
A Scalable and Accurate Approach Based
on Count Matrix for Detecting Code Clones

Yang Yuan
Department of Computer Science
Peking University, Beijing, China

yangyuan@pku.edu.cn

Abstract
In this paper, we introduce a new token based algorithm for code
clone detection. Count Environment(CE) is certain scenario related
to variables. Count Vector(CV) for one variable is consisted of
counting occurrences of this variable in different CEs. Count Ma-
trix(CM) for one code fragment is consisted of different CVs of all
variables in the code fragment. We use CVs to depict variables, and
use CM to represent a code fragment. Two code fragments will be
compared by their corresponding CMs, and during the comparison,
two heuristics are used. Experimental results show that our algo-
rithm is significantly faster than Deckard, a state-of-the-art syntac-
tic technique for detecting code clones.

Categories and Subject Descriptors Software [SOFTWARE EN-
GINEERING]: Distribution, Maintenance, and Enhancement

General Terms Algorithm, Experimentation

Keywords Code Clone, Count Matrix, Token Based

1. Introduction
Code clone are those code fragments made by copy-paste opera-
tions during software development, which might be a little differ-
ent from the original copy. According to Jürgens et al. [2], code
clones are harmful to software systems, because they usually make
the source code more intricate and increase the maintenance cost.
According to previous researchers [5], a significant fraction of large
software system is cloned. So code clone detection is an important
problem.
To evaluate a code clone detection algorithm, two aspects are

important: scalability and accuracy. In this paper, we propose a new
token-based algorithm, which uses count matrix to represent code
fragments, and produces satisfying results on the test data of JDK
7 source files.

2. Background
Previous code clone techniques can be divided into four cate-
gories according to the level of analysis to source code: textual,
token-based, syntactic, and semantic. Among them, Deckard [1],

Copyright is held by the author/owner(s).
AOSD’12, March 25-30, 2012, Potsdam, Germany.
ACM 978-1-4503-1222-6/12/03.

CP-Miner[3] and GPLAG[4] represent the state-of-the-art. How-
ever, previous token-based algorithms usually focus on token se-
quence rather than variables, and when positions of some tokens
are changed, they might fail to find the clones. Meanwhile, those
high level techniques, both syntactic and semantic, need a lot of
time to analysis the source code, and are difficult to migrate to other
programming languages.
We have described a preliminary version of this algorithm called

CMCD and some conducted experiments about it in an early paper
[6]. CMCD is based on Soot, and uses bipartite graph matching to
compare two code fragments.

3. Count Matrix
For computers, the function or the structure of the source code
are difficult to understand, we choose to analyze the variables
instead. Count Environment(CE) is used for describing patterns
of variables. Generally, CEs are related to how and where each
variable is used. For example, whether the variable appears in a
if-predicate, or whether the variable is a parameter in a function-
call. In terms of the required analysis of the source code, we
can divide CEs into three stages. Stage1 only needs to match the
tokens; Stage2 needs the information of the statement in which the
corresponding variable appears; Stage3 is more aggressive, which
needs to analyze many statements in a single count.
In our implementation, we use the following CEs:

Stage 1:
The variable is used
The variable is defined

Stage 2:
The variable is in an if-predicate
The variable is added or subtracted
The variable is multiplied or divided
The variable is an array subscript
The variable is defined by an expression with constants

Stage 3:
The variable is in a first-level loop
The variable is in a second-level loop
The variable is in a third-level loop (or deeper)

Generally, more kinds of CEs can be added in, as long as they
are representative and easy to be identified. We investigate each
variable by counting its occurrences in each CE, and combining
the results together to get a Count Vector(CV) for the variable.
The length of CV is m, representing m CEs defined. In each
code fragment, there are many variables, and each has a CV. By
combining these CVs, we will get a Count Matrix(CM) for the
code fragment, which has n rows and m columns, representing n
variables andm CEs in the code fragment.

