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Abstract
The aim of this work is to provide better support for
adaption and refinement of generic code. This type of
flexibility is desirable in order to fully reap the poten-
tial of generic programming. Our proposal for an im-
proved mechanism is an extension to the previously
published Package Templates (PT) mechanism, which is
designed for development of reusable modules that
can be adapted to their specific purpose when used
in a program. The PT mechanism relies on compile-
time specialization, and supports separate type check-
ing and type-safe composition of modules. The exten-
sion to PT presented here is called required types, and
can be seen as an enhanced form of type parameters,
allowing them the same flexibility as other elements of
the PT mechanism. We implement a subset of the Boost
Graph Library in order to exemplify, validate, and com-
pare our approach to other options.

Categories and Subject Descriptors D.2.13 [Software
Engineering]: Reusable Software; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules,
packages

General Terms Languages, Design

Keywords Generic Programming, Reuse, Templates

1. Introduction
When developing libraries or other software compo-
nents meant for widespread reuse, it is vital to min-
imize assumptions on the client code. On the other
hand, it is equally important to be able to express a suf-
ficient set of requirements for the clients of the library
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so that it can be written in a type-safe manner that
yields efficient code. Furthermore, it is important that
a client can refine and adapt the library to the problem
at hand.
Many languages, such as e.g. Java, C#, C++, Scala,

and Haskell, support constructs for generic program-
ming in order to better facilitate the development
of reusable libraries. The degree to which each lan-
guage supports such constructs varies, and an excel-
lent overview that compares several languages with
respect to support for generic programming can be
found in [11].
There are several definitions of what generic pro-

gramming actually entails (or should entail), but per-
haps a more fruitful angle is to consider what it is that
we are trying to achieve with such mechanisms. In that
respect, Jazayeri et. al [15, page 2] state the following:

“The goal of generic programming is to express
algorithms and data structures in a broadly adapt-
able, interoperable form that allows their direct
use in software construction” [emphasis ours].

We agree, to a large extent, with this quote, even if
it may be deemed a bit wide in scope. The adaptability
part of the goal is in our opinion very important, and in
this paper we will describe a mechanism that we think
in many cases can represent both an improvement and
a simplification with respect to adaptable generic pro-
gramming compared to contemporary approaches.
The mechanism is an extension of the Package Tem-

plate (PT) mechanism [3, 16]. We will in the following
refer to the previously published variant as basic PT, or
just PT when the variant is obvious from the context.
Basic PT allows type safe renaming, merging, and re-
finement in the form of static additions and overrides
that are orthogonal to ordinary inheritance. It thus dif-
fers from typical virtual class-based [17] mechanisms
in that composition and refinement (beyond ordinary
OO constructs) is reified at compile-time only, yielding
a simpler type system.
Seeking to also attain the goal presented above for

generic, potentially heavily parameterized, libraries, we
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incorporate a notion of required type specifications in the
PT mechanism, and we label this variant PTr. The ap-
proach is inspired by suggestions to use virtual types
as an alternative approach to generic parameterization
in Java [27], and enables utilization of basic PT’s inher-
ent capabilities for adaption also for generic concepts
and constraints. PTr supports multi-type concepts, as-
sociated types, and nominal and structural generic
bounds. Retroactive modeling and adaption through
renaming, merging and additions are thus also sup-
ported, without sacrificing type safety, performance,
or dynamic dispatch.
To demonstrate and validate our approach, we have

implemented a small yet non-trivial subset of the Boost
Graph Library [25], which employs a rather advanced
usage of generics. The subset is the same as that de-
scribed and implemented by [11], and we will com-
pare and contrast the implementation made possible
with PTr with those of [11]. The implementation and
a prototype compiler can be downloaded from http:
//swat.project.ifi.uio.no/software.
Themain contribution of this paper is thus to present

PTr as an approach to creating flexible generic li-
braries, and to demonstrate through a non-trivial ex-
ample its benefits and tradeoffs.
The rest of this paper is organized as follows: Sec-

tion 2 presents necessary background material and in-
troduces basic PT (2.1), and the Generic Graph Library
(2.2) through a discussion on criteria for generic con-
structs in general and the goals of our mechanism in
particular. Sections 3 and 4 contain a description of
the proposed addition of required types to PT, and
an overview of how PTr fulfills most of the criteria
presented in Section 2.2, respectively. Related work is
treated in Section 5, and Section 6 concludes this paper.

2. Background
2.1 A Brief Overview of the Basic PT Mechanism

In this section we give a general overview of the basic
PT mechanism. The concepts of the mechanism are
not in themselves tied to any particular object-oriented
language, but the examples will be presented in a Java-
like syntax. The interested reader is referred to [3, 16]
for a more thorough exposition.
A package template looks much like a regular Java

package, but we will use a syntax where curly braces
enclose the contents of both templates and regular
packages, e.g.:
template T<R> { // R is not discussed here, see Sec. 3

class A { ... }
class B extends A { ... } }

In contrast to for instance templates in C++, package
templates can be type checked independently of their
potential usage(s).

A template is instantiated at compile time with an
inst statement. Such an instantiation will create a lo-
cal copy of the template classes, potentially with speci-
fied modifications, within the instantiating package or
template. An example of this is shown below:

package P {
inst T with A => C, B => D;
class C adds { ... }
class D adds { ... } // D extends C since B extends A

}

Here, a unique instance of the contents of the pack-
age template T will be created and imported into the
package P. In its simplest form, the inst statement just
names the template to be instantiated, e.g. “inst T”.
However, modifications can also be made to the tem-
plate classes upon instantiation, such as:

• Elements of the template may be renamed. This is
done in the with-clause of the inst-statement, and
is only shown for class names above (A is renamed
to C and B is renamed to D). For renaming of class
attributes another arrow is used (->). Note that all
renaming in PT is done based on the name bindings
from the semantic analysis.

