

Experiments with the LARA Aspect-Oriented Approach

José G. F. Coutinho Tiago Carvalho, Sérgio
Durand, João M. P. Cardoso

Ricardo Nobre,
Pedro C. Diniz

Wayne Luk

Department of Computing,
Imperial College London,

180 Queen’s Gate,
London SW7 2BZ,
United Kingdom

gabriel.figueiredo@imperial.ac.uk

Universidade do Porto,
 Faculdade de Engenharia (FEUP),

Dep. de Engenharia Informática
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

tiago.diogo.carvalho@fe.up.pt,
sergiodurand@gmail.com, jmpc@acm.org

INESC-ID,
Rua Alves Redol 9

1000-029 Lisboa, Portugal

ricardo.nobre@gmail.com,
pedro@esda.inesc-id.pt

Department of Computing,
Imperial College London,

180 Queen’s Gate,
London SW7 2BZ,
United Kingdom

w.luk@imperial.ac.uk

Abstract
This demonstration presents a novel design-flow and as-
pect-oriented language called LARA [1], which is currently
used to guide the mapping of high-level C application
codes to heterogeneous high-performance embedded sys-
tems. In particular, LARA is capable of capturing complex
strategies and schemes involving: hardware/software parti-
tioning, code specialization, source code transformations
and code instrumentation. A key element of LARA, and a
distinguishing feature from existing approaches, is its abil-
ity to support the specification of non-functional require-
ments and user knowledge in a non-invasive way in the
exploration of suitable implementations. The design-flow
incorporates several tools, such as a LARA frontend, a
hardware/software partitioning tool, an aspect weaver, cost
estimator, and a source-level transformation engine. All
these components can be coordinated as part of an elabo-
rate application mapping strategy using LARA.

In this demonstration, we illustrate how non-functional
cross-cutting concerns such as runtime monitorization and
performance are codified and described in LARA and how
the weaving process affects selected applications. Further-
more, we also explain how third-party tools, such as gprof,
can be incorporated into the design-flow and aspect de-
scription, for instance, to affect the hardware/software par-
titioning process. We demonstrate how LARA can be used
to extract run-time information, such as range values of
variables, and can control code transformations and com-
piler optimizations addressing customized implementations
of the corresponding computations on FPGAs.

Categories and Subject Descriptors D.3.3 [Program-

ming Languages]: Language Constructs and Features –
Frameworks. D.3.3 [Programming Languages]: Proces-
sors – Compilers, Retargetable Compilers, Optimization,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright 2012 ACM 978-1-4503-1092-5/12/03...$10.00.

Code Generation. C.3 [Special-purpose and application-

based systems]: Real-time and embedded systems, Micro-
processor/microcomputer applications. B.7.1 [Integrated

circuits]: Types and Design Styles – Algorithms imple-
mented in hardware.

General Terms Design, Experimentation, Languages.

Keywords Aspect-Oriented Programming; Compilers;
Reconfigurable Computing; FPGAs; Embedded Systems;
Domain-Specific Languages

1. Description
Mapping applications written in high-level languages like
C to heterogeneous multi-core embedded platforms is a
daunting task. It requires not only sophisticated design-
flows that can satisfy both functional and non-functional
requirements, such as performance and safety, but also re-
quires considerable expertise in operating and exploiting
available tools and APIs (Application Programming Inter-
faces). Furthermore, the development process must consid-
er a myriad of design choices. For instance, developers
must partition the application code into a set of tasks and
offload them to the most suited system components (a pro-
cess commonly known as hardware/software partitioning).

Subsequently, there is a need to deal with multiple com-
pilation tools (sub-chains) that target each specific system
component. These problems are exacerbated when dealing
with FPGA (Field-Programmable Gate Array) components,
a technology that combines the performance of custom
hardware with the flexibility of software. As a conse-
quence, users must explore code and mapping transfor-
mations specific to each architecture so that the resulting
designs meet the overall solution requirements. The devel-
opment process therefore leads to poorly maintainable
code, where the source is transformed beyond recognition
as developers typically manually apply an extensive set of
architecture-specific transformations and tool-specific di-
rectives. As a result, implementing designs for such archi-
tectures is slow and error prone, with limited application
portability. When the underlying architecture changes de-
velopers invariably need to restart the design process.

