
Membranes for AOP: From Vision To Practice

Ismael Figueroa ∗

PLEIAD Laboratory - Computer Science Department (DCC) -University of Chile
ifiguero@dcc.uchile.cl

Categories and Subject Descriptors: D.3.3 [Programming
Languages]: Language Constructs and Features
General Terms: Languages, Design

Keywords Aspect-oriented programming, membranes, ex-
ecution levels.

1. Introduction
Due to the scattering of crosscutting concerns through pro-
grams, weaving typically requires aspects to have a global
view of computation. This hampers modularity [1, 6–9]. The
problem is addressed either by limiting the scope of as-
pects [3, 11, 12]; or by protecting software units from advis-
ing [1, 6–9]. Moreover, aspects with a global view of com-
putation make it difficult to compose aspects while keeping
coherent semantics, because aspect computation can be ob-
served by all aspects, allowing for infinite regressions when
aspects capture their own computation. Recently, Tanter de-
veloped execution levels [12] as a means to structure com-
putation and avoid infinite regressions by default. As a con-
tinuation to his work, Tanter et al. proposed programmable
membranes [13] to structure computation and control as-
pect scoping. However, their proposal is focused more on
the ideas than in practical aspects of membranes. We pro-
pose a roadmap for developing membranes for AOP more
concretely.

2. Programmable Membranes for AOP
We briefly summarize programmable membranes for AOP,
as proposed by Tanter et al. [13]. Membranes [2] are per-
meable structures in which computations can take place,
providing a notion of locality and hierarchy. Programmable
membranes provide membranes with some computing power

∗ Funded by a CONICYT-Chile Doctoral Scholarship

Copyright is held by the author/owner(s).
AOSD’12, March 25-30, 2012, Potsdam, Germany.
ACM 978-1-4503-1222-6/12/03.

Figure 1. Topological scoping. (a) tower; (b) tree; (c) DAG
(adapted from [13]).

jp

X

jp

m1
jp

m2

jp

weave(jp)

A

(2)
(3) (4)

(5)

(6)(1)

Figure 2. From join point emission to aspect weaving
(adapted from [13])

to control its own permeability. Membranes for AOP define
three dimensions: first, membranes act as dynamic contain-
ers of computation. Also, aspects are registered in mem-
branes. Second, a membrane can bind to another membrane
to advise it. This controls aspect scoping, because join points
emitted by computation inside an advised membrane can
only be seen by aspects in the corresponding advising mem-
branes. Finally, because membranes are programmable, they
control join point propagation between the environment and
the membrane aspects.

Flexible Aspect Scoping. Bindings between membranes
define a directed graph with membranes as vertices, and
the advising relation as lollypop arrows; allowing flexible
topologies of computation. In fact, membranes subsume ex-
ecution levels, as shown in Figure 1(a). Other topologies are
trees (Figure 1(b)) or DAGs (Figure 1(c)).

Join Point Propagation and Weaving Membranes con-
trol the flow of join points through its programmable layers.
Figure 2 shows membranes m1 and m2, where m2 advises
m1. Computation X happens in m1 (1), which emits a join
point jp. m1 decides whether to relay jp to its outer environ-
ment or not (2). If m1 propagates jp to m2, then jp is tagged
with its destination (3). From its side, m2 is waiting for join
points addressed to it (4), it finds jp and decides whether to

13



X

Y

Z
T V

j1j1

j2
j2

(1)

(2)

(3)

(4)

(5)

computation

membranes

m1m2

m3

Figure 3. Membranes in action in a level-like setting
(from [13])

accept it or not (5). If m2 accepts jp, then jp is woven with
aspect A, registered inside m2.

Membranes and Computation. The membrane that
contains current computation is a property of the execution
flow of the program, not of (static) code artifacts. This way, a
same piece of code can emit a join point inside a membrane
and, at another time in execution it can emit a join point
inside another membrane. Figure 3 shows membranes in an
execution-levels-like setting. The membranes plane contains
membranes m1, m2 and m3 such that m3 advises m2, and
m2 advises m1, as denoted by the lollypop arrows. Compu-
tation initiates inside m1, so when computation flows from
T to V, join point j1 is emitted inside m1 (1). Consequently,
j1 is exposed to aspects registered in m2 (2). Then, an as-
pect woven in m2 executes computation X (3), which emits
a join point j2 when the execution flow goes from T to V (4).
Because computation is inside m2, j2 propagates from m2
to m3 (5), though both j2 and j1 were generated by the same
code.