• In each instantiation the classes in the template
may be given additions: fields and methods may
be added and virtual methods may be overridden.
This is done in adds-clauses as shown for C and D.

An important property of PT is that everything in
the instantiated template that was typed with classes
from this template (A and B) is updated to instead refer
to the corresponding names of the addition classes (C
and D) at the time of instantiation. Any sub/super-
type relations within the template are preserved in the
package where it is instantiated. Note that templates
can also be instantiated in other templates.
Classes from different template instantiations may

bemerged to form one new class. Syntactically, merging
is obtained by renaming classes from two or more tem-
plate instantiations to the same name, and they thereby
end up as one class. The new class gets all the attributes
of the instantiated classes, together with the attributes
of the common addition class. Consider the simple ex-
ample below:

template T { class A { int i; A m1(A a) { ... } } }
template U {
abstract class B { int j; abstract B m2(B b); }

}

Consider now the following usage of these templates:

inst T with A => MergeAB;
inst U with B => MergeAB;
class MergeAB adds {

int k;
MergeAB m2(MergeAB ab) { return ab.m1(this); }

}
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These instantiations result in a class MergeAB, that
contains the integer variables i, j and k, and the meth-
ods m1 and m2. Note how the abstract method m2 from
B is implemented in the adds clause, and furthermore
how both m1 and m2 now have signatures of the form
MergeAB→ MergeAB.
Merging classes in this manner might obviously

lead to name clashes; such conflicts must be resolved
through renaming.

2.2 The Generic Graph Library and Evaluation of
Generic Support

For the purpose of demonstrating and validating the
generic programming constructs added to PT in this
paper, we have implemented a small yet non-trivial
subset of the Boost Graph Library (BGL) [25], re-
volving around a set of algorithms using variants of
breadth-first search, including Prim’s minimum span-
ning tree, Dijkstra’s shortest paths, Johnson’s shortest
paths, and Bellman& Ford’s shortest paths algorithms.
The implemented subset is the same as that of [11].
In the implementations from [11], emphasis is put

on expressing minimal requirements for each algo-
rithm. These have internal (acyclic) dependencies, e.g.
Johnson’s algorithm depends on Dijkstra’s algorithm.
The graph itself is represented in terms of concepts.

The term concept is in [11] used to mean a set of re-
quirements consisting of required operations (meth-
ods) and data type constraints. A type (or a set of
types) is said to model a concept if it (they) fulfill(s)
these requirements. In a Java-like language, concepts
are typically realized as interfaces1, and classes imple-
menting such an interface thus model the correspond-
ing concept. The following main concepts of the graph
library are in Java implemented as interfaces:

• VertexListGraph: provides an iterator yielding all
vertices in the graph in an unspecified order.

• EdgeListGraph: provides an iterator yielding all
edges in the graph in an unspecified order.

• IncidenceGraph: provides an iterator yielding the
directed edges going out of a given vertex.

These concepts are used by the algorithms to ex-
press constraints on their input parameters. For con-
venience, concepts that are combinations of the afore-
mentioned ones are introduced, e.g. the VertexList-
AndIncidenceGraph concept which is an interface that
extends both the interfaces representing the Vertex-
ListGraph concept and the IncidenceGraph concept.
Additionally, the different algorithms require various
data structures for coloring, ordering, etc., realized as

1 See [22] for an alternative approach based on the Concept pattern.

e.g. property maps, queues, etc. These structures are
supplied explicitly as parameters to each algorithm.
Several languages were studied in [11], and subse-

quently evaluated based on their support for generic
programming constructs. Table 1 shows an overview
of the rating for C++ and Java from that paper, plus
an additional column for Scala, the latter taken from
[22]. The different categories in the table are described
in Table 2A, taken from [11]. An extended evaluation,
including PTr, will be presented in Section 4.
While the original study included several other lan-

guages as well, we focus on Java and C++, and in
addition we include Scala. C++ is interesting because
its generic capabilities rely heavily on its templating
mechanism, and it is in this language that the Boost
Graph Library has its native implementation. How-
ever, C++ templates differ drastically from the tem-
plates of PT, most notably in the sense that PT tem-
plates are declarationally complete semantic units that
can be type checked independently of their usage. As
can be seen from the table, while much can be achieved
in C++ due to its flexibility with regards to template
definition, we only get limited compiler support.2 Java
is obviously interesting because the lacking points for
Java in the table is the situation that we wish to ame-
liorate with PTr, and PT is designed as an extension
to Java-like languages. Scala is a rather advanced JVM
language that also addresses many of the weaknesses
of Java with regards to generic programming, and as
such it is an interesting language with which to com-
pare and contrast our mechanism.
A partial goal for this paper can thus be summa-

rized as to bring some of the flexibility of C++ generic tem-
plate programming to Java with PTr, while retaining com-
piler support, static safety, and relative simplicity.
However, if we look back to the goal from [15] pre-

sented in the introduction, we argue that the crite-
ria from [11] do not adequately encompass require-
ments for writing algorithms and data structures that
are broadly adaptable. For instance: How can a constraint
for a generic parameter be adapted to match existing
code? How can a constraint be refined by subsequent
users? How can a concept be adapted to allow model-
ing by existing data structures, or vice versa?
In order to cover these usage scenarios, we intro-

duce two new criteria related to adaptability, presented
in Table 2B. Thus, another part of our goal with this
paper is to satisfy the adaptability criteria for generic pro-
gramming.

Scores for Scala. In [22], Oliviera et al. discuss the cri-
teria from Table 2A in context of the Scala language.