This demonstration focuses on the REFLECT design-
flow [2][3][4] which is steered by LARA specifications [1],

27

a novel aspect
mapping high
performance embedded systems. The LARA language a
lows developers to capture non
from applications in a structu
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non
functional requirements code from the application code,
developers can retain the benefits of preserving the origina
application source while exploiting the automation benefits
of various domain
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a veh
cle for conveying applica
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping
choices, thus facilitating design
and (c) interfacing in an extensible fashion the compil
tion/synthesis components included in the toolchain.

approach demonstrated here. The source code on the left
and aspects are input to the toolchain
representation of the computations after weaving.

and the design
ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to comput
tions and to data structures) to storage elements and
cessing elements existent in the target architecture; runtime
moni
paths, function calls, computations, etc.; and code tran
formations, compiler and synthesis optimizations.
This approach has be
project (EU FP7) with applications and optimization strat
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described
in

a novel aspect
mapping high
performance embedded systems. The LARA language a
lows developers to capture non
from applications in a structu
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non
functional requirements code from the application code,
developers can retain the benefits of preserving the origina
application source while exploiting the automation benefits
of various domain
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a veh
cle for conveying applica
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping
choices, thus facilitating design
and (c) interfacing in an extensible fashion the compil
tion/synthesis components included in the toolchain.

Figure 1 illustrates the main idea beyond LARA and the
approach demonstrated here. The source code on the left
and aspects are input to the toolchain
representation of the computations after weaving.

Figure 1. An example of the weaving in the context of LARA.

Note that the output of the weaving process is not neces

high-level code and can be an intermediate representation

Figure 2 shows the four main topics addressed by LARA
and the design
ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to comput
tions and to data structures) to storage elements and
cessing elements existent in the target architecture; runtime
monitorization
paths, function calls, computations, etc.; and code tran
formations, compiler and synthesis optimizations.
This approach has be
project (EU FP7) with applications and optimization strat
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described
in [1].

a novel aspect-oriented programming (AOP) language for
mapping high-level applications to heterogeneous high
performance embedded systems. The LARA language a
lows developers to capture non
from applications in a structu
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non
functional requirements code from the application code,
developers can retain the benefits of preserving the origina
application source while exploiting the automation benefits
of various domain-specific and target component
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a veh
cle for conveying applica
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping
choices, thus facilitating design
and (c) interfacing in an extensible fashion the compil
tion/synthesis components included in the toolchain.

illustrates the main idea beyond LARA and the
approach demonstrated here. The source code on the left
and aspects are input to the toolchain
representation of the computations after weaving.

An example of the weaving in the context of LARA.

Note that the output of the weaving process is not neces

level code and can be an intermediate representation

and/or low-level machine code.

shows the four main topics addressed by LARA
and the design-flow [1][3].
ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to comput
tions and to data structures) to storage elements and
cessing elements existent in the target architecture; runtime

torization and instrumentation of variables, execution
paths, function calls, computations, etc.; and code tran
formations, compiler and synthesis optimizations.
This approach has been developed under the REFLECT
project (EU FP7) with applications and optimization strat
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described

oriented programming (AOP) language for
level applications to heterogeneous high

performance embedded systems. The LARA language a
lows developers to capture non-functional requirements
from applications in a structured way, leveraging high
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non
functional requirements code from the application code,
developers can retain the benefits of preserving the origina
application source while exploiting the automation benefits

specific and target component
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a veh
cle for conveying application-specific requirements that
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping
choices, thus facilitating design-space-exploration
and (c) interfacing in an extensible fashion the compil
tion/synthesis components included in the toolchain.

illustrates the main idea beyond LARA and the
approach demonstrated here. The source code on the left
and aspects are input to the toolchain [1]
representation of the computations after weaving.

An example of the weaving in the context of LARA.

Note that the output of the weaving process is not neces

level code and can be an intermediate representation

level machine code.

shows the four main topics addressed by LARA
 The topics include code specia

ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to comput
tions and to data structures) to storage elements and
cessing elements existent in the target architecture; runtime

instrumentation of variables, execution
paths, function calls, computations, etc.; and code tran
formations, compiler and synthesis optimizations.

en developed under the REFLECT
project (EU FP7) with applications and optimization strat
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described

oriented programming (AOP) language for
level applications to heterogeneous high

performance embedded systems. The LARA language a
functional requirements

red way, leveraging high-
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non
functional requirements code from the application code,
developers can retain the benefits of preserving the origina
application source while exploiting the automation benefits

specific and target component-specific
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a veh

specific requirements that
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping

exploration (DSE),
and (c) interfacing in an extensible fashion the compil
tion/synthesis components included in the toolchain.

illustrates the main idea beyond LARA and the
approach demonstrated here. The source code on the left

[1] which produces a
representation of the computations after weaving.

An example of the weaving in the context of LARA.

