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Abstract  
This demonstration presents a novel design-flow and as-
pect-oriented language called LARA [1], which is currently 
used to guide the mapping of high-level C application 
codes to heterogeneous high-performance embedded sys-
tems. In particular, LARA is capable of capturing complex 
strategies and schemes involving: hardware/software parti-
tioning, code specialization, source code transformations 
and code instrumentation. A key element of LARA, and a 
distinguishing feature from existing approaches, is its abil-
ity to support the specification of non-functional require-
ments and user knowledge in a non-invasive way in the 
exploration of suitable implementations. The design-flow 
incorporates several tools, such as a LARA frontend, a 
hardware/software partitioning tool, an aspect weaver, cost 
estimator, and a source-level transformation engine. All 
these components can be coordinated as part of an elabo-
rate application mapping strategy using LARA. 

In this demonstration, we illustrate how non-functional 
cross-cutting concerns such as runtime monitorization and 
performance are codified and described in LARA and how 
the weaving process affects selected applications. Further-
more, we also explain how third-party tools, such as gprof, 
can be incorporated into the design-flow and aspect de-
scription, for instance, to affect the hardware/software par-
titioning process. We demonstrate how LARA can be used 
to extract run-time information, such as range values of 
variables, and can control code transformations and com-
piler optimizations addressing customized implementations 
of the corresponding computations on FPGAs. 
 

Categories and Subject Descriptors D.3.3 [Program-

ming Languages]: Language Constructs and Features – 
Frameworks. D.3.3 [Programming Languages]: Proces-
sors – Compilers, Retargetable Compilers, Optimization, 
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Code Generation. C.3 [Special-purpose and application-

based systems]: Real-time and embedded systems, Micro-
processor/microcomputer applications. B.7.1 [Integrated 

circuits]: Types and Design Styles – Algorithms imple-
mented in hardware. 

General Terms  Design, Experimentation, Languages. 

Keywords  Aspect-Oriented Programming; Compilers; 
Reconfigurable Computing; FPGAs; Embedded Systems; 
Domain-Specific Languages 

1. Description 
Mapping applications written in high-level languages like 
C to heterogeneous multi-core embedded platforms is a 
daunting task. It requires not only sophisticated design-
flows that can satisfy both functional and non-functional 
requirements, such as performance and safety, but also re-
quires considerable expertise in operating and exploiting 
available tools and APIs (Application Programming Inter-
faces). Furthermore, the development process must consid-
er a myriad of design choices. For instance, developers 
must partition the application code into a set of tasks and 
offload them to the most suited system components (a pro-
cess commonly known as hardware/software partitioning).  

Subsequently, there is a need to deal with multiple com-
pilation tools (sub-chains) that target each specific system 
component. These problems are exacerbated when dealing 
with FPGA (Field-Programmable Gate Array) components, 
a technology that combines the performance of custom 
hardware with the flexibility of software. As a conse-
quence, users must explore code and mapping transfor-
mations specific to each architecture so that the resulting 
designs meet the overall solution requirements. The devel-
opment process therefore leads to poorly maintainable 
code, where the source is transformed beyond recognition 
as developers typically manually apply an extensive set of 
architecture-specific transformations and tool-specific di-
rectives.  As a result, implementing designs for such archi-
tectures is slow and error prone, with limited application 
portability. When the underlying architecture changes de-
velopers invariably need to restart the design process.  

This demonstration focuses on the REFLECT design-
flow [2][3][4] which is steered by LARA specifications [1], 
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