2Note, however, that Java-style generics can be emulated in C++,
with compiler support, through use of for instance the Boost Li-
brary’s BOOST_STATIC_ASSERT.
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C++ Java Scala
Multi-type concepts * � �
Multiple constraints * � �
Associated type access � �� �
Constraints on assoc. types * �� �
Retroactive modeling * � �
Type aliases � � �
Separate compilation � � �
Implicit argument deduction � � �
Table 1. The table shows the level of support for generic
programming constructs for C++, Java, and Scala. The table
criteria and the support levels for the former two are taken
directly from [11, page 147]. A black circle indicates full
support, a half-filled circle indicates partial support and a
white circle indicates poor or no support at all. For C++, a
rating of ‘*’ means that the feature is not explicitly supported
by the language, but the permissiveness of the language
allows one to program as if it were supported, though sans
compiler support.

In their treatment, Scala receives the full support ver-
dict on all points, as shown in Table 1. One could thus
think that there is little room formaking improvements
with PTr. However, we have found that, at least with
respect to an implementation of the generic graph li-
brary, Scala still leaves a few things to be desired with
respect to these criteria. Furthermore, as we shall see,
PTr takes quite a different approach to generics com-
pared to Scala. Also note that [22] changes the scores
for Java, but we have kept them in their original form
from [11]. We refer to the discussion of the individual
criteria in Section 4 for details.

3. Required Type Specifications in PTr
Basic PT [3, 16] allows templates to have generic type
parameters in much the same way as ordinary Java
classes can, e.g. as in

template T<R> { ... }

The parameters may be constrained, either through
a nominal inheritance specification (akin to Java gener-
ics) or through a structural requirements specification,
e.g.:

template T1<R extends Runnable> { ... }
template T2<R extends { void run(); }> { ... }

While this provides the ability to let the template
classes be collectively parameterized, which in itself
can be very useful, the approach has certain limita-
tions. To begin with, the parameter R in the examples
above does not naturally lend itself to the kind of mod-
ification that are allowed for basic PT classes, e.g. re-
naming of attributes, merging etc. Since the parameter
is part of the template specification, it could be natural

(or even necessary) to adapt the parameter specifica-
tion along with other adaptions of the template. Fur-
thermore, neither the name R nor the requirement it
poses is propagated to other templates that instantiate T,
T1, or T2. As wewill see examples of below, and as was
demonstrated in [11], this is a real issue for the imple-
mentation of larger libraries as it often leads to unnec-
essary code duplication. Also, as a consequence of the
lack of propagation, there is no straightforward way
to refine constraints without cumbersome and error-
prone repetition of code.
With basic PT, class declarations in a package tem-

plate can, as we have seen in Section 2.1, be adapted
in several ways. It seems like a natural step forward to
provide the same degree of flexibility for parameteri-
zation of templates. Thus, this can be seen as making
the generic constraints of a template first class entities
of the template, in the same way that classes and inter-
faces are. In the rest of this section, we will look at how
PTr provides this feature.

Required types as first-class template declarations.
The syntax for required types in PTr is summarized
in Figure 1. A basic specification requiring an uncon-
strained type, i.e. any Java class or interface, to be sup-
plied can be expressed as follows:
template T1 { required type R { } }

An actual parameter for R can be supplied to T1
when instantiating the template, by utilizing the <=
arrow. To e.g. supply String for R in T1, the following
instantiation could be used (within another template
or package, see separate paragraph on that below):
inst T1 with R <= String;

At this point we see an important difference be-
tween required types in PTr and type parameters as
found in e.g. Java, Scala or C#with regards to their
scope: Required types are at the same lexical level as
class declarations, and can thus naturally constrain
a set of classes. This is to some extent similar to ab-
stract types and nested classes within an outer class
in e.g. Scala, but it is important to note that required
types in PTr (and package templates as a whole) is a
compile-time construct only. Thus, after instantiation
of the template in a package, there will be no inner ab-
stract types (and thus no full family polymorphism [8]
nor path-dependent types). This amounts to a simpler
type system, and is as such comparable to the flatten-
ing property of traits [23].
A required type R can be constrained by both struc-

tural and nominal specifications; below we see an ex-
ample of the former:
template T2 { required type R { void run(); } }

Given an instantiation that supplies an actual type
for a required type R with a structural constraint, such
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Criterion Definition
A) Multi-type concepts Multiple types can be simultaneously constrained.

Multiple constraints More than one constraint can be placed on a type parameter.
Associated type access Types can be mapped to other types within the context of a generic func.
Constraints on associated types Concepts may include constraints on associated types.
Retroactive modeling New modeling relationships can be added after a type has been defined.
Type aliases A mechanism for creating shorter names for types is provided.
Separate compilation Generic functions can be type checked and compiled independent of

calls to them.
Implicit argument deduction The arguments for the type parameters of a generic function can be

deduced and do not need to be explicitly provided by the programmer.
B) Retroactive concept adaption Concepts can be adapted after their initial definition. If the concept spans

multiple types, a single adaption may affect several types.
Retroactive constraint adaption Constraints for generic parameters can be adapted and refined after their

initial definition to better match existing code.

Table 2. A) The different criteria for evaluation of support for generic constructs in programming languages, taken directly
from [11, page 147]. B) Additional criteria for evaluation of support for adaptable generic programming. We discuss these
criteria in further detail in Section 4.

as “inst T2 with R <= Runnable”, the compiler will
check that the supplied type structurally conforms to
the specification given by R. Conformance entails that
all the required methods (and constructors if they are
present, see below) must have an exactmatch (save for
parameter names) in the supplied type. Covariant or
contravariant signatures are not allowed; allowing this
would not be type safe (e.g. when merging). Thus, for
required types with only methods, the conformance re-
lation for required types is equivalent to the <#match-
ing relation of the LOOM language [5].
If the signature check succeeds, the compiler will re-

place all occurrences of R (based on the semantic analy-
sis) in the instantiated template with the supplied type;
in the example instantiation in the paragraph above,
references to the type R will be replaced by references
to the type java.lang.Runnable. The actual declara-
tion of the required type R will be removed. Thus, for
every class in the template, a version specific to this
instantiation, with the given parameterization, is cre-
ated. Note that, as opposed to in e.g. Scala, there is
never a need for runtime reflection when dealing with
structural constraints, since the actual type always will
be known at compile-time.
Bounds for required types can be specified nomi-

nally as well as structurally. Taking the example from
above, we can express that R must be a nominal sub-
type of e.g. the Runnable interface:

template T3 { required type R extends Runnable { } }

Thus, when supplying an actual type A for R in
an instantiation of T3, it must explicitly implement
or extend the Runnable interface (or A might be the
Runnable interface itself).