Note that the output of the weaving process is not necessarily

level code and can be an intermediate representation

level machine code.

shows the four main topics addressed by LARA
The topics include code specia

ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to comput
tions and to data structures) to storage elements and to pr
cessing elements existent in the target architecture; runtime

instrumentation of variables, execution
paths, function calls, computations, etc.; and code tran
formations, compiler and synthesis optimizations.

en developed under the REFLECT
project (EU FP7) with applications and optimization strat
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described

oriented programming (AOP) language for
level applications to heterogeneous high-

performance embedded systems. The LARA language al-
functional requirements

-level
abstractions such as hardware/software design templates
and flexible toolchain interfaces. By decoupling non-
functional requirements code from the application code,
developers can retain the benefits of preserving the original
application source while exploiting the automation benefits

specific
compilation/synthesis tools. In essence, LARA uses AOP
mechanisms to offer under the same framework: (a) a vehi-

specific requirements that
cannot otherwise be specified in the original programming
language for design capture, (b) using these requirements to
guide the application of transformations and mapping

(DSE),
and (c) interfacing in an extensible fashion the compila-

illustrates the main idea beyond LARA and the
approach demonstrated here. The source code on the left

which produces a

An example of the weaving in the context of LARA.

sarily

level code and can be an intermediate representation

shows the four main topics addressed by LARA
The topics include code special-

ization which deals to the specification of data types and
possible source annotations; code mapping which deals
with the mapping of code constructs (related to computa-

to pro-
cessing elements existent in the target architecture; runtime

instrumentation of variables, execution
paths, function calls, computations, etc.; and code trans-
formations, compiler and synthesis optimizations.

en developed under the REFLECT
project (EU FP7) with applications and optimization strate-
gies provided by industry, in particular avionics and audio
encoders. The LARA language AOP approach is described

2.
The design
levels of flexibility
aspects and the weaving processes in various stages of the
flow
Figure

knowledge and expertise
cally
aspects can capture
ments
mentations for
strategies can
terns and templates (

With this demonstration we show how to use LARA and
the design

•

•

3.
In beginning of the demonstration, the presenter describes a
list of concerns (e.g., extracting specific run
mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.
Figure

formed by the source
version of the Harmonic tool
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actua
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count
the number of branch

Figure 2. Main topics addressed by

 Topics focused
The design-flow presented in this demo include
levels of flexibility
aspects and the weaving processes in various stages of the
flow [1]. This flexibility
Figure 3. In particular,
knowledge and expertise
cally to other applications (
aspects can capture
ments that can
mentations for
strategies can also
terns and templates (

With this demonstration we show how to use LARA and
the design-flow for:

 injecting code for instrumenting and monitorization of
several C code artifacts. Specifically
how to monitor range values of program variables
specified by the dev
function calls and how to count branch

 specifying compiler and synthesis strategies in order to
achieve efficient hardware/software FPGA based i
plementations according to the target architecture.

 Demonstration
In beginning of the demonstration, the presenter describes a
list of concerns (e.g., extracting specific run
mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.
Figure 4 depicts a snapshot of the weaving process pe
formed by the source
version of the Harmonic tool
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actua
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count
the number of branch

ain topics addressed by

Topics focused by the Demo
flow presented in this demo include

levels of flexibility provided by the LARA specification of
aspects and the weaving processes in various stages of the

This flexibility is illustrated in an abstract way in
In particular, LARA aspects

knowledge and expertise in order to
other applications (Figure

aspects can capture strategies
that can drive the generation of

mentations for a single appli
also be parameterized to realize design pa

terns and templates (Figure 3(c))
With this demonstration we show how to use LARA and

flow for:

injecting code for instrumenting and monitorization of
several C code artifacts. Specifically
how to monitor range values of program variables
specified by the developer, how to monitor specific
function calls and how to count branch

specifying compiler and synthesis strategies in order to
achieve efficient hardware/software FPGA based i
plementations according to the target architecture.

Demonstration Examples
In beginning of the demonstration, the presenter describes a
list of concerns (e.g., extracting specific run
mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.

depicts a snapshot of the weaving process pe
formed by the source-to-source weaving stage (an extended
version of the Harmonic tool
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actua
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count
the number of branch-taken pat

ain topics addressed by the LARA approach.

by the Demo
flow presented in this demo include

provided by the LARA specification of
aspects and the weaving processes in various stages of the

is illustrated in an abstract way in
LARA aspects can
in order to apply them

Figure 3(a)). In addition, LARA
strategies and non-functional requir

drive the generation of customized impl
application (Figure

be parameterized to realize design pa
(c)).

