Tearing Down the Multicore Barrier for Web Applications
ACM Student Research Competition at MODULARITY: AOSD 2012

Jens Nicolay

Software Languages Lab
Vrije Universiteit Brussel

jnicolay@vub.ac.be

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis — Operational
semantics

General Terms Algorithms, Experimentation

Keywords concurrency, parallelism, modularity, JavaScript,
refactoring, static analysis

1. Background and Motivation

We are being confronted with two phenomena that will
greatly influence the way people experience the internet.
On one hand the browser, with JavaScript as embedded pro-
gramming language, is getting more important as applica-
tion delivery platform. On the other hand we are confronted
with the multicore revolution. Both desktop machines and
mobile devices are already equipped with processors that
contain multiple cores. Applications that take advantage of
the underlying parallel hardware are able to execute tasks in
parallel, which benefits the performance and responsiveness
of those applications. Despite the fact that many desktop ap-
plications already make use of multiple cores during their
execution, the multicore revolution has mostly ignored web
applications, leaving the potentential processing power on
the client-side virtually unused. To keep up with the demand
for ever increasing performance coupled to acceptable re-
sponse times, browser applications will have to make use of
multiple cores during execution. This is possible by design-
ing them with concurrency in mind.

Web Workers! is a standard JavaScript API that makes
it possible to add actor-like concurrency to an application.

"http://www.whatwg.org/specs/web-apps/current-work/
multipage/workers.html

Copyright is held by the author/owner(s).

AOSD’12, March 25-30, 2012, Potsdam, Germany.
ACM 978-1-4503-1222-6/12/03.

However, JavaScript applications have to be structured in
a certain way in order for them to make efficient use of
multiple cores at runtime. To avoid the situation where this
task falls entirely on the shoulders of developers, decent
tool support for concurrent web programming is absolutely
necessary.

2. Goal and Research Problems

The goal of my research is to support the development of
web applications that effectively make use of multicore sys-
tems on the client-side. This makes it possible to develop
web applications that require a great deal of processing
power without sacrificing performance and responsiveness.
More specifically, I target web developers that build concur-
rent JavaScript applications using Web Workers. Supporting
these developers includes performing on-the-fly detection
of possible concurrency errors, and offering a collection of
refactorings that deal with concurrency.

Refactoring relies on static analysis to determine non-
trivial program properties without actually executing the
program first. Support for the development of JavaScript
programs that use Web Workers is nonexistent, because
there currently exists no static analysis that handles con-
current JavaScript programs. Static analysis for JavaScript is
a very active research area, but the language is considered to
be “harsh terrain” for static analysis because of its dynamic
features and extreme permissiveness [1, 7].

Another research problem I want to address is the iden-
tification of useful source code patterns and refactorings for
JavaScript that are specifically geared towards concurrency.
At present we do not have a catalog of such concurrency pat-
terns and refactorings, let alone for the more general case.

Finally, I want to clearly and precisely specify the precon-
ditions and mechanisms of those source code patterns and
refactorings.

3. Approach and uniqueness

To address the issues raised above, I will start by compiling
a catalog of useful refactorings related to concurrency and
modularity. These refactorings analyze interactions between



entities in order to modularize them, and try to identify
candidate-workers for example. I also want to detect certain
patterns in the source code to be able to provide feedback to
the programmer during development.

I will precisely specify preconditions and source code
patterns by designing a set of general and reusable queries
that enables one to reason about properties of concurrent
JavaScript programs. The outcome of those queries will
be based on the results of a sufficiently precise, power-
ful and fast static analysis of JavaScript programs that use
Web Workers.? Dependence analysis plays an important role
when reasoning about concurrency. Dependent expressions
must be executed in a fixed order to preserve the sequential
semantics of a program in which they appear. Parallel execu-
tion of these expressions, however, would destroy any such
ordering guarantee. While some types of dependence are
lexically apparent, procedure invocations in a higher-order,
object-oriented setting may give rise to interprocedural de-
pendencies that are not always evident to track.