Nominal and structural subtyping can also bemixed
in a declaration of a required type. To demand an ex-
plicit, nominal, implementation of Runnable, and fur-
thermore that a method stop must be present, we can
easily express this as follows:
template T4 {

required type R extends Runnable { void stop(); }
}

Classes and interfaces. Java generics do not allow the
use of primitive types (though Scala does), and we do
not in this work intend to lift that restriction. However,
it is still important in some cases to be able to explicitly
constrain a required type to be either an interface or a
class.3

As can be seen from the syntactical overview in
Figure 1, such constraints can be imposed by declar-
ing a required type explicitly as either a required
interface or a required class. Declaring require-
ments in this way puts further constraints on the re-
quired types; e.g. the ability to have constructors and
fields are only available to required classes.
Thus, the term required type is overloaded in this

paper, and is used both in the inclusive sense to re-
fer to the syntactical and semantical constructs of re-
quired types, required classes and required interfaces,
and, on the other hand, in the narrow sense to only refer
to required types. When this distinction is important,
we will be explicit about this; otherwise, the inclusive
sense is implied.

Instantiation and concretization Asmentioned above,
upon instantiation of a template, the programmer may

3An example of a similar construct in a mainstream OO language is
the where R : class constraints of C# .
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required-spec ::= required [<r-type>|<r-class>|<r-interface>]
r-type ::= type <identifier> [adds] [<extends-clause>] { <r-type-body>* }
r-interface ::= interface <identifier> [adds] [<extends-clause>] { <r-type-body>* }
r-class ::= class <identifier> [adds] [<implements-clause>] [<extends-clause>] { <r-class-body>* }
r-type-body ::= <method-signature>
r-class-body ::= <constructor-signature> | <field-signature> | <method-signature>

Figure 1. Syntax for required types. Non-terminals are written within <angled brackets>, and optional symbols are delimited
by [square brackets]. A vertical line (|) signifies alternatives, and a star (*) signifies zero or more repetitions of a symbol.
Terminal symbols are written with a monospace font. Productions left out (for the sake of brevity), such as e.g. the extends-
clause, are to be understood as syntactically equal to their pure Java equivalents.

choose to supply an actual concrete type for a required
type R that satisfies the constraints of R. We will refer
to this as a concretization of the required type.
A template can be instantiated in other templates

and in packages. When a template T is instantiated in
another template U, it is not mandatory to concretize
the required types of T. Any required types in T that are
not concretized upon instantiation in U will be propa-
gated to U, and will thus become required types of U.
On the other hand, when a template T is instanti-

ated in a package P, every (remaining) required type
must be given a concretization. The concrete types may
be classes or interfaces from instantiated templates (in-
cluding the template containing the required type), or
from other ordinary Java packages.
Sometimes, it can be nice to provide sensible de-

fault concretizations for required types, to alleviate the
burden of always having to concretize every (remain-
ing) required type when a template is instantiated in
a package. For a mechanism like PTr, where a number
of required types can be gathered in one template, a
way to specify such defaults would indeed be helpful.
A default concrete type or implementation could ex-
plicitly be given in the declaration of a required type.
Another option for simple cases is to choose a default
concretization from the bound of the required type. We
are still studying how this can best be done, but for
simple cases, the prototype compiler currently resorts
to the latter approach.

Subtype hierarchies. Table 3 shows the relationships
that are supported between required types, required
interfaces, required classes, classes, and interfaces, for
the extends and implements relations, respectively.
An extends or implements relationship between

two required types does not in itself form a hierar-
chy. Rather, it puts forth a requirement for a hierarchy,
i.e. a constraint that actual supplied types must (tran-
sitively/reflexively) fulfill.

Constructor definitions. Although it was not explic-
itly treated in [11], a seemingly common issue with
type parameters is that you might want to create ob-

extends RT RI RC I C
RT �
RI � � �
RC �
I � � �
C � �
implements RT RI RC I C
RT
RI � � �
RC
I � � �
C

Table 3. Support for the extends and implements rela-
tions between required types (RT), required interfaces (RI),
required classes (RC), ordinary (template) interfaces (I) and
ordinary (template) classes (C). The table is supposed to be
read from the top row and down and to the left. I.e., RC
extends RT is a legal relationship, while the converse RT
extends RC is not.

jects of the actual types. In Java and Scala, however,
this is disallowed, so even if you have a method or
a class parameterized by a type T, you cannot say
“new T()”.4 C#is a bit more expressive, and allows the
developer to constrain the type parameter by adding
a “where T: new()” constraint, requiring the actual
type to have a parameterless constructor. Other kinds
of constructor requirements cannot be expressed.
When utilizing required classes, constructor re-

quirements can quite naturally be handled simply by
adding the necessary required constructor signatures
to the class. These requirements can subsequently be
structurally matched with the actual constructors of
the class supplied upon instantiation. An example is
shown below:

template T { required class E { E(int value); } ... }

4 You can, however, in some cases create an object of a generic type
T using reflection. Furthermore, in Scala, you can utilize implicit
factories for similar results.
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Inside classes in the template T above, or in classes
from other templates or packages that instantiate T,
statements such as “new E(42)” can safely be used.
Note that required constructors can only be defined

for required classes, and not for required interfaces or
plain required types.
For a required class RC that has a nominal subtyp-

ing requirement with bound B, where B is a class with
accessible constructors, the required class must still
structurally specify constructor requirements explic-
itly if “new RC(...)” is to be allowed. This is because a
Java subclass in general needs not implement the same
constructors as its superclass.