With this demonstration we show how to use LARA and

injecting code for instrumenting and monitorization of
several C code artifacts. Specifically,
how to monitor range values of program variables

eloper, how to monitor specific
function calls and how to count branch

specifying compiler and synthesis strategies in order to
achieve efficient hardware/software FPGA based i
plementations according to the target architecture.

Examples
In beginning of the demonstration, the presenter describes a
list of concerns (e.g., extracting specific run
mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.

depicts a snapshot of the weaving process pe
source weaving stage (an extended

version of the Harmonic tool [5] is used). In this example
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actua
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count

taken paths.

LARA approach.

flow presented in this demo includes high
provided by the LARA specification of

aspects and the weaving processes in various stages of the
is illustrated in an abstract way in

can codify user
apply them automat

(a)). In addition, LARA
functional requir
customized impl

Figure 3(b)). These
be parameterized to realize design pa

With this demonstration we show how to use LARA and

injecting code for instrumenting and monitorization of
 we demonstrate

how to monitor range values of program variables
eloper, how to monitor specific

function calls and how to count branch-taken paths.

specifying compiler and synthesis strategies in order to
achieve efficient hardware/software FPGA based i
plementations according to the target architecture.

In beginning of the demonstration, the presenter describes a
list of concerns (e.g., extracting specific run-time info
mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.

depicts a snapshot of the weaving process pe
source weaving stage (an extended

is used). In this example
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actua
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count

LARA approach.

s high-
provided by the LARA specification of

aspects and the weaving processes in various stages of the
is illustrated in an abstract way in

codify user
automati-

(a)). In addition, LARA
functional require-
customized imple-

(b)). These
be parameterized to realize design pat-

With this demonstration we show how to use LARA and

injecting code for instrumenting and monitorization of
we demonstrate

how to monitor range values of program variables
eloper, how to monitor specific

specifying compiler and synthesis strategies in order to
achieve efficient hardware/software FPGA based im-

In beginning of the demonstration, the presenter describes a
time infor-

mation or performing compiler optimizations). For each
concern, a LARA description is presented and explained.

depicts a snapshot of the weaving process per-
source weaving stage (an extended

is used). In this example
one can see how parts of the LARA aspect (on top of the
figure), the original code with the identification of one of
the join points (left bottom of the figure), and the actual
join point (right bottom of the figure) are related to each
other. This information is automatically provided and
graphically showed using the Harmonic simulator. The
LARA aspect used in this example is responsible to count

28

Figure

Figure 3. Design

able strategies; (b) retargetability; (c) design space

Figure 4. Snapshot showing the weaving

. Design-flow flexibility

able strategies; (b) retargetability; (c) design space

exploration.

. Snapshot showing the weaving

the Harmonic tool.

(a)

(b)

(c)

flow flexibility powered by aspects: (a) reu

able strategies; (b) retargetability; (c) design space

exploration.

. Snapshot showing the weaving process performed by

the Harmonic tool.

powered by aspects: (a) reu

able strategies; (b) retargetability; (c) design space

process performed by

powered by aspects: (a) reus-

able strategies; (b) retargetability; (c) design space

process performed by

The following LARA aspect (see
ranges (minimum and maximum values) of selected vari
bles, which can help generate resource
signs using word

Figure

ven
aspect presented in
lights the differences between both sources.

Figure

The next example presented in
shows the use of LARA to insert code primitives to mea
ure the execution time of a given section of code conside
ing different target architectures. In this figure we consider
a host computer
inx MicroBlaze processor
of the benefits of LARA: the original code which conveys
the func
and aspects can be introduced to generate target dependent
designs.

The following LARA aspect (see
ranges (minimum and maximum values) of selected vari
bles, which can help generate resource
signs using word

Figure 6 shows the
ven sources after executing the weaving process using the
aspect presented in
lights the differences between both sources.

Figure 5. Examp

Figure 6. Input C code and the woven output code.

The next example presented in
shows the use of LARA to insert code primitives to mea
ure the execution time of a given section of code conside
ing different target architectures. In this figure we consider
a host computer
inx MicroBlaze processor
of the benefits of LARA: the original code which conveys
the functionality of the design can be platform independent,
and aspects can be introduced to generate target dependent
designs.

Figure 7. Code injected for measuring execution time

considering a system based on a MicroBlaze processor.

The following LARA aspect (see
ranges (minimum and maximum values) of selected vari
bles, which can help generate resource
signs using word-length optimization techniques.

shows the comparison between original and
after executing the weaving process using the

aspect presented in Figure 5. In particular, the tool hig
lights the differences between both sources.

. Example of a LARA aspect extracting

for specific variables.

. Input C code and the woven output code.