3. From Vision to Practice
The general vision on membranes for AOP is too wide and
general, and there is no real assessment of its capabilities
and drawbacks. Our contribution is a roadmap to go from
the vision to the practice. Execution levels [12] can be con-
sidered as a reduced instance of membranes, but they have
a restricted linear topology, which cannot express all inter-
esting scenarios. In contrast, the membrane model is too un-
restricted. For instance, it is not clear in which cases infi-
nite regression is avoided. Also, there is no formalization of
membrane semantics. We want to establish a proper tradeoff
between the execution levels settings and the full membrane
model, and further explore the membrane model. The mile-
stones of our roadmap are:

Consolidate Execution Levels. We focus on formal
properties of execution levels because they are a simple
membrane instance on which to base our work. We are in-
terested in avoiding infinite regression in as most cases as
possible, and extrapolate those results to the general case of
membranes.

Aspect Loops. Intuitively, aspect regression happens be-
cause an aspect sees its own computation. We will formalize
this intuition and find out in what cases we can avoid loops
with membranes.

Membrane Calculus. There is a lack of a formal calculus
for membranes on which to reason about. We will develop a
membrane calculus as a basis for our theoretical work.

Crosscutting Membranes. Computation can happen in-
side one or more membranes. This introduces aspect loops.
We will explore how membranes can be composed and how
to deal with crosscutting membranes while avoiding loops.

Membrane Topologies. There is a need to determine
what topologies are appropriate to structure aspect pro-
grams, establishing their properties with relation to aspect
behavior.

Modular Reasoning. We want to develop a notion of
module to enable modular reasoning. We plan to develop an
encoding similar to Open Modules [1].

Membrane-based Languages. MAScheme [13] and
PHANtom [4] are the only membrane-based languages to
date. We plan to implement language prototypes of different
membrane models.

4. Current and Future Work
Now we are focused on the three first points of our roadmap.
Regarding the consolidation of execution levels, the author
collaborated with Tanter and Tabareau to formalize aspect
loops. This work was recently submitted for peer review.
Additionally, based on recent work by Tabareau [10], we
implemented a monadic aspect weaver [5] in which aspect
semantics are parameterized by monads. In this framework,
we express execution levels as a monad, and we plan to add
support for membrane semantics. Future work will focus on
the remaining points of our roadmap.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In A. P. Black,

editor, ECOOP 2005.

[2] G. Boudol. A generic membrane model (note). In C. Priami and P. Quaglia,
editors, Global Computing, volume 3267 of Lecture Notes in Computer Science,
pages 208–222. Springer Berlin / Heidelberg, 2005.

[3] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and scoping
of aspects in higher-order languages. Science of Computer Programming,
63(3):207–239, Dec. 2006.

[4] J. Fabry and D. Galdames. Phantom: a modern aspect language for pharo
smalltalk. In IWST’11.

[5] I. Figueroa, É. Tanter, and N. Tabareau. A practical monadic aspect weaver. In
FOAL 2012.

[6] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and
H. Rajan. Modular software design with crosscutting interfaces. IEEE Software,
23(1):51–60, 2006.

[7] M. Inostroza, É. Tanter, and E. Bodden. Join point interfaces for modular
reasoning in aspect-oriented programs. In ESEC/FSE 2011, New Ideas track.

[8] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. EffectiveAdvice: discplined
advice with explicit effects. In AOSD 2010.

[9] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and modularity for
implicit invocation with implicit announcement. ACM Transactions on Software
Engineering and Methodology, 20(1):Article 1, June 2010.

[10] N. Tabareau. A monadic interpretation of execution levels and exceptions for
AOP. Accepted for publication at AOSD’12.

[11] É. Tanter. Expressive scoping of dynamically-deployed aspects. In AOSD 2008.

[12] É. Tanter. Execution levels for aspect-oriented programming. In AOSD 2010.

[13] É. Tanter, N. Tabareau, and R. Douence. Exploring membranes for controlling
aspects. Technical Report TR/DCC-2011-8, University of Chile, June 2011.

14




