
Compositional Verification of Events and Aspects

Cynthia Disenfeld ∗

Department of Computer Science

Technion - Israel Institute of Technology

cdisenfe@cs.technion.ac.il

Categories and Subject Descriptors D.2.4 [Software/Pro-

gram Verification]; D.2.13 [Reusable Software]: Reuse

models

General Terms Languages, Verification

Keywords Aspects, Events, Compositional Verification,

Interference, Cooperation

1. Introduction

In AspectJ [9] notation and other aspect languages, the ex-

pressive power of pointcuts is restricted. For example, com-

position is limited to a small set of operators and where and

when aspects are woven cannot be defined completely inde-

pendently: pointcuts are defined in the context of an aspect

and advice respond to low-level events.

In [2] these restrictions are explained in a more thorough

way together with some previous attempts to solve these is-

sues such as tracematches[1]. Moreover, events are intro-

duced, providing a natural solution for the problems men-

tioned above. Events do not modify the underlying system,

but just observe interesting situations and gather information

to which other events or aspects may respond. An example

of an event in the context of development practices is a com-

mit attempt to the version control repository without having

the tests run. Then, an aspect can respond to this event by

warning the programmer who is not conforming to the de-

velopment practices.

My research deals with understanding the implications

of introducing language extensions to handle events and de-

veloping practical tools and techniques for compositional

verification in this context. As a first step of this work,

in [4] the issue of event specification and verification was

addressed. Different specification languages such as LTL

∗ ACM Membership number: 8906706

Copyright is held by the author/owner(s).

AOSD’12, March 25-30, 2012, Potsdam, Germany.

ACM 978-1-4503-1222-6/12/03.

(linear temporal logic), automata, regular expressions and

Kripke structures were analyzed. LTL allows expressing

properties about the event’s exposed parameters according to

the events that have occurred before. Other specification lan-

guages such as state machines allow expressing properties

by means of paths or words accepted, and are particularly

useful for defining exactly when the event must or must not

be detected.

A compositional technique has been shown where each

event should satisfy a specification given by an assumption

about the underlying system and a guarantee about the aug-

mented system. This model - consisting of an assumption

and a guarantee - is called assume-guarantee and has been

also used in aspect verification such as MAVEN[6]. The ver-

ification techniques involved are mainly model checking,

simulation and bisimulation algorithms and static analysis.

Systems usually include several aspects, and weaving

all of them into a system may lead to interference. A set

of aspects is considered to interfere if each aspect on its

own is correct with respect to its specification, but when

the whole system is considered, at least one guarantee is

no longer satisfied. Interference was considered in [6] for

sequential weaving and simple cases of joint-weaving. In

the sequential weaving model, an aspect A is woven into

a system at the available joinpoints, and then another aspect

B can be woven. If B added joinpoints of A, the response

is not activated at those joinpoints. In the joint-weaving

model, when reaching a joinpoint the corresponding advice

is executed, even when it is within the execution of another

aspect.

The problem of interference and cooperation among as-

pects under joint-weaving semantics has been considered in

[3] (also part of this research), introducing the specification

and verification techniques in order to detect interference or

verify the correctness of a set of (possibly collaborative) as-

pects. The specification now refines the assume-guarantee

model, using LTL formulas to express what is expected of

the system to be adviced by an aspect A, and what is ex-

pected of any aspect to be executed during A. Related work

on interference detection is surveyed in [3]. Other work such

as [10] assume the existence of interference-detection mech-

anisms and address the problem of conflict resolution.

11



2. Problem formulation

Events and aspects have been considered in [2, 5, 7, 8] but

this work focuses on events as defined in [2]. The combina-

tion of event and aspect verification is a problem that has not

been considered yet and raises new questions such as how

the aspect verification technique is affected when aspects re-

spond to events detected. Aspect verification in MAVEN [6]

considers pointcuts as temporal logic formulas. Given that

events are now more complex and hierarchical entities, event

specification should now be used to identify the places where

they are detected.