The next example presented in
shows the use of LARA to insert code primitives to mea
ure the execution time of a given section of code conside
ing different target architectures. In this figure we consider
a host computer (PC) and an embedded system using a Xi
inx MicroBlaze processor [6]. This example highlights one
of the benefits of LARA: the original code which conveys

tionality of the design can be platform independent,
and aspects can be introduced to generate target dependent

. Code injected for measuring execution time

considering a system based on a MicroBlaze processor.

The following LARA aspect (see Figure

ranges (minimum and maximum values) of selected vari
bles, which can help generate resource-efficient FPGA d

length optimization techniques.
comparison between original and

after executing the weaving process using the
. In particular, the tool hig

lights the differences between both sources.

le of a LARA aspect extracting

for specific variables.

. Input C code and the woven output code.

The next example presented in Figure

shows the use of LARA to insert code primitives to mea
ure the execution time of a given section of code conside
ing different target architectures. In this figure we consider

(PC) and an embedded system using a Xi
. This example highlights one

of the benefits of LARA: the original code which conveys
tionality of the design can be platform independent,

and aspects can be introduced to generate target dependent

. Code injected for measuring execution time

considering a system based on a MicroBlaze processor.

Figure 5) extracts value
ranges (minimum and maximum values) of selected vari

efficient FPGA d
length optimization techniques.

comparison between original and w
after executing the weaving process using the

. In particular, the tool hig
lights the differences between both sources.

le of a LARA aspect extracting range values

. Input C code and the woven output code.

Figure 7 and Figure

shows the use of LARA to insert code primitives to mea
ure the execution time of a given section of code conside
ing different target architectures. In this figure we consider

(PC) and an embedded system using a Xi
. This example highlights one

of the benefits of LARA: the original code which conveys
tionality of the design can be platform independent,

and aspects can be introduced to generate target dependent

. Code injected for measuring execution time

considering a system based on a MicroBlaze processor.

) extracts value
ranges (minimum and maximum values) of selected varia-

efficient FPGA de-

wo-
after executing the weaving process using the

. In particular, the tool high-

range values

Figure 8
shows the use of LARA to insert code primitives to meas-
ure the execution time of a given section of code consider-
ing different target architectures. In this figure we consider

(PC) and an embedded system using a Xil-
. This example highlights one

of the benefits of LARA: the original code which conveys
tionality of the design can be platform independent,

and aspects can be introduced to generate target dependent

29

form hardware/software partitioning and compiler optim
zations. In particular, the LARA aspect (see
instru
tions to the Virtex
timated cost is less than PPC (here identifying the IBM
PowerPC 440 used in Virtex
5 partition source file must have its functions
cause function calls may not be supported by backend C
gates compilers.

aspectdefaspectdefaspectdefaspectdef

endendendend

4.
This paper presented some of the many uses of LARA for
injecting code and
compiler and synthesis optimizations, and mapping of a

We show in the next example how to use LARA to pe
form hardware/software partitioning and compiler optim
zations. In particular, the LARA aspect (see
instructs the design
tions to the Virtex
timated cost is less than PPC (here identifying the IBM
PowerPC 440 used in Virtex
5 partition source file must have its functions
cause function calls may not be supported by backend C
gates compilers.

Figure 8. Code inject

aspectdefaspectdefaspectdefaspectdef GridIterateCoSyOpt2

 A: selectselectselectselect function

 B: applyapplyapplyapply to A

 $function.optimize(“inline”);

 $function.map(id:”virtex5”);

 endendendend

 conditionconditionconditioncondition for B:

 $function.estimated_virtex5 < $function.estimated_ppc

 endendendend

endendendend

Figure 9. LARA aspect specifying a hardware/s

Figure 10. Snap

partitioning (left) and

4. Summary
This paper presented some of the many uses of LARA for
injecting code and
compiler and synthesis optimizations, and mapping of a

We show in the next example how to use LARA to pe
form hardware/software partitioning and compiler optim
zations. In particular, the LARA aspect (see

cts the design-flow to map all the application fun
tions to the Virtex-5 (a Xilinx FPGA)
timated cost is less than PPC (here identifying the IBM
PowerPC 440 used in Virtex
5 partition source file must have its functions
cause function calls may not be supported by backend C
gates compilers.

. Code injected for measuring execution time

ering a host computer (

GridIterateCoSyOpt2

function endendendend

to A

$function.optimize(“inline”);

$function.map(id:”virtex5”);

for B:

$function.estimated_virtex5 < $function.estimated_ppc

. LARA aspect specifying a hardware/s

partitioning strategy.