Refinement through additions. A required type in
PTr can be given additions in the same way as classes
and interfaces can in basic PT, through an adds clause.
This can be used to refine constraints in subsequent in-
stantiations. Consider a template T defined as follows:

template T { required type R { void run(); } }

In another template U that instantiates T, R can be
refined by adding nominal or structural constraints.
An example that does both is shown below:
template U {

inst T;
required type R adds implements Runnable {void stop();}

}

Here, R is refined in U, and further constrained to
both nominally implement the Runnable interface and
to implement a parameterless stop() method that re-
turns void.

Merging. With basic PT, classes (or interfaces) from
different template instantiations can bemerged to form
one new class. The details of the merge mechanism are
beyond the scope of this article, the interested reader is
referred to [3] for a more thorough exposition.
In PTr, required types can be merged in the same

way that ordinary template classes and interfaces can.
As for ordinary merges, different kinds of types can-
not be “cross merged” with each other. I.e. a required
interface can only be mergedwith other required inter-
faces, required classes only with other required classes,
and required types only with other required types. The
main difference from ordinary class or interface merg-
ing lies in the handling of conflicts. If, in the merge of
two required types, there are equal signatures stem-
ming from each of the types, this is not considered a
conflict. Rather, the two signatures aremerged into one
in the resulting required type. If a given pair of equal
signatures should indeed be kept separate, the devel-
oper may explicitly rename one or both of them in the
instantiation. Merging required types wheremore than
one has a nominal bound that is a class is considered a
compile time error.

C++ Java Scala PTr
Multi-type concepts * � � �
Multiple constraints * � � �
Associated type access � �� � �
Constr. on assoc. types * �� � �
Retroactive modeling * � � �
Type aliases � � � �
Separate compilation � � � ��
Implicit arg. deduction � � � �
Retroact. concept adapt. � � �� �
Retroact. constr. adapt. � � �� �
Table 4. Support for adaptive generic programming in
C++, Java, Scala, and PTr.

Through merging of required types from different
instantiations, the developer is able to express equal-
ity constraints across template instances, by explicitly
declaring that two previously distinct required types
are to be considered the same in the context of the cur-
rent package or template. In contrast to an ordinary
equality constraint, a merge also alleviates the need to
provide the same parameter twice, making for more
succinct code.

4. Fulfilling the Generic Programming
Criteria

In this section, we discuss how and to what extent PTr
fulfills the requirements listed in Table 2, as shown in
Table 4. For brevity, we will not discuss scores that PTr
“inherits” directly from Java.

Multi-type concepts. The essence of supportingmulti-
type concepts lies in the ability to simultaneously con-
strain more than one type. In PTr, constraints can be
specified by required types within templates, to which
several other (required) types of a multi-type concept
can refer, and thus be simultaneously constrained.
An example of this from our implementation of the
generic graph library is shown below:

template GraphConcepts {
required type Vertex { }
required type Edge { Vertex source(); Vertex target();}
required type EdgeIter extends Iterator<Edge> { }
required type OutEdgeIter extends Iterator<Edge> { }
required type VertexIter extends Iterator<Vertex> { }
required interface IncidenceGraph {

OutEdgeIter out_edges(Vertex v);
int out_degree(Vertex v); }

...
}

As we can see from the code, the Edge, VertexIter,
and IncidenceGraph types are all constrained by the
(same) Vertex type, and the EdgeIterand OutEdgeIter
types are constrained by the Edge type. Furthermore,
we here see an example of traditional Java type pa-
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rameterization (of the java.util.Iterator<T> inter-
face) combined with PTr’s required types. Note that
this template can be instantiated by relying on default
concretization, as discussed briefly in Section 3, so that
we might e.g. only explicitly concretize Vertex and
Edge, and let the compiler concretize the remaining
required types to their bounds. Note also that a con-
cept can be composed from other concepts, each of
which might span one or more types, by instantiating
templates representing other concepts. Thus, with PTr
one can express sub-concepts that are themselves com-
prised of other sub-concepts and/or types, and reuse
and/or refine the constraints from these.
Multi-type concepts in Scala are typically imple-

mented through use of the Concept pattern [22], pa-
rameterized with multiple type parameters. Apply-
ing this pattern thus implies creating separate concept
classes (or singleton objects) that implement/model
the concept interface/trait. Using Scala’s implicit
definitions this can in many cases make for a quite ele-
gant solution. However, for the graph library function-
ality we found that having multiple multi-type con-
cepts, implemented through the Concept pattern and
constrained by the same associated/abstract types,
quickly led to a rather complex solution.
Also in Java, multi-type concepts can be expressed

through the Concept pattern, but this approach may
quickly become cumbersome due to the fact that con-
cept implementations must be referred to explicitly.
The score for Java from [11] in Table 4 is instead based
on a nominal subtyping approach.

Associated type access. Access to associated types is
a property that allows code to refer to types that are
associated with a generic concept. For instance, the
general Graph concept has associated types Edge and
Vertex. If the concept is expressed in a package tem-
plate, and associated generic types as required types,
one can simply refer directly (without any additional
qualification) to the required types Edge and Vertex.
These required types will be replaced by the actual
types upon instantiation, at the latest in a package.
Thus, associated type access comes “for free”with PTr.
In languages like Java, associated types are typically

represented by generic parameters, and this quickly
leads to verbose definitions. As an example, contrast
the Java definition skeleton in Figure 2 of the breadth
first search algorithm from [11] with the Scala and PTr
versions directly below it.
Note how in the PTr version, the only parameteri-

zation that is necessary for the algorithm is to specify
the ColorMap type, which is not in itself an associated
type of the graph concept. The associated (required)
type Vertex can be accessed directly (even though its
actual type has not been supplied yet).

