Object aspects.Azpect.around() : base(..)

MName Value

» specializations Specialization[1]
MethodCallAction (Sid=...

Schedulelnfo (Sid=57)

[* (test.Base || java.lang.Base).advicedMethod() throws ]

exposes [LazyObjectConstant]

when Callee is a (sub)type of test.Base] b

action
schedulelnfo

Figure 9. A snapshot of the Attachments view

thus, precedes action 2 defined on line 8. The precedence
between any two actions without a connection is random,
such as action 1 and action 3.

5.2 Attachments View

In order to dynamically deploy and undeploy attachments
during runtime, the Attachments view is provided. A snap-
shot of the Attachments view is given in figure 9. The top
panel shows a textual representation of all attachments that
are defined in the executing program together with a check-
box indicating whether the attachment is currently deployed
or not. Unchecking or checking one of the items will lead
to undeployment or deployment of the corresponding at-
tachment in the debugged program (T10). The bottom parts
presents details of the selected attachment.

In figure 9, the first attachment, representing the before
advice declared on line 5 in listing 4, is selected. This advice
has a pointcut containing a reference to another pointcut de-
clared on line 4. The specialization of the selected attach-
ment describes the related pointcut in the bottom panel and
the referred pointcut is inlined in the description (T4).

5.3 Pattern Evaluation View

To debug patterns used in pointcuts, we visualize the pat-
tern evaluation at the granularity of sub-patterns specified
for the separate parts of the join-point signature. Since pat-
terns that do not match at a join point are not shown in the
Join Point view, this functionality is accessible through the
Attachments view which contains all pointcut-advice defini-
tions in the program.

For illustration suppose we select the third frame repre-
senting the call to method test.Base.normalMethod() in figure
5. We find that the before advice declared on line 5 in list-
ing 4 does not appear in the execution strategy. That means
the pattern used in the before advice is unsatisfied. To evalu-
ate the method signature against the pattern, we use the item
representing the before advice in the Attachment view. Then,
an evaluation result of each sub-pattern is presented in the
Pattern Evaluation view as shown in figure 10. It gives the
evaluation results for each sub-pattern (T5).
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T Pattern Evaluation ©%
Part Pattern
* Base.advicedMethod()

Signature Evaluation
public void test.Base.normalMethod() false
public
void

4 whole
Modifiers
Returntype *
Class type java.lang.Base|[test.Base  test.Base
Name advicedMethod normalMethod
Parameters  [] I
Exceptions ||

true
true
true
false
true
I true

Figure 10. A snapshot of the Pattern Evaluation view

i) Display &2
cflow(call(* test.Basze.advicedMethod()))
true|

% | PC Expression

Figure 11. The extended Display view for evaluating point-
cut expressions

5.4 Setting Pointcut Breakpoint and Evaluating
Pointcut Expression

Except three newly added views, we also extend two exist-
ing views in Eclipse. We extend the Breakpoints view to al-
low specifying pointcut expressions in order to set pointcut
breakpoints (T1).

The pointcut evaluation provided in the Join point view
shows only expressions existing in the source code. The pro-
grammer is unable to test a new pointcut expression unless
she modifies and reruns the program. To provide more flex-
ibility in evaluating pointcut expressions (T3), we extend
the Display view. For example, suppose the second frame
shown in figure 5 is selected, the programmer evaluates the
expression cflow(call(x test.Base.advicedMethod())). The result
is shown in figure 11.

6. Related Work

The related work basically falls into two parts which are
debuggers for AOP languages and other development tools
for AOP languages. In the following subsections we present
tools in these categories and discuss them according to the
requirements listed in this paper.

6.1 Debuggers for Aspect-Oriented Languages

We discussed the state-of-the-art AOP debuggers in section
2.3. The evaluation is summarized in table 3 showing that
tasks TS and T9 are not supported at all by any of these
debuggers; for tasks T2, T3 and T6 only partial support is
provided by the related approaches. The reason for these
limitations is the approach that all previous debuggers share:
They debug woven code which lost some of the aspect-
oriented abstractions. In contrast, our approach introduces
an intermediate representation that preserves all source-level
abstractions and thus allows observing and interacting with
the execution of the debuggee in terms of these abstractions.

6.2 Development tools for aspect-oriented languages

AO-specific information provided by tools or systems are
not only provided in online debuggers. Static tools can be



Tag Task Name Our JDB AODA Wicca TOD
debugger

T1  Setting AO breakpoints vV O V O

T2  Locating AO constructs vV O O

T3  Evaluating pointcut sub-expressions vV O

T4  Flattening pointcut references v vV

TS5  Evaluating pattern sub-expressions vV

T6  Inspecting runtime values v O O O

T7  Inspecting AO-conforming stack traces Vv O vV O

T8  Inspecting program compositions vV v vV O

T9 Inspecting precedence dependencies vV

T10 Excluding and adding AO definitions vV Vv

Table 3. Comparison between different AOP debuggers from the perspective of supporting the identified tasks

used as auxiliary approaches to understand program behav-
ior or structure during debugging.