. Snapshot showing

oning (left) and after function inlining (right).

Summary
This paper presented some of the many uses of LARA for
injecting code and guiding with strategies, transformations,
compiler and synthesis optimizations, and mapping of a

We show in the next example how to use LARA to pe
form hardware/software partitioning and compiler optim
zations. In particular, the LARA aspect (see

flow to map all the application fun
5 (a Xilinx FPGA) [7]

timated cost is less than PPC (here identifying the IBM
PowerPC 440 used in Virtex-5 [8]). In this case, the Virtex
5 partition source file must have its functions
cause function calls may not be supported by backend C

ed for measuring execution time

host computer (PC

GridIterateCoSyOpt2

$function.optimize(“inline”);

$function.map(id:”virtex5”);

$function.estimated_virtex5 < $function.estimated_ppc

. LARA aspect specifying a hardware/s

partitioning strategy.

shot showing code after hardware/sof

after function inlining (right).

This paper presented some of the many uses of LARA for
guiding with strategies, transformations,

compiler and synthesis optimizations, and mapping of a

We show in the next example how to use LARA to pe
form hardware/software partitioning and compiler optim
zations. In particular, the LARA aspect (see Figure

flow to map all the application fun
[7] as long as its e

timated cost is less than PPC (here identifying the IBM
). In this case, the Virtex

5 partition source file must have its functions inlined, b
cause function calls may not be supported by backend C

ed for measuring execution time consi

PC).

$function.estimated_virtex5 < $function.estimated_ppc

. LARA aspect specifying a hardware/software

code after hardware/software

after function inlining (right).

This paper presented some of the many uses of LARA for
guiding with strategies, transformations,

compiler and synthesis optimizations, and mapping of a

We show in the next example how to use LARA to per-
form hardware/software partitioning and compiler optimi-

Figure 9)
flow to map all the application func-

as long as its es-
timated cost is less than PPC (here identifying the IBM

). In this case, the Virtex-
inlined, be-

cause function calls may not be supported by backend C-to-

consid-

$function.estimated_virtex5 < $function.estimated_ppc

oftware

tware

after function inlining (right).

This paper presented some of the many uses of LARA for
guiding with strategies, transformations,

compiler and synthesis optimizations, and mapping of ap-

plications to hardware/software systems.
illustrate the current capabilities of the current implement
tion of the LARA
to-
and multiple hardware synthesis tools.

5.
This work was partially supported by the European Co
munity’s Framework Programme 7 (FP7) under contract
No. 248976.
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team
members of the REFLECT
port.
the support of FCT (Portuguese Science Foundation)
through the project AMADEUS (POCTI,
PTDC/EIA/70271/2006).

6.
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

plications to hardware/software systems.
illustrate the current capabilities of the current implement
tion of the LARA

-source transformation tool, a compiler and optimizer,
and multiple hardware synthesis tools.

 Acknowledgments
This work was partially supported by the European Co
munity’s Framework Programme 7 (FP7) under contract
No. 248976. Any opinions
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team
members of the REFLECT
port. Tiago Carvalho and
the support of FCT (Portuguese Science Foundation)
through the project AMADEUS (POCTI,
PTDC/EIA/70271/2006).

 References
 João M. P. Cardoso, Tiago Carvalho, José Gabriel de F. Coutinho,

Wayne Luk, Ricardo Nobre, Pedro C. Diniz, Zlatko Petrov, “LARA:
An Aspect-Oriented Programming Language for Embedded Sy
tems,” in Proc. of the Intl.
velopment (AOSD’12)

March 25-30, 2012.

 REFLECT, FP7 EU Project: http://www.reflect

 João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels,
Michael Hübner, Hans van Someren, Fernando Gonçalves, José
Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,
Wayne Luk, Juergen Becker, Georgi Kuzmanov, Florian Thoma,
Lars Braun, Matthias Kühnle, Razvan Nane, Vlad
Kamil Krátký, José Carlos Alves, and João Canas Ferreira
REFLECT: Rendering FPGAs to Multi

book chapter in Reconfigurable C
Hardware/Software Codesign, J. M. P. Cardoso and M. Huebner
(eds.), Springer, Aug., 2011, pp. 261

 João M. P. Cardoso, Razvan Nane, Pedro C. Diniz, Zlatko Petrov,
Kamil Krátký, Koen Bertels, Michael Hübner, Fernando Gonçalves,
José Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,
Wayne Luk, Juergen Becker, and Georgi Kuzmanov,
proach to Control and Guide the Mapping of Computa
FPGAs,” in Proc
Systems and Algorithms (ERSA'11)

21, 2011, CSREA Press. pp. 231

 Wayne Luk, José Gabriel de Figueiredo Coutinho, Timothy John
Todman, Yuet Ming Lam, William G. Osborne, Kong Woei Susanto,
Qiang Liu, and W. S. Wong
for Heterogeneous Systems,” in
ference (SoCC‘09)

18.