// Java version:
class breadth_first_search {
public static <Vertex,
Edge extends GraphEdge<Vertex>,
VertexIterator extends Iterator<Vertex>,
OutEdgeIterator extends Iterator<Edge>,
ColorMap extends ReadWritePropertyMap<Vertex, Integer>>
void go(VertexListAndIncidenceGraph<

Vertex,Edge,VertexIterator, OutEdgeIterator> g,
Vertex s, Visitor vis, ColorMap color) {

...
graph_search.go(g,s,vis,color, ...);

} }

// Scala version
object breadth_first_search {
def go[Graph <: VertexListAndIncidenceGraph,

ColorMap <: ReadWritePropertyMap
{type Key = Graph#Vertex; type Value = Int}]

(g: Graph, s:Graph#Vertex, vis: Visitor,
color: ColorMap ){

...
graph_search.go(g, s, vis, color, ...);

} }

// PTr version:
inst GraphConceps;
class breadth_first_search {
public static <ColorMap extends

ReadWritePropertyMap<Vertex, Integer>>
void go(VertexListAndIncidenceGraph g, Vertex s,

Visitor vis, ColorMap color) {
...
graph_search.go(g,s,vis,color, ...);

} }

Figure 2. Associated type access in Java, Scala and PTr

In Scala, an associated type is typically implemented
as an abstract type within a class or a trait. Access to
such a type is achieved through the type projection
construct, e.g. Graph#Vertex. For the Scala code above,
a parameter for the graph type is thus needed to access
the Vertex type. Also note that neither the Java nor the
Scala versions are parameterized on the Visitor con-
cept, as this is not an associated type of the graph con-
cept. For PTr, on the other hand, the Visitor concept
is realized as a required type, and parameterization is
thus available without any additional overhead.
A limitation that made implementing graph library

functionality a little harder and less natural in Scala
was the fact that you cannot use an abstract type as
the type of a parameter to a method in another abstract
type [21, sec. 3.2.7].
The example presented in Figure 2 is closely related

to the issue of constraint propagation. We notice in that
example that the PTr version does not need to men-
tion the constraints for generic types it does not itself
directly utilize, whereas the Java version must repeat
the constrains for VertexIterator, EdgeIterator, etc.
The example below shows how this can lead to com-
plexity in even very simple cases:
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// Java version:
interface VertexListAndIncidenceAndEdgeListGraph<

Vertex,
Edge extends GraphEdge<Vertex>,
VertexIterator extends java.util.Iterator<Vertex>,
OutEdgeIterator extends java.util.Iterator<Edge>,
EdgeIterator extends java.util.Iterator<Edge>>

extends
VertexListAndIncidenceGraph<Vertex,Edge,

VertexIterator,OutEdgeIterator>,
EdgeListGraph<Vertex,Edge,EdgeIterator> {}

// PTr version:
required interface VertexListAndIncidenceAndEdgeListGraph
extends VertexListAndIncidenceGraph,EdgeListGraph {}

The interface above, in either version, defines noth-
ing more than a composition (through inheritance) of
existing interfaces, and does as such not introduce any
associated types or requirements on its own. The PTr
version can be written in a much more succinct man-
ner because there is no need to repeat the associated
types as they are propagated automatically upon instan-
tiation, and can thus be accessed without resorting to
additional generic type parameters.
For Scala, the definition of VertexListAndIncid-

enceAndEdgeListGraph would be similar to the PTr
version, but its constituents would in each of their def-
initions have to repeat the constraints for vertices and
edges (and the concept could not itself be an associated
type, due to the limitation mentioned above).

Constraints on associated types. There are several
kinds of constraints that can be useful for associated
types. A common form of constraints is that of an
equality constraint, i.e. the requirement that an as-
sociated type of two other types must be the same.
In a template with required types, this can easily be
achieved in PTr by referring to the same requirement
in both of the types. For associated types that were
previously unrelated, one can express that they should
in a given context be the same by merging the corre-
sponding required types; the new required type will
represent the union of the original ones.
Another typical form of constraints are in the form

of sub/super relationships. With PTr, this can be ex-
pressed directly, with e.g. declarations of the form
“required interface I extends J {...}”. If J is it-
self a required interface, the actual type supplied for I
is constrained to be a subtype of the actual type sup-
plied for J.
Basic PT (and thus also PTr) amends the problem in-

herent to Java (and Scala) generics where it is not pos-
sible, due to type erasure, to constrain a generic type to
two different parameterizations of the same generic in-
terface (or trait). PT allows multiple instantiations (and
thus also parameterizations) of a single template.