Event guarantees are not necessarily given by an LTL

formula. Thus, it is necessary to consider how the model

of the aspect assumption incorporates these guarantees in

order to be ready to apply aspect verification as in MAVEN.

The method obtained should be sound and compositional,

in order to allow considering aspects responding to different

events, and reusing the proofs in different systems to which

the library is applied.

Another question that arises is how to apply composi-

tional interference detection now that aspects may be ad-

vised by other aspects because of events detected during

their execution. The work already done as part of this re-

search on interference detection [3] will be extended to in-

corporate events. This implies analyzing new cases of in-

terference and cooperation that may arise from the combi-

nation of events and aspects and considering the spectative

nature of events. Different event evaluation strategies affect

the analysis and obtained results. For example, events that

have been detected but no longer hold must be considered in

scenarios where aspects might respond to all events detected

once in the past. Thus, the possible semantics and their im-

plications will be considered when answering the questions

formulated above.

3. Approach

The approach to answer these questions involves combining

formal verification techniques. Static analysis can be used

for checking that an event does not affect the underlying sys-

tem, and model checking used to verify that an augmented

model satisfies a property. Taking advantage of different

techniques’ strengths aids in building a simple and natural

technique for verifying a library of events and aspects.

An approach to combine these entities (events and as-

pects) is to consider event guarantees as the pointcut descrip-

tion, so that aspect verification can then be applied. How-

ever, aspects might interfere in event guarantees and then

interference analysis must be used to make certain that con-

sidering event guarantees as pointcuts in aspect verification

does indeed yield sound results.

4. Uniqueness and contributions

Verifying a library modularly prevents dependence on a

completely built system in order to apply an early detection

of bugs and interference. It also allows reusing the library

in any other system that satisfies the necessary assumptions

without applying any further checks.

The uniqueness of this research is mainly given by build-

ing a compositional verification technique that combines

events and aspects, allows cooperation, detects interference

and is not restricted to sequential weaving semantics, but

also accepts aspects that may add and remove events of other

aspects as in the joint-weaving model.

Moreover, combining different verification techniques

raises new questions as how to get the greatest advantage

of each technique and how to combine their results.

5. Results

There are already preliminary results for event specification

and verification in [4] and for aspect interference detection

and cooperation under joint-weaving semantics in [3].

Providing answers to the problems formulated in Section

2 will provide the user a compositional technique for spec-

ifying and verifying a library that includes both events and

aspects, understanding how they cooperate or when and why

there is interference, and allowing reuse of the library in sev-

eral different systems.

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen,

Laurie Hendren, Sascha Kuzins, Oege De Moor, Damien

Sereni, Ganesh Sittampalam, and Julian Tibble. Adding trace

matching with free variables to AspectJ. In OOPSLA ’05.

[2] Christoph Bockisch, Somayeh Malakuti, Mehmet Akşit, and

Shmuel Katz. Making aspects natural: events and

composition. In AOSD ’11.

[3] Cynthia Disenfeld and Shmuel Katz. A closer look at aspect

interference and cooperation. In AOSD ’12.

[4] Cynthia Disenfeld and Shmuel Katz. Compositional

verification of events and observers: (summary). In FOAL

’11.

[5] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez,

and Jacques Noyé. EScala: modular event-driven object

interactions in Scala. In AOSD ’11.

[6] Max Goldman, Emilia Katz, and Shmuel Katz. Maven:

modular aspect verification and interference analysis. Form.

Methods Syst. Des., 37, November 2010.

[7] Adrian Holzer, Lukasz Ziarek, K.R. Jayaram, and Patrick

Eugster. Putting events in context: aspects for event-based

distributed programming. In AOSD ’11.

[8] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara.

EventCJ: a context-oriented programming language with

declarative event-based context transition. In AOSD ’11.

[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,

Jeffrey Palm, and William G. Griswold. An overview of

AspectJ. In ECOOP ’01.

[10] Antoine Marot and Roel Wuyts. Composing aspects with

aspects. In AOSD ’10.

12




