An Aspect-Oriented Framework for
Development of Dynamic Content

Kohei Nagashima

Graduate School of Science and Technology, Keio University
Yokohama, Japan

k-nagashima®yy.ics.keio.ac.jp

Abstract

Modern web contents, including applications, enhance user
experiences by introducing Web 2.0 technologies such as
Ajax. Ajax applications are implemented with three differ-
ent languages, including HTML, CSS, and JavaScript. The
artifacts of each these languages are basically described in
a separate file. In such a context, many Web pages have dy-
namic contents such as a button that changes background
color or layout of text. For this behavior, developers usually
describe pieces of code with such three languages; therefore,
they have to modify three different files at the same time
when the change of behavior is required. In this way, pieces
of code that provide a single behavior are scattered in differ-
ent files.

This paper proposes a framework, which adopts the con-
cept of aspect-orientation to solve the above mentioned
problems. This framework enables developers to describe
pieces of code to provide a single behavior as an aspect in a
file, provides a weaver to weave them before running.

Categories and Subject Descriptors D.3.3 [PROGRAM-
MING LANGUAGES]: Language Constructs and Features—
Modules, packages, Frameworks

General Terms Design, Languages

Keywords aspect-oriented programming, web develop-
ment, web contents, modularization

1. Problem and motivation

In the early stages of web development, users who provided
web content described in HTML with little care for visual
effects. In the 1990s, CSS and JavaScript appeared, and the
former provides visual effect with web contents and the latter

Copyright is held by the author/owner(s).

AOSD ’12, March 25-30, 2012, Potsdam, Germany.
ACM 978-1-4503-1222-6/12/03.

15

provides the dynamic behavior with them. Then, users began
to utilize these languages to provide visual effects and dy-
namic behaviors and pieces of code for the effects/behaviors
are usually described in a single HTML file directly. With
the increase of web applications, the descriptions of each
language were being complicated and they began to be man-
aged in different files as module. This shift is reasonable be-
cause each language provides different functionalities.

However, with the Web 2.0 paradigm, the usage of these
languages is changing because developers need to describe
pieces of code with the three different languages at the same
time. For example, when developers implement an anima-
tion with Ajax, they need to specify method invocation in
a HTML element, describe the visual aspect of the element
with CSS, and then prepare a method which defines how to
move the target and/or visual changes of it with JavaScript.
In this way, pieces of code to provide a single behavior are
scattered in separate files.

2. Background and related work

One of the way to modularize the scattered codes is aspect-
oriented programming[3](AOP). In AOP, the codes which
are scattered in many files are gathered into the new mod-
ule called an aspect, and an aspect is woven into the tar-
get modules. When we create a dynamic content, we of-
ten use JavaScript. A kind of the aspect-oriented JavaScript
programming framework is the AspectScript[4]. The As-
pectScript adopts the join point model which is like the
Aspect][2] and prepares the feature of JavaScript as higher
order function. Though we can make various aspects by uti-
lizing the AspectScript, it is not an optimal solution for mod-
ularizing the dynamic content.

3. Approach and uniqueness

We propose a new aspect-oriented programming framework
which is based in JavaScript to modularize efficiently the
dynamic contents such as an animation. JavaScript is a pow-
erful language because it can change the DOM elements de-
scribed in the HTML and appearance described in the CSS.
However, when the developers create the dynamic contents,

join point | points in the program execution at which...
attr an attribute of HTML element is matched
call a function or object is called
exec a function or object is executed
set an object is set
get an object is read

Table 1. Join point model

they cannot use only JavaScript. We believe that the code of
dynamic content which was created only JavaScript is diffi-
cult to understand and become redundant.

3.1 Join point model

To modularize the dynamic contents as an aspect, this frame-
work supports five join points as shown in Table 1. A join
point “attr” is for HTML and the others are for JavaScript.
Currently, we don’t provide the join point for CSS. Since
the change of the CSS code is rather easy and independently
achieved.

3.2 Describing the aspect

We show an example for explaining this framework. Figure
1 shows the example of weaving when a HTML element has
been specified as a join point. In the aspect for the dynamic
content, we can describe the HTML, CSS and JavaScript
codes. We provide four advices such as before, after, around
and handler. The former three are provided in the Aspect].
The handler advice is for weaving the aspect into HTML
files, another three advices is for weaving the aspect into
JavaScript files. In Figure 1, the HTML code which is in
the handler advice will be inserted into the code portion in
a dashed frame. The CSS codes in the aspect and JavaScript
code in the handler advice will be added in the bottom of
head element.

4. Results and contribution

In this section, we evaluate this framework and describe the
conclusions of our research.

4.1 Evaluation for our framework

We evaluate the efficiency of the development technique us-
ing our framework. We use a Web page[1] which is provided
by Apple Inc. This Web page has a dynamic content which
is the animation which rotates the groups of pictures. Then
we suppose there comes a change request which requires a
change of motion of a group of pictures from rotation to left-
to-right slide. The number of changed files for this change
request is shown in Table 2, the second column shows in the
case of using our framework and the third column shows the
case of not using the framework. As shown in Table 2, the
number of changed files is obviously decreased by using the
framework.

16

Target Html file (example.html) <s;yle_> tion{}
animation

<html> </style>

<head><title>Exam

<link rel=, <script>

</head> var bar = ... code is aboved...
r<-b?d¥>----.---,---------,--\ </script>

<div id="animwindow”></diy>

2’50;5: <div id=“animwindow”>

¢ <div id="animation>...</div>
</div>
Aspect

aspect Example {

aspect.css { #animation{ } } // CSS code

eventcut Slide() : attr(“id”, animwindow); // pointcut declaration

handler (“example.html”) : Slide() { // the advice block
//JavaScript code
var bar = document.getElementByld(“progressbar”); ...
aspect.Html { / HTML code

<div id=“animation”>...code is aboved...</div>

}

1}

Figure 1. Weaving mechanism for handler advice

using this framework | not using this framework
All files 1 5
HTML files 0 1
CSS files 0 2
JavaScript files 0 2
Aspect files 1 0

Table 2. The number of files to deal with the change request

4.2 Conclusions

We proposed a framework for modularize the scattered code
for dynamic contents of a Web page that spread over sev-
eral files. By using our framework, developers are able to
program dynamic contents as a combination of a join point
and an aspect. It can reduce the number of changed files if
once a change request is issued on the dynamic contents. As
a consequent, we can easily respond to a change request of
the dynamic contents by using the framework.

References

[1] Apple Inc. Apple. http://www.apple.com/jp/iphone/.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of aspectj. In Proceedings of the
15th European Conference on Object-Oriented Programming,
ECOOP °01, pages 327-353. Springer-Verlag, 2001.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. marc Loingtier, and J. Irwin. Aspect-oriented programming.
In ECOOP. Springer-Verlag, 1997.

[4] R. Toledo, P. Leger, and E. Tanter. Aspectscript: expressive
aspects for the web. In Proceedings of the 9th International
Conference on Aspect-Oriented Software Development,
AOSD 10, pages 13-24. ACM, 2010.

