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Abstract

This demonstration presents a novel design-flow and as-
pect-oriented language called LARA [1], which is currently
used to guide the mapping of high-level C application
codes to heterogeneous high-performance embedded sys-
tems. In particular, LARA is capable of capturing complex
strategies and schemes involving: hardware/software parti-
tioning, code specialization, source code transformations
and code instrumentation. A key element of LARA, and a
distinguishing feature from existing approaches, is its abil-
ity to support the specification of non-functional require-
ments and user knowledge in a non-invasive way in the
exploration of suitable implementations. The design-flow
incorporates several tools, such as a LARA frontend, a
hardware/software partitioning tool, an aspect weaver, cost
estimator, and a source-level transformation engine. All
these components can be coordinated as part of an elabo-
rate application mapping strategy using LARA.

In this demonstration, we illustrate how non-functional
cross-cutting concerns such as runtime monitorization and
performance are codified and described in LARA and how
the weaving process affects selected applications. Further-
more, we also explain how third-party tools, such as gprof,
can be incorporated into the design-flow and aspect de-
scription, for instance, to affect the hardware/software par-
titioning process. We demonstrate how LARA can be used
to extract run-time information, such as range values of
variables, and can control code transformations and com-
piler optimizations addressing customized implementations
of the corresponding computations on FPGAs.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features —
Frameworks. D.3.3 [Programming Languages]: Proces-
sors — Compilers, Retargetable Compilers, Optimization,
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Code Generation. C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems, Micro-
processor/microcomputer applications. B.7.1 [Integrated
circuits]: Types and Design Styles — Algorithms imple-
mented in hardware.

General Terms  Design, Experimentation, Languages.

Keywords  Aspect-Oriented Programming; Compilers;
Reconfigurable Computing; FPGAs; Embedded Systems;
Domain-Specific Languages

1. Description
Mapping applications written in high-level languages like
C to heterogeneous multi-core embedded platforms is a
daunting task. It requires not only sophisticated design-
flows that can satisfy both functional and non-functional
requirements, such as performance and safety, but also re-
quires considerable expertise in operating and exploiting
available tools and APIs (Application Programming Inter-
faces). Furthermore, the development process must consid-
er a myriad of design choices. For instance, developers
must partition the application code into a set of tasks and
offload them to the most suited system components (a pro-
cess commonly known as hardware/software partitioning).

Subsequently, there is a need to deal with multiple com-
pilation tools (sub-chains) that target each specific system
component. These problems are exacerbated when dealing
with FPGA (Field-Programmable Gate Array) components,
a technology that combines the performance of custom
hardware with the flexibility of software. As a conse-
quence, users must explore code and mapping transfor-
mations specific to each architecture so that the resulting
designs meet the overall solution requirements. The devel-
opment process therefore leads to poorly maintainable
code, where the source is transformed beyond recognition
as developers typically manually apply an extensive set of
architecture-specific transformations and tool-specific di-
rectives. As a result, implementing designs for such archi-
tectures is slow and error prone, with limited application
portability. When the underlying architecture changes de-
velopers invariably need to restart the design process.

This demonstration focuses on the REFLECT design-
flow [2][3][4] which is steered by LARA specifications [1],
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a novel aspect-oriented programming (AOP) language for
mapping high-level applications to heterogeneous high-
performance embedded systems. The LARA language al-
lows developers to capture non-functional requirements
from applications in a structured way, leveraging high-level
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non-
functional requirements code from the application code,
developers can retain the benefits of preserving the original
application source while exploiting the automation benefits
of various domain-specific and target component-specific
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a vehi-
cle for conveying application-specific requirements that
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping
choices, thus facilitating design-space-exploration (DSE),
and (c) interfacing in an extensible fashion the compila-
tion/synthesis components included in the toolchain.

Figure 1 illustrates the main idea beyond LARA and the
approach demonstrated here. The source code on the left
and aspects are input to the toolchain [1] which produces a
representation of the computations after weaving.