The most innovative aspect of my research consists of
joining two separate research paths, being (i) static analy-
sis of JavaScript programs, and (ii) static analysis of actor
languages. I will validate my research by maintaining a large
corpus of examples to demonstrate that my results are sound.
For additional validation and dissemination, I intend to im-
plement and experiment with an Eclipse plugin specifically
aimed at developing concurrent JavaScript applications.

4. Related work

Research on static analysis of JavaScript emerged shortly af-
ter the advent of Web 2.0 and acceptance of the language as
a “serious” programming language. For example, TAJS [2]
is a capable JavaScript analysis that has recently been added
as part of the Eclipse JSDT plugin [1] to enable refactor-
ings like RENAME and EXTRACT MODULE. DoctorJS? is a
collection of tools for JavaScript, with an underlying CFA2
pushdown analysis [8] that focuses on precision rather than
speed. None of these — and other tools and plugins — are
capable of handling JavaScript programs that contain Web
Workers.

My earlier work on automatic parallelization of Scheme
programs required the implementation of a dependence anal-
ysis in a higher-order, functional setting [6]. I can reuse my
results for the analysis of the functional part of JavaScript.

Wrangler [4] is an interactive refactoring tool for actor
language Erlang that can be integrated in Emacs and Eclipse.
It offers refactorings that are interesting in the context of
my research. MOVE FUNCTION TO ANOTHER MODULE
for example attempts to move a function definition from its
current module to another module specified by the user. If

2 Precision refers to how tight an analysis constrains a set of answers to the
set of actually possible answers, while power refers to the class of questions
an analysis can answer. [5]

3https://github.com/mozilla/doctorjs

18

the necessary preconditions are met, it will not only update
the source and target modules but also all references to this
function in the program [3].

5. Results and contributions

From a high-level perspective my research aims to advance
the design, the implementation and the application of pro-
gramming languages and their environments to support the
software engineering life-cycle. More specifically there are
three technological domains that my research focuses upon:
parallel programming, distributed programming, and pro-
gram analysis and transformation. I want to make meaning-
ful contributions in each of these domains, more specifically:

e the design and implementation of an interprocedural de-
pendence analysis for JavaScript,

¢ the development of a set of reusable queries to reason
over concurrent JavaScript programs, and

e the compilation of a catalog of useful JavaScript refac-
torings that specifically deal with concurrency and help
with modularization.

References

[1] A. Feldthaus, T. Millstein, A. Mgller, M. Schéfer, and F. Tip.
Tool-supported refactoring for JavaScript. In Proc. ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October 2011.

[2] S. H. Jensen, A. Mgller, and P. Thiemann. Type analysis for
JavaScript. In Proc. 16th International Static Analysis Sym-
posium (SAS), volume 5673 of LNCS. Springer-Verlag, August
2009.

[3] H. Li and S. Thompson. Clone detection and removal for
erlang/otp within a refactoring environment. In Proceedings of
the 2009 ACM SIGPLAN workshop on Partial evaluation and
program manipulation, pages 169-178. ACM, 2009.

[4] H. Li, S. Thompson, G. Orosz, and M. Téth. Refactoring
with Wrangler, updated: data and process refactorings, and
integration with eclipse. In Proceedings of the Seventh ACM
SIGPLAN Erlang Workshop, page 12pp. ACM Press, 2008.

[5] M. Might and O. Shivers. Exploiting reachability and cardinal-
ity in higher-order flow analysis. Journal of Functional Pro-
gramming, 18(5-6):821-864, 2008.

[6] J. Nicolay, C. D. Roover, W. D. Meuter, and V. Jonckers. Au-
tomatic parallelization of side-effecting higher-order scheme
programs. In Proceedings of the Eleventh IEEE International
Working Conference on Source Code Analysis and Manipula-
tion (SCAM 2011), Williamsburg, VA, USA, September 2011.

[7] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that
men do. ECOOP 2011-Object-Oriented Programming, pages
52-78, 2011.

[8] D. Vardoulakis and O. Shivers. Pushdown flow analysis of first-

class control. In ACM SIGPLAN Notices, volume 46, pages
69-80. ACM, 2011.