Retroactive modeling. In C++, retroactive modeling
is implicitly supported since the compiler does not
check the constraints put forth by templated concepts.
Hence, any type can be said to model a concept with-
out any prior reference to the concept itself, as long as
the type provides the (implicitly) required operations.
In Java, there is no direct support for retroactively

saying that a given class models (implements) a given
concept (interface), short of changing its source code.
However, a work-around might be the Concept pat-
tern, though this is somewhat awkward to use since
concepts must explicitly be passed around.
As Java, Scala supports retroactivemodeling through

the use of the Concept pattern, but implicit declara-
tions make the use of concepts much more convenient
and natural to the programmer in Scala.
Existing Scala libraries can be extended (or rather,

appear to be extended) through the “library pimping”
approach [20], in order to support retroactive model-
ing. However, this approach is typically based on im-
plicit runtime creation of new objects, which might
lead to subtle bugs e.g. when references to such ob-
jects are passed around. There is, in our opinion, a sig-
nificant difference between retroactively adjusting the
model (as PTr can do), and annotating the model with
conversions to and from the modeled concepts.
With PTr, classes from templates can model new

concepts through being merged with other classes that
model the concept, or by having interface implementa-
tion declarations added by an adds part. The possibil-
ity for name changesmakes it easier to let existing code
retroactively model new interfaces. A small example
sketch is shown below, where a concept M is realized
by the interface M. The template T contains a class C,
that implements the desired functionality in a method
mx, however, it does not explicitly implement M:
interface M { void m(); }
template T { class C { void mx() { ... } } }

With PTr, we can retroactively define the implements-
relation between M and an instance of C, as follows:
// rename method "mx" to "m":
inst T with C => C ( mx() -> m );
// add the interface implementation decl:
class C adds implements M { }

Type aliases. Type aliases are supported by C++ and
Scala (and other languages) as a way tomake long type
names shorter, and are as such especially useful when
dealing with heavily parameterized code. However, it
has not been our goal to support this in our work with
PTr, and the level of support is thus the same as for
plain Java. Even so, PTr does alleviate this issue to a
certain extent, since the parameterized types can be
fixed at the time of instantiation, and need thus not be
repeated for subsequent uses.
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Separate compilation. This criterion includes both
separate type checking and compilation into indepen-
dent units. Java and Scala support both parts of the
criterion, while the templates of C++ supports neither.
The former part is fulfilled by PTr, since every tem-
plate can be separately type checked independently
of subsequent usage. The latter part is not supported
by the current prototype compiler, which produces
separate code for each instantiation (a heterogenous
implementation). However, we have previously ex-
perimented with how a homogenous implementation
can be made for an extended JVM, with special in-
structions e.g. for invoking methods in adapted tem-
plate classes. Such an approach does, in contrast to
the current heterogenous compile-time specialization
scheme, come with some runtime performance over-
head (which is also incidentally true for Scala’s implicit
definitions and Java’s runtime casts due to erasure).

Retroactive concept adaption. As one of the addi-
tional two criteria we added in order to support the
programming of adaptable generic libraries, retroac-
tive concept adaption is the ability to unintrusively (i.e.
without making changes to the original source code)
make certain changes to a concept after its initial def-
inition. These changes include renaming of methods
and of the concept itself, and changes to the types
returned by or accepted as parameters to the opera-
tions (methods) of the concept. Such changes can be
important in order to provide a better match for ex-
isting code, or in order to better reflect the domain of
the problems that the program is supposed to solve.
Name changes may seem like a trivial modification to
any program, but influential development methodolo-
gies like domain-driven design (see e.g. [9]), as well
as research into naming conventions and intended se-
mantics (see e.g. [13]), put emphasis on the importance
of proper naming. Neither Java nor C++ supports the
retroactive adaption of concepts, and developers are
hence relegated to either make do with the concept as
they were originally defined, make wrappers around
them, or duplicate code. In Scala, concepts can, to a cer-
tain extent, be retroactively adapted through the use of
implicit declarations and inheritance.
For PTr, retroactive adaption is one of the main mo-

tivating goals for the mechanism, and adaption of con-
cepts (defined as interfaces, required interfaces or ab-
stract base classes) as well as their potential implemen-
tations can be expressed as part of an instantiation of
a template. The fact that each instantiation results in a
new set of classes is the main reason for PTr’s flexibil-
ity with regards to name changes.
Beyond name changes, a concept in PTrmight be re-

fined by adding new operation signatures through the
use of adds clauses (for both concept definitions and

implementations). The PTr approach supports over-
loads and (single) dynamic dispatch of added oper-
ations, in contrast to mechanisms such as extension
methods in C#or the Concept pattern through implic-
its in Scala, which rely on static dispatch.

Retroactive constraint adaption. Constraints form a
significant part of the interface to a generic library,
and hence if retroactive modeling and adaption are
deemed important, the possibility for retroactive adap-
tion of constraints should be of equal importance.
In Java, constraints cannot be adapted short of

changing the source code or creating wrappers that re-
fine the original constraint. Scala supports refinement
of constraints expressed as abstract types through sub-
typing, but the original constraint cannot be adapted.
With PTr, constraints in form of required types can

be adapted in several ways. To begin with, their names
can be changed, along with the names of method sig-
natures within them. Changing the name of a required
type might be useful when a type is not supplied at in-
stantiation, and a default interface definition is subse-
quently created by the compiler. Changing the names
of method signatures is useful in order to adapt the
generic library to existing code, when one is unable or
unwilling to change the latter. Below is an example of
a small library for representing cities and roads, encap-
sulated in a package named Geography.
package Geography {
class City { String name; int population; ... }
class Road {

private City from, to;
City getFrom() { return from; }
void setFrom(City c) { from = c; }
City getTo() { return to; }
void setTo(City c) { to = c; }

} }

It would be nice to be able to apply the algorithms
from the generic graph library, like e.g. Dijkstra’s short-
est paths, to cities and roads from the Geography pack-
age. In our implementation, the Algorithms template
contains the desired functionality, and it will in turn in-
stantiate the GraphConcepts template, which contains
the requirement for a Vertex class and an Edge class,
and corresponding constraints. The requirements will
be propagated to the instantiating package. Thus, we
can use the instantiation below to adapt the generic
constraints to our Geography package:
inst Algorithms with Vertex <= City,

Edge (source() -> getFrom, target() -> getTo) <= Road;

With this approach, we can apply all the algorithms
from the generic graph library to the classes from the
Geography package.
A constraint may also be adapted in PTr by provid-

ing an addition that refines the constraint, typically in
a narrowing fashion. For instance, to further constrain
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the Vertex type to include a getNamemethod, we can
utilize the following code in a template:
inst GraphConcepts;
required type Vertex adds { String getName(); }

It is important to note that such modifications are
local to the current instantiation, and do not propa-
gate globally to other potential instantiations of the
GraphConcepts template in other parts of the program.
Thus, retroactive constraint adaption can in PTr be
done in a controlled and unintrusive manner.