Application Code Aspects and Strategies

void filter_subband(float z[512],
float s[32], float m[32][64]) {

for (i=0;i<32;i++) { // loopl
sli]=0;
for (j=0;j<64;j++) //loop2
sli] += mlilli] * y0il;

aspectdef myStrategy
select function.loop{type=="for’} end
apply optimize(“loopscalar”); end
apply optimize(“loopunroll”, “fully”); end
condition
$loop.is_innermost && $loop.num_iter< 128;
end
end

}

}

for (i=0;i<32;i++) {
s = m[i][0] * y[O];
—— s +=miil[1] * y[1];
sfi] =s;
}

Figure 1. An example of the weaving in the context of LARA.
Note that the output of the weaving process is not necessarily
high-level code and can be an intermediate representation
and/or low-level machine code.

Figure 2 shows the four main topics addressed by LARA
and the design-flow [1][3]. The topics include code special-
ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to computa-
tions and to data structures) to storage elements and to pro-
cessing elements existent in the target architecture; runtime
monitorization and instrumentation of variables, execution
paths, function calls, computations, etc.; and code trans-
formations, compiler and synthesis optimizations.
This approach has been developed under the REFLECT
project (EU FP7) with applications and optimization strate-
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described
in[1].

data representation
code vendor API
source annotations

specialization

var => memory types

performance fn => processing elements

safety
fault-tolerance
energy efficiency

code transformations

compiler and
synthesis

optimizations

loop transformations
hardware/software partitioning
loop pipelining
range values of variables
run-time branch frequency
hotspots

monitorization

Figure 2. Main topics addressed by the LARA approach.

2. Topics focused by the Demo

The design-flow presented in this demo includes high-

levels of flexibility provided by the LARA specification of

aspects and the weaving processes in various stages of the
flow [1]. This flexibility is illustrated in an abstract way in

Figure 3. In particular, LARA aspects can codify user

knowledge and expertise in order to apply them automati-

cally to other applications (Figure 3(a)). In addition, LARA
aspects can capture strategies and non-functional require-
ments that can drive the generation of customized imple-
mentations for a single application (Figure 3(b)). These
strategies can also be parameterized to realize design pat-

terns and templates (Figure 3(c)).

With this demonstration we show how to use LARA and
the design-flow for:

e injecting code for instrumenting and monitorization of
several C code artifacts. Specifically, we demonstrate
how to monitor range values of program variables
specified by the developer, how to monitor specific
function calls and how to count branch-taken paths.

e specifying compiler and synthesis strategies in order to
achieve efficient hardware/software FPGA based im-
plementations according to the target architecture.

3. Demonstration Examples

In beginning of the demonstration, the presenter describes a
list of concerns (e.g., extracting specific run-time infor-
mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.
Figure 4 depicts a snapshot of the weaving process per-
formed by the source-to-source weaving stage (an extended
version of the Harmonic tool [5] is used). In this example
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actual
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count
the number of branch-taken paths.
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Figure 3. Design-flow flexibility powered by aspects: (a) reus-
able strategies; (b) retargetability; (c) design space

exploration.
B8 & @ > @ @
open  weae!  aspectiR | prev next  design map LARA
3 select function{name=="gridIterate"}.if.body.fifst end (backward trace) ]
4 apply
5 . insert before %(
6 profile_count_incr(*branch_[[$figeC uid]]", “[[$function.name]]", "[[$body.branch label]]");
7
8 end
9
10 select function{nane=="gridIterate"}.body.last end
1 a
12 sfunction.insert before %{ #include "profile utils.h" }%;
13
14
15  apply
16  insert after %{ profile count print("branch report"); }%;
17 end
18
19 end
20 -
733 void gridItersite(caCnBorders *b,caCmIntMap *(s|  winclude "profile utils.h" =
734 void griditerate(caCmBorders *b,caCmIntMap *obsta(
735 uint32_t |
36 uint32_t §
3 uint32t k;
738 _ | uint32’t ip;
739 uint32t vel: - uint32"t val: &
| woven join point
original source

join point)

Figure 4. Snapshot showing the weaving process performed by

the Harmonic tool.