 Xilinx Inc., MicroBlaze Processor Reference Guide
Development Kit

 Xilinx Inc., Virtex
(v5.0) February 6, 2009. http://www.xilinx.com

 Xilinx Inc., Embedded Processor Block in Virtex
ence Guide, UG200 (v1.8) February 24, 2010.
http://www.xilinx.com

plications to hardware/software systems.
illustrate the current capabilities of the current implement
tion of the LARA-based toolchain, consisti

source transformation tool, a compiler and optimizer,
and multiple hardware synthesis tools.

Acknowledgments
This work was partially supported by the European Co
munity’s Framework Programme 7 (FP7) under contract

Any opinions, findings, and con
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team
members of the REFLECT project for their help and

Carvalho and João
the support of FCT (Portuguese Science Foundation)
through the project AMADEUS (POCTI,
PTDC/EIA/70271/2006).

References
João M. P. Cardoso, Tiago Carvalho, José Gabriel de F. Coutinho,

Ricardo Nobre, Pedro C. Diniz, Zlatko Petrov, “LARA:
Oriented Programming Language for Embedded Sy

Proc. of the Intl. Conf.

velopment (AOSD’12), Hasso-Plattner
30, 2012.

REFLECT, FP7 EU Project: http://www.reflect

João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels,
Michael Hübner, Hans van Someren, Fernando Gonçalves, José
Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

Juergen Becker, Georgi Kuzmanov, Florian Thoma,
Lars Braun, Matthias Kühnle, Razvan Nane, Vlad
Kamil Krátký, José Carlos Alves, and João Canas Ferreira
REFLECT: Rendering FPGAs to Multi

book chapter in Reconfigurable C
Hardware/Software Codesign, J. M. P. Cardoso and M. Huebner
(eds.), Springer, Aug., 2011, pp. 261

João M. P. Cardoso, Razvan Nane, Pedro C. Diniz, Zlatko Petrov,
Kamil Krátký, Koen Bertels, Michael Hübner, Fernando Gonçalves,
osé Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

Wayne Luk, Juergen Becker, and Georgi Kuzmanov,
proach to Control and Guide the Mapping of Computa

Proc. of the Intl. Conf. Engineering of Reconfigurable

and Algorithms (ERSA'11)

21, 2011, CSREA Press. pp. 231

Wayne Luk, José Gabriel de Figueiredo Coutinho, Timothy John
Todman, Yuet Ming Lam, William G. Osborne, Kong Woei Susanto,
Qiang Liu, and W. S. Wong, “A High
for Heterogeneous Systems,” in

CC‘09), Belfast, Northern Ireland, UK,

MicroBlaze Processor Reference Guide

Development Kit, EDK 13.4, UG081 (v13.4), 2012.

Virtex-5 Family Overview

(v5.0) February 6, 2009. http://www.xilinx.com

Embedded Processor Block in Virtex

UG200 (v1.8) February 24, 2010.
http://www.xilinx.com

plications to hardware/software systems.
illustrate the current capabilities of the current implement

based toolchain, consisti
source transformation tool, a compiler and optimizer,

and multiple hardware synthesis tools.

This work was partially supported by the European Co
munity’s Framework Programme 7 (FP7) under contract

, findings, and con
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team

project for their help and
João Cardoso also acknowledge

the support of FCT (Portuguese Science Foundation)
through the project AMADEUS (POCTI,

João M. P. Cardoso, Tiago Carvalho, José Gabriel de F. Coutinho,
Ricardo Nobre, Pedro C. Diniz, Zlatko Petrov, “LARA:

Oriented Programming Language for Embedded Sy
Conf. on Aspect-Oriented Software D

Plattner-Institut Potsdam, Germany,

REFLECT, FP7 EU Project: http://www.reflect-project.eu.

João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels,
Michael Hübner, Hans van Someren, Fernando Gonçalves, José
Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

Juergen Becker, Georgi Kuzmanov, Florian Thoma,
Lars Braun, Matthias Kühnle, Razvan Nane, Vlad
Kamil Krátký, José Carlos Alves, and João Canas Ferreira
REFLECT: Rendering FPGAs to Multi-Core Embedded Computing

book chapter in Reconfigurable Computing: From FPGAs to
Hardware/Software Codesign, J. M. P. Cardoso and M. Huebner
(eds.), Springer, Aug., 2011, pp. 261-289.