Common IDE tools for AOP languages, like the As-
pect] Development Tools (AJDT)?, Caesar] [2] Develop-
ment Tools (CJDT)?, JAsCo [20] Development Tools (JAs-
CoDT)' etc., require using the Java debugger. Thus, ab-
stractions inspected during debugging are Java abstractions
resulting from the weaving compilation. They provide addi-
tional, static features decreasing the effort in understanding
and coding corresponding programs. For example, AJDT
provides the Aspect Visualiser to find places affected by an
aspect. JAsCoDT has an Introspector which displays the
connectors found within the system.

For the ObjectTeams programming language an Eclipse-
based IDE exists that enhances the standard JDT Java de-
bugger [14]. The enhancement filters call frames that belong
to infrastructural code and adapts the placement of break-
points. The step-into debugger action is aware of “callin
bindings” which correspond to advice in AOP. The Ob-
jectTeams Development Tools (OTDT) provide a view for
showing the active and inactive “Teams”, their form of as-
pect declarations, allowing to dynamically enable and dis-
able Teams, similar to the Attachments view of our debug-
ger. While these enhancements hide the details of generated
code from programmers, it still falls short in providing addi-
tional language-specific functionality.

Some work has been performed on enhancing the vi-
sualization of the structure of AO programs. Pfeiffer and
Gurd [17] introduced a treemap-based visualization, called
Asbro. Asbro uses colored and nested rectangles to present
the hierarchy as well as the crosscutting structure. It is es-
pecially effective in navigating large-scale AO programs.
Coelho and Murphy [9] implemented ActiveAspect which
can present a subset of the crosscutting structure at the right
time, thus decreasing the complexity of information to be

8See http://www.eclipse.org/ajdt/.
9See http://caesarj.org.
10See http://ssel.vub.ac.be/jasco/index.html.
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analyzed. These systems aid language users to comprehend
programs by simplifying the presentation of the crosscutting
structure. Our debugger more concentrates on dynamic in-
formation, especially for pointcut and pattern evaluation, and
program composition.

7. Conclusions and Future Work

In this paper we have investigated four fault models for
aspect-oriented programming (AOP) languages and catego-
rized AOP faults related to dynamic features into seven fault
categories. To detect all kinds of dynamic AOP faults, we
identified ten tasks that an ideal AOP debugger should be
able to perform.

To enable these tasks, the debugging infrastructure must
use an intermediate representation of the program to de-
bug which preserves all source-level abstractions. This is
necessary to let the programmer inspect and influence the
execution of all aspect-oriented program elements in the
source code. It must be possible to add source-location in-
formation to elements in the IR to be able to localize their
source definition during a debugging session. Therefore,
we have based our prototype on our previous work which
provides such an intermediate representation for languages
with advanced-dispatching (AD) which is a generalization of
aspect-oriented programming (AOP). We transform aspect-
oriented (AO) information into AD models and store them
in an XML file after compilation. The stored information
is available to the debugger by means of the Advanced-
Dispatching Debug Interface (ADDI), which allows observ-
ing the program executions in terms of AO abstractions.
Based on the ADDI, we implemented a user interface in
terms of three new and two extended Eclipse views.

According to the identified AOP debugging tasks which
we generalized from commonly identified AOP faults in the
literature, our debugger is the first approach to fully provide
the following features.

1. It visualizes all evaluation results of pointcut sub-expres-
sions at a join point, and it represents the constraints de-



fined in the AOP program that lead to a specific compo-
sition.

2. It performs evaluations on pointcut and pattern sub-
expressions.

3. All elements that rule the execution at a join point are
shown by the visual debugger and the source code defin-
ing them can be located.

4. The runtime stack is enhanced to present join points as
well as all applicable advice at once.

5. It visualizes the declarations leading to a program com-
position at a join point.

6. It shows all advices defined in the program and allows
deploying and undelopying them at runtime.

While our requirements for the debugger are based on
a taxonomy of faults in aspect-oriented programs, we be-
lieve that our approach can be generalized to the concept of
advanced dispatching. In our work we did not consciously
applied any constraints specific to aspect-oriented program-
ming languages. Therefore we expect that this work can be
easily extended to support other advanced-dispatching pro-
gramming languages supported by the ALIA4J architecture,
like predicate dispatching or domain-specific languages.

Besides studying the applicability of our approach to
other programming language paradigms, we will extend our
user interface with advanced support for simplifying recur-
ring tasks. Furthermore, we will investigate supporting de-
bugging in ALIA4J’s optimizing execution environments.
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