The following LARA aspect (see Figure 5) extracts value
ranges (minimum and maximum values) of selected varia-
bles, which can help generate resource-efficient FPGA de-
signs using word-length optimization techniques.

Figure 6 shows the comparison between original and wo-
ven sources after executing the weaving process using the
aspect presented in Figure 5. In particular, the tool high-
lights the differences between both sources.

L hemoncsmuae <]

8

open  weavel  aspectiR  prev next  design map

1 aspectdef MonitAccRangeValues e
2 select function{"gridIterate"}.statement end

3 A: apply

4 $statement.insert after %{ profile_range monitor("[[$statement.vardef]]”, [[$statement.vardef]]); }%;
5 end

6 condition for A:

7 Sstatement.vardef == "acc” || $statement.vardef == "(left|right).*"

8 nd

9

10 select function{“gridIterate"} end

1 apply

12 sfunction.insert before %{ #include "profile utils.h" }%;

13 end

14

15 select function{"main"}.body.last end

16 apply

17 sfunction.insert before %{ #include “profile utils.h" }%;

18 end

19 apply

20 slast.insert before %{ profile range print(“range report"); }%;

21 end

22 end i
23 -
< D

Figure 5. Example of a LARA aspect extracting range values
for specific variables.

[3dpath] multigridsolver.c : [weaved] multigridsolver.c - Meld - '
< 8 4
[3dpath] multig...multigridsolver.c 3
home/safc/work/workb&ich/Refiect/toolch] ~ | | Browse /home/jorc/work/workbench/Reflect/toolch| - |[Browse...| &
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> e
y
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Figure 6. Input C code and the woven output code.

The next example presented in Figure 7 and Figure 8
shows the use of LARA to insert code primitives to meas-
ure the execution time of a given section of code consider-
ing different target architectures. In this figure we consider
a host computer (PC) and an embedded system using a Xil-
inx MicroBlaze processor [6]. This example highlights one
of the benefits of LARA: the original code which conveys
the functionality of the design can be platform independent,
and aspects can be introduced to generate target dependent
designs.

original.c : woven.c - Harmonic Simulator I
4 Q Run Original Run Woven

original.c: woven.c =
init _map();
find_borders();

HEA WaypULITC AL

read_input_parameters(argc,argv);
next_waypoint_init();
N void multigrid solver() {
it;
int32°t step = (1)

void multigrid| MicroBlaze code %} XTime GetTime(&timeStamp);
nt32

tit; printf(“Ts-before 'gridsInit': %llu (step=%d)\n"
gridsInit(&globalMap.m obst,&globalMap.m obst _di

int32 t step = (1);
gridsInit(&globalMap.m obst,&globalMap.m obst di
if ((globalMap.is gridia) !=

gridsInit(sglobalMap.m obst_div2,&globalMap.m

= XTime GetTime(stimeStamp) ;
printf(“Ts-after 'gridsInit': %llu (step=xd)\n",
if ((globalMap.is gridl4) != 0) {

3 XTime_GetTime (&timeStamp);
‘assignwaypoint(); printf("Ts-before 'gridsInit': %llu (step=xd)
while(! (isFinalstep(step) 1= 6)) { gridsInit(&globalMap.m obst_div2,&globalMap.m

interpolation ph(step); > XTime_GetTime (stimestamp);
for (it = ()7 it < (3 + (64 7 16)); itss) { printf(*Ts-after 'gridsInit': %llu (step=xd)\
iteration ph(step);
= XTime GetTime(&timeStamp) ;
printf(“Ts-before 'assignWaypoint': %llu (step=k

1
update ph(step);
o o1: assighwaypoint();

INS:Ln 279 Col9
o

Figure 7. Code injected for measuring execution time
considering a system based on a MicroBlaze processor.
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We show in the next example how to use LARA to per-
form hardware/software partitioning and compiler optimi-
zations. In particular, the LARA aspect (see Figure 9)
instructs the design-flow to map all the application func-
tions to the Virtex-5 (a Xilinx FPGA) [7] as long as its es-
timated cost is less than PPC (here identifying the IBM
PowerPC 440 used in Virtex-5 [8]). In this case, the Virtex-
5 partition source file must have its functions inlined, be-
cause function calls may not be supported by backend C-to-
gates compilers.