João M. P. Cardoso, Razvan Nane, Pedro C. Diniz, Zlatko Petrov,
Kamil Krátký, Koen Bertels, Michael Hübner, Fernando Gonçalves,
osé Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

Wayne Luk, Juergen Becker, and Georgi Kuzmanov,
proach to Control and Guide the Mapping of Computa

. of the Intl. Conf. Engineering of Reconfigurable

and Algorithms (ERSA'11), Las Vegas, NV
21, 2011, CSREA Press. pp. 231-240.

Wayne Luk, José Gabriel de Figueiredo Coutinho, Timothy John
Todman, Yuet Ming Lam, William G. Osborne, Kong Woei Susanto,

A High-Level Compilation Toolchain
for Heterogeneous Systems,” in Proc. IEEE International SoC Co

Belfast, Northern Ireland, UK,

MicroBlaze Processor Reference Guide

4, UG081 (v13.4), 2012.

5 Family Overview, Product Specification, DS100
(v5.0) February 6, 2009. http://www.xilinx.com

Embedded Processor Block in Virtex

UG200 (v1.8) February 24, 2010.

 These examples
illustrate the current capabilities of the current implement

based toolchain, consisting of a source
source transformation tool, a compiler and optimizer,

This work was partially supported by the European Co
munity’s Framework Programme 7 (FP7) under contract

, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team

project for their help and su
Cardoso also acknowledge

the support of FCT (Portuguese Science Foundation)
through the project AMADEUS (POCTI,

João M. P. Cardoso, Tiago Carvalho, José Gabriel de F. Coutinho,
Ricardo Nobre, Pedro C. Diniz, Zlatko Petrov, “LARA:

Oriented Programming Language for Embedded Sys-
Oriented Software De-

Institut Potsdam, Germany,

project.eu.

João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels,
Michael Hübner, Hans van Someren, Fernando Gonçalves, José
Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

Juergen Becker, Georgi Kuzmanov, Florian Thoma,
Lars Braun, Matthias Kühnle, Razvan Nane, Vlad-Mihai Sima,
Kamil Krátký, José Carlos Alves, and João Canas Ferreira,

Core Embedded Computing

omputing: From FPGAs to
Hardware/Software Codesign, J. M. P. Cardoso and M. Huebner

João M. P. Cardoso, Razvan Nane, Pedro C. Diniz, Zlatko Petrov,
Kamil Krátký, Koen Bertels, Michael Hübner, Fernando Gonçalves,
osé Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

Wayne Luk, Juergen Becker, and Georgi Kuzmanov,, “A New Ap-
proach to Control and Guide the Mapping of Computations to

. of the Intl. Conf. Engineering of Reconfigurable

NV, USA, July 18

Wayne Luk, José Gabriel de Figueiredo Coutinho, Timothy John
Todman, Yuet Ming Lam, William G. Osborne, Kong Woei Susanto,

Level Compilation Toolchain
Proc. IEEE International SoC Co

Belfast, Northern Ireland, UK, Sept. 2009, pp. 9

MicroBlaze Processor Reference Guide, Embedded
4, UG081 (v13.4), 2012.

, Product Specification, DS100

Embedded Processor Block in Virtex-5 FPGAs, Refer-

These examples
illustrate the current capabilities of the current implementa-

ng of a source-
source transformation tool, a compiler and optimizer,

This work was partially supported by the European Com-
munity’s Framework Programme 7 (FP7) under contract

clusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team

sup-
Cardoso also acknowledge

the support of FCT (Portuguese Science Foundation)
through the project AMADEUS (POCTI,

João M. P. Cardoso, Tiago Carvalho, José Gabriel de F. Coutinho,
Ricardo Nobre, Pedro C. Diniz, Zlatko Petrov, “LARA:

e-

Institut Potsdam, Germany,

João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels,

Juergen Becker, Georgi Kuzmanov, Florian Thoma,

Core Embedded Computing,

João M. P. Cardoso, Razvan Nane, Pedro C. Diniz, Zlatko Petrov,
Kamil Krátký, Koen Bertels, Michael Hübner, Fernando Gonçalves,
osé Gabriel de F. Coutinho, George Constantinides, Bryan Olivier,

p-

. of the Intl. Conf. Engineering of Reconfigurable

, USA, July 18-

Todman, Yuet Ming Lam, William G. Osborne, Kong Woei Susanto,
Level Compilation Toolchain

Proc. IEEE International SoC Con-

Sept. 2009, pp. 9-

, Product Specification, DS100

r-

30

