
Adding High-Level Concurrency to EScala

Jurgen M. Van Ham
ASCOLA, École des Mines de Nantes and Software Technology Group, Technische Universität Darmstadt

jurgen.van-ham@mines-nantes.fr

Abstract
On the one hand, languages like EventJava combine Event-
Based Programming with concurrency. On the other hand,
extending Aspect-Oriented Programming with concurrency
has been studied as well. Seamlessly combining both styles
with concurrency in a single language is possible with the
right building blocks. We claim that the join is such a build-
ing block.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language constructs and Features—Concurrent
programming structures

General Terms Languages, Experimentation

Keywords concurrency, declarative events, join, Aspect-
Oriented Programming

1. The research problem and motivation
The observer pattern [5] is widely used to provide some
form of Event-Based Programming (EBP) in an Object-
Oriented Programming (OOP) style. However, its use re-
sults in boilerplate code in the sending subjects, which are
coupled to the observers because of the observers interface,
especially when an observer observes different kinds of up-
dates. These problems are addressed by languages that sup-
port EBP: events are sent to their (receiving) handlers, which
act as being part of an observer.

Whereas EBP events are explicitly triggered, the join
points of Aspect-Oriented Programming (AOP) can be seen
as implicitly-triggered events.

In Complex Event Processing [10] (CEP) events can be
combined. Event expression is a declarative way to spec-
ify such a combination of events, which also supports trans-
forming and filtering of events.

The language ESCALA [6] integrates events that can be
used for EBP and AOP into Scala [11]. Its declarative events

Copyright is held by the author/owner(s).
AOSD’12, March 25-30, 2012, Potsdam, Germany.
ACM 978-1-4503-1222-6/12/03.

are not yet powerful enough to implement CEP, as they do
not support streams and can only combine events originating
from a single primitive event. This can be improved. Still,
what currently exists already allows refining events, which
can be used as an AOP pointcut language.

For the time being, concurrency has not been taken into
account when designing EScala events. However, many pro-
grams do have a concurrent nature, for instance a program
does not block all its other tasks during interaction with a
user or another external party. Concurrency and EBP both
can benefit from each other. Events help to structure (con-
current) programs. In the other way around, concurrency can
enable asynchronous events whereby the sender of the event
and its handler can proceed in parallel. Since AOP can be
considered as EBP with implicit events the use of concur-
rency could benefit to communication and synchronization
between the aspects and the base program. The use of con-
currency could benefit to communication and synchroniza-
tion between the aspects and the base program in AOP.

The standard approach to synchronization is low-level,
based on a shared-memory model distinguishing communi-
cation and synchronization using locks and monitors. An al-
ternative approach consists of relying on a shared-nothing
model and joins [4] to handle both communication and syn-
chronization. This approach has been followed, for instance,
by Polyphonic C# [1] and scalajoins [7].

However, joins do not apply to events in Polyphonic C#
but to function calls; events are not well integrated with
object-oriented programming in EventJava, and neither of
the languages offer an AOP-like mechanism with dynamic
registration of handlers.

Our objective is to pursue the integration started by ES-
CALA by considering at the same time OOP, EBP, AOP and
concurrency.

2. Background and related work
In terms of events, a (binary) join [4] can be seen as syn-
chronizing two events (the event occurring first is blocked
until the second occurs) and results in the triggering of a
third event associated to the synchronization. When events
have arguments the third event receives a combination of the
arguments from the first two.

19



EventJava [3] is a concurrent EBP which can correlate
events in streams. It was used to study Scalable Efficient
Correlation Detection [9], which compares different imple-
mentations and shows that joins can be efficient. The com-
pared implementations include, on the one hand, languages
like Polyphonic C#, on the other hand, libraries like the Joins
Concurrency Library [12] for Visual Basic, the first imple-
mentation of joins as a library and scalajoins [7] a library
for Scala.

Concurrency in AOP, which allows the base program
and its aspects to be executed concurrently, was studied in
CEAOP [2]. CEAOP is based on complex low-level synchro-
nization.