I LT wover = e S E Y RE?

& Q @ runoriginal 8 Runwoven
original.c : woven.c ®
init_map(); next waypoint init();
find_borders();
read_input_parameters (ar{ PC code
next_waypoint_init
» void multigrid solver() ¢
intazt step = (1);
void multigrid solver() { S
int32 t it; hTimer timer("timer gridsInit 196887906");
int32 t step = (1); gridsInit(sglobalMap.m obst,&globalMap.m obst
gridsInit(cglobalMap.m obst,Eglobaltap.n obst die-
if ((globalMap.is grid1d) != 0) { LECLLLES S L S ol
ar )dsIr\)H&g\oba\Hap a obst d1v2, 6globaltap. e D7 ( (globathap i grite) 1= o1 {
} {
assignWaypoint () ; K hTimer timer("timer gridsInit 196887988");
while(! (isFinalstep(step) != 0)) { gridsInit(sglobalMap.m obst div2,&globalMa
interpolation ph(step) « )
for (it = (0); it < (3'* (64 / 16)); ites) { printf(“elapsed time for multigrid solver() =
iteration ph(step); « )
>
update ph(step); B hTimer timer("timer assignWaypoint 196888032"

INS: Ln 3, Col 42

Figure 8. Code injected for measuring execution time consid-
ering a host computer (PC).

aspectdef GridlterateCoSyOpt2
A: select function end
B: apply to A
$function.optimize(“inline”);
$function.map(id:"virtex5”);
end
condition for B:
$function.estimated_virtex5 < $function.estimated_ppc
end
end

Figure 9. LARA aspect specifying a hardware/software
partitioning strategy.

VIRTEXS_original.c : VIRTEX5_woven.c - Meld

File Edit Changes View Tabs Help
3 Y

& Bsave @ undo * 4

VIRTEXS_origina...IRTEXS_woven.c %

/home/jgfc/Work/workbench/Reflect/toolcl| ~ | Browse. /home/jgfc/Work/workbench/Reflect/toolc ~ || Browse... |
int it;
int step; int step;
int loc_218; int loc_218;

step = 1; step = 1;

gridsInit{(&globalMap.fld 162); (&globalMap.flc-» €  gridsInitlB €6 =1 (SglobalMap.fld 171)}

if((globalMap. fld_ 176 1= 6)) gridsInit o to = (&globalMap.fld 159);
gridsInit((&jlobalMap. f1d 163); (&globalMag gridsInit o from'= (sglobalMap.fld 158);

gridsInit y size from = gridsInit,o from->fld 1

assignWaypoint () ; gridsInit z size from = gridsInit o~from->fld 1
while(1){ gridsInit map_from = gridsInit o from->Td 145;
loc 218 = isFinalstep(step); gridsInit left x to = gridsInit b to->fld 149;
TMoc 218 1= 0)){ gridsInit_rioht x to = aridsInit b to->fld 156;

rid . P ->fld 151;

) breal Z,,d gridsinitinlined 0->fld_152;
interpolation pts id ->fld 153;
Tor(ie =05 (it <151 Hardware Partition | idsiiit Fight 7 t6 = Gridsinit b to-~11d 154

‘ iteration _ph(step); idsInit[y size to = gridsInit o to->fld 147;
) gridsInit z size to = gridsInit o to->fld 148;

o) ———arideInit man-to = aridsTnit o fo->fld 145:
INS : Ln 6347, Col 11

Figure 10. Snapshot showing code after hardware/software
partitioning (left) and after function inlining (right).

4. Summary

This paper presented some of the many uses of LARA for
injecting code and guiding with strategies, transformations,
compiler and synthesis optimizations, and mapping of ap-

plications to hardware/software systems. These examples
illustrate the current capabilities of the current implementa-
tion of the LARA-based toolchain, consisting of a source-
to-source transformation tool, a compiler and optimizer,
and multiple hardware synthesis tools.
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