Aside: code complexity comparison. The Java im-
plementation from [11] has 760 lines of code5, while
the corresponding PTr implementation has 691 lines.
However, this includes a lot of imperative code that is
identical in the two versions. To approach an under-
standing of the relative complexity in terms of param-
eterizations and constraints, we have tried to count
these in a reasonable way. In both versions we have
counted all elements that occur within angle brackets
<...>, and all elements that occur as subtype bounds
for generic constraints. In addition, we have counted
all required types and explicit concretizations of such
for PTr. The count is 542 occurrences for Java and 325
for PTr, i.e. a reduction of about 40%.We think that this
can have a significant impact on the comprehensibility
and maintainability of the code.

5. Related Work
Virtual classes originated with the BETA language [17,
18], and has subsequently inspired a host of other lan-
guages and mechanisms, such as e.g. gbeta [7], Cae-
sar [1], J& [19], and Newspeak [4]. These mechanisms
support a certain degree of parameterization based on
overrides (or refinements) of the virtual types, typically
contained within ordinary classes. An important ad-
vantage of the virtual type approach over type param-
eterization as found e.g. in Java is the automatic prop-
agation of constraints.
In [26], Thorup argues for the inclusion of virtual

types in Java as an alternative to classes with type
parameters. In this proposal, Java classes can contain
bounded typedefs, that can be used to define generic
classes that abstract over an open set of types. A prob-
lem with this approach is that static type safety is re-
duced, and every class could now potentially be sub-
ject to runtime exceptions due to covariant subtyping.
With PTr, this kind of typing issues are not problem-
atic since actual types substitute all occurrences of ref-
erences to required types at compile-time.
A subsequent paper [27] presents an approach that

combines virtual types (in a type safe variant [6]) with
structural subtyping. This gives three “dimensions” of

5 Counted with the CLOC tool: http://cloc.sourceforge.net/

subtyping: the ordinary subclass variant, covariance in
the generic parameter, and binding of the generic pa-
rameter to its bound. This allows virtual types to be
used in many situations where parameterized types
traditionally have been considered a better option. We
have not discussed the issue of subtyping of parame-
terized classes to any extent in this paper, but it seems
clear that if subtype relations between different param-
eterizations of the same class are required, PTr is not
the ideal tool, since every instantiation results in a new,
independent, set of classes (though template classes
can implement common external interfaces).
Both [26] and [27] provide adequate support for

associated types of concepts, however, as opposed to
in PTr, multi-type concepts are not as easily expressed.
In [14], the authors introduce explicit support for as-

sociated types and constraint propagation in C#with
a mechanism resembling virtual classes. However, an
important distinction from prototypical virtual classes
is that nested types are not specific for each object of an
outer class. Like PTr, they support assignment of pre-
existing types to the associated (virtual) type defini-
tions. Constraint propagation is automatic, as for PTr,
but limited to the confines of singular class hierarchies.
Neither of the virtual type-based mechanisms sup-

port retroactive adaption of concepts or constraints in
a manner resembling PTr.
Scala [21] has been discussed in some detail in this

paper, however, there are some additional points that
should be addressed. We have mentioned that the
static nature of our mechanism facilitates a simpler
type system, and arguably also a simpler conceptual
model. However, this has some obvious drawbacks,
most notably that full family polymorphism [8] and
dependent types are not supported (since we do not
allow creating instances of templates at runtime). Fur-
thermore, Scala supports several advanced features
that PTr does not, such as e.g. higher-ordered types,
pattern matching and implicits.
JavaGI [28] is an extension to Java inspired by

Haskell’s type classes. It supports retroactivemodeling
through explicit implementation declarations. Multi-
headed interfaces provide support for multi-type con-
cepts in a natural way, exemplified by the Observer
pattern [10]; a corresponding implementation in PT
could be a template with types for each role, an exam-
ple can be found in [2]. JavaGI does not fully support
retroactive adaption.
The G language [24] compiles to C++ and contains

explicit support for generic concepts and models, and
supports all the criteria listed in Table 2A. Like PTr
it supports modular type checking, and also separate
compilation, but not the criteria from Table 2B.
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Partly building on the work on G, ConceptC++ [12]
supports explicit concept definitions and constrained
function and class templates. Retroactive modeling is
achieved through concept maps, and in general the
criteria from Table 2A are well supported, though type
checking is not fully modular due to their support
for concept-based overloading, which PTr does not
fully support. A goal for ConceptC++ was to form the
basis for the inclusion of concepts in the new C++0x
standard.However, the current version of the standard
excludes concept support.6 To our knowledge, neither
ConceptC++ nor C++0x fully supports the criteria in
Table 2B.

6. Concluding Remarks
The package template (PT) mechanism extended with
required type specifications yields a, to the best of the
authors’ knowledge, rather novel blend of support for
parameterization and retroactive modeling and adap-
tion through compile-time specializationwith separate
type checking. We refer to this variant of PT as PTr.
We have shown that PTr applied to a mainstream

OO language like Java supports almost all of the cri-
teria put forth by [11], as well as additional criteria
identified in this paper for adaptability of generic code.
Furthermore, early investigations suggest that PTr can
provide a significant reduction of duplicated code in
generic Java libraries, and in some cases provide a sim-
pler solution compared to other mechanisms aiming
at similar problems, such as virtual class- or abstract
type-based mechanisms.
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