21

�

�

��

��

��

��

��

	�

�

��

��

���

�
���
�� �
����
����� �
���
���� �
����
��� �
���
���

�
��
��

��
	

��

��
�

��
��
��
��
��

����
�����

������

������

������

�������

(a) Cloned LoC �

���
�	� �
� 	�	

��
�

�
�
�
�
�
�
�	
��
	�

���
��	
���

����
����
���	

�
���
�� �
����
����� �
���
���� �
����
��� �
���
���

	�
�
��

��
��
��

��
��
��

����
�����

(b) Comparing Time
�

�

���

���

���

���

���

	��

������ ������ ������ �������

��
��
��
��
�
��
��
��

(c) Setup Time

Figure 1. Results for Boreas(using different settings) and Deckard on JDK 7

4. Comparison
When comparing two code fragments, we want to find the matching
of the variables in them. If most variables can be properly matched,
these two fragments might be clones.
Firstly, given two CVs a and b, we define the Cosine Vector

Similarity(CVS) as cosine of the angle between them. If the CVS
of two CVs is small, they are considered similar:

CosSim = cos(α) =
a · b

||a||||b||
=

∑
m

i=1
ai × bi√∑

m

i=1
a2

i
×
√∑

m

i=1
b2
i

Secondly, we discuss the method to find matching between the
variables. The bipartite graph matching algorithm is accurate, but
too slow. Our solution is to sort the variables according to their
total used times, and try to match each variable a of block A to
those variables of block B whose ranks are close to the rank of a.
Duplicated matches are allowed, that is, although every variable of
block Amust match exact one variable of block B, there are no such
restrictions on the variables of block B. Moreover, we designed a
heuristic called Quicksep, which skips comparing those pairs that
are very different in terms of some general information, such as
number of variables, number of lines, etc. These two heuristics
greatly simplify and speed up our implementation.

5. Experiments
Our algorithm is implemented in C++, and is able to process C,
C++ and Java language. In this section, we use the test data of JDK
7. The experiments were conducted with Core 2 Duo T9400 and 6
GB RAM on Ubuntu 11.04.
We use 3 versions of our algorithm: Stage1 only uses CEs in

first stage; Stage2 only uses CEs in first two stages; Stage3 uses
CEs from all stages. We also compare our results with Deckard1.
We set different similarity thresholds for these techniques (1.0, 0,
95, 0.9, 0.85, 0.8 for our algorithm, and 1.0, 0.9999, 0.999, 0.99,
0.95 for Deckard).
We investigate three aspects of these techniques: scalability,

clone quantity, and clone quality. The running time of these tech-
niques was split into setup time and comparing time in Figure 1(c)
and Figure 1(b). The clone quantity is measured by counting the
unique LoC of the result found by each technique, see Figure 1(a).
And the clone quality is measured by the false positive rates, which
are computed by randomly picking up 100 cloned pairs, and then
checking the correctness of them manually, see Table 1. These re-
sults show that our algorithm is significantly faster than Deckard,
and the results are as good as Deckard.

1 http://www.mysmu.edu/faculty/lxjiang/research.html

Table 1. False Positive Rates
Simi Stage1 Stage2 Stage3 Deckard

1.00 (1.00) 5% 0% 0% 0%
0.95(0.9999) 65% 0% 0% 0%
0.90 (0.999) 72% 1% 1% 0%
0.85 (0.99) 67% 9% 4% 0%
0.80 (0.95) 82% 33% 19% 51%

6. Conclusion
We introduce a new algorithm for code clone detection in this pa-
per. The main idea is to construct Count Matrix for code fragments
based on token sequence, and compare two code fragments by com-
paring their CMs. Experimental results show that our algorithm is
both scalable and accurate.

References
[1] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and

accurate tree-based detection of code clones. In ICSE, pages 96–105.
IEEE Computer Society, 2007.

[2] E. Jürgens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In ICSE, pages 485–495. IEEE, 2009.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Trans. Software
Eng, 32(3):176–192, 2006.

[4] C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG: Detection of software
plagiarism by program dependence graph analysis, 2006.

[5] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Sci.
Comput. Program, 74(7):470–495, 2009.

[6] Y. Yuan and Y. Guo. CMCD: Count Matrix based Code Clone De-
tection. In Proceedings of the 18th Asia-Pacific Software Engineering
Conference (APSEC 2011), to appear, 2011.

22