While related work covers the parts which we try to
combine, none of it combines all of them.

3. Approach and uniqueness
It is of course possible to write concurrent programs in ES-
CALA by using the Scala libraries for concurrency but com-
bining declarative events and low-level concurrency is not
trivial. We have started by looking at how to add, at the user
level, joins to define declarative events relying on explicit
events and scalajoins. We found out that this is indeed
feasible but requires quite a lot of code and incurs some over-
head. This overhead comes from the fact that scalajoins
events are of a different nature than the ESCALA events. An
adapter [5] bridges this difference. Moreover, this new op-
erator can be defined as a standard ESCALA operator, pro-
viding the user with a simple conceptual model. We plan
to apply the same approach to other features such as asyn-
chronous events.

The join for events was already implemented in scalajoins,
however, integrating this operation into a language which
supports declarative events and supports AOP as well is
unique. It makes it possible to localize synchronization con-
cerns of both objects and aspect instances.

4. Results and Contributions
We enriched expressions for declarative events in ESCALA
with a join. To this end, we modified EventsLib, the library
that implements events in ESCALA. In particular, we added
event queueing so that events can wait for their counterpart.

With joins, provided asynchronous events are available,
we can then implement the classical bounded buffer used
as an example by Polyphonic C# using declarative events
and event handlers. This results in a different style of pro-
gramming as joins and their resulting actions are separated
in different constructs that can be independently specialized
and dynamically bound. Von Itzstein [8] shows various ap-
plications of the joins with method calls which can be im-
plemented with events and handlers.

Using implicit events also makes it easy to program con-
current aspects. Synchronization becomes an identifiable

part of the program instead of being scattered as calls to
a complex Monitor singleton.

Finally, the integration of these concurrent events can
continue with a study where this implemented model will
be integrated into the tasks of Scala by combining it with
threads and actors.

References
[1] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern con-

currency abstractions for C#. ACM Transactions on Program-
ming Languages and Systems, 26(5):769–804, 2004.

[2] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario
Südholt. Concurrent aspects. In Proceedings of the 5th inter-
national conference, GPCE ’06, pages 79–88. ACM, 2006.

[3] Patrick Eugster and K. Jayaram. EventJava: An extension
of Java for event correlation. In Sophia Drossopoulou, ed-
itor, ECOOP 2009 Object-Oriented Programming, volume
5653 of Lecture Notes in Computer Science, pages 570–594.
Springer Berlin / Heidelberg, 2009.

[4] Cédric Fournet and Georges Gonthier. The join calculus: A
language for distributed mobile programming. In Applied Se-
mantics, International Summer School, APPSEM 2000, pages
268–332. Springer-Verlag, 2002. Advanced Lectures.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns : Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[6] Vaidas Gasiūnas, Lucas Satabin, Mira Mezini, Angel Núñez,
and Jacques Noyé. EScala: Modular event-driven object in-
teractions in Scala. In Proceedings of the 10th International
Conference on AOSD 2011. ACM Press, March 2011.

[7] Philipp Haller and Tom Van Cutsem. Implementing joins us-
ing extensible pattern matching. In Doug Lea and Gianluigi
Zavattaro, editors, 10th International Conference on Coordi-
nation Models and Languages (COORDINATION 2008), vol-
ume 5052 of LNCS, pages 135–152. Springer-Verlag, June
2008.

[8] G.S Von Itzstein. Introduction of High Level Concurrency
Semantics in Object Oriented Languages. PhD thesis, January
2005.

[9] K. Jayaram and Patrick Eugster. Scalable efficient composite
event detection. In Dave Clarke and Gul Agha, editors, Co-
ordination Models and Languages, volume 6116 of Lecture
Notes in Computer Science, pages 168–182. Springer Berlin /
Heidelberg, 2010.

[10] David C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[11] Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala. Artima, 2008.

[12] Claudio V. Russo. The joins concurrency library. In Michael
Hanus, editor, PADL, volume 4354 of Lecture Notes in Com-
puter Science, pages 260–274. Springer, 2007.

20




