
PHANtom: An Aspect Language for Pharo Smalltalk

Johan Fabry ∗

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
http://pleiad.cl

Abstract
Aspect languages for Smalltalk have not kept up with ad-
vances in aspect language research. Arguably the only well-
known aspect language for Smalltalk is AspectS. It is a
ground-breaking contribution, especially regarding dynamic
aspects, yet it lacks amenities which aspect language users
have come to rely on, e.g. the use of patterns in pointcuts and
the ability to declare aspect precedence. Alternative aspect
languages for Smalltalk are effectively absent. As a result,
currently Smalltalk lacks a modern and powerful aspect lan-
guage.To address this deficit, we elected to design and build
PHANtom: a modern aspect language for Pharo Smalltalk.
PHANtom is designed to be an aspect language in the spirit
of Smalltalk: dynamic, simple and powerful. PHANtom is
a modern aspect language because it incorporates what we
consider to be the best features of languages that precede
it, includes recent research results in aspect interactions and
reentrancy control, and is designed from the onset to be op-
timized and compiled where possible. This demo presents
PHANtom by first providing an introduction to the language,
detailing its philosophy and fundamental features. It second
discusses the salient features of the language by demonstrat-
ing the use of PHANtom in an example application.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords PHANtom, Smalltalk, AOP

∗ Partially funded by FONDECYT project 1090083.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25-30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1222-6/12/03. . . $10.00

Description of the Demonstration
Aspect languages for Smalltalk have not kept up with ad-
vances in aspect language research. Arguably the only well-
known aspect language for Smalltalk is AspectS [5]. It dates
from 2003 and, to the best of our knowledge, has not been
updated significantly since then. While a ground-breaking
contribution, especially regarding dynamic aspects, it lacks
amenities which aspect language users have come to rely on,
e.g. the use of patterns in pointcuts and the ability to declare
aspect precedence. We have not encountered alternative as-
pect languages for Smalltalk that are intended to be general-
purpose, which have been published or even well-described.
For our latest experiments with AOP we wished to use Pharo
Smalltalk, which meant we also required an aspect language
that incorporates recent AOP research results, is solid, pow-
erful and extensible. Current aspect languages for Smalltalk
did not meet our criteria and hence we set out to build our
own language, called PHANtom [4].

PHANtom is designed to be an aspect language in the
spirit of Smalltalk: dynamic, simple and powerful. PHAN-
tom is a modern aspect language because it incorporates
what we deem are the best features of languages that precede
it, includes recent research results, and is designed from the
onset to be optimized and compiled where possible. Notable
language features are:

• the use of patterns in pointcuts, taken from AspectJ [6],
• presence of inter-type declarations, taken from AspectJ,
• static precedence-based aspect ordering scheme, taken

from AspectJ,
• run-time ability of advice to alter the execution of sched-

uled advice at the current join point, taken from Dynamic
AspectJ [1],

• dynamic deployment and undeployment, from AspectS,
• all language constructs are first-class objects, taken from

AspectS and AspectScheme [3],
• a symmetric view of classes and aspects, where advice

are methods, taken from Eos-U [8].
• reentrancy control based on computational membranes [10]

31

PHANtom adds to the state of the art in aspect languages
as its joining of the above language features is new. Lastly
it proposes, what is to the best of our knowledge, the first
granularity refinement to the static AspectJ aspect ordering
scheme by allowing pointcuts to determine a local aspect
ordering scheme. PHANtom improves on existing general-
purpose aspect languages in Smalltalk by allowing the use
of patterns for pointcut definitions, having constructs for ad-
vice execution ordering and reentrancy control. We therefore
consider that PHANtom is of interest to the Smalltalk pro-
grammer wanting to use AOP, or to the AOSD conference
attendee that wishes to write aspects in Smalltalk.

The demonstration will start with an introduction to
PHANtom, detailing the philosophy behind the language
and explaining its fundamental features before beginning
with the actual demo itself. The demo itself will consist of
developing an example application, where we highlight and
discuss different salient features of the language in the pro-
cess of performing the development activity.

Beyond AspectS, we have not been able to find signifi-
cant related work on aspect languages in Smalltalk. except
for a new aspect language called PHASE [7]. The goal of
PHASE is however radically different from PHANTom: it is
designed and implemented as a validation of the concept of
meta join point model. This model defines new join points to
characterize the structure and behavior of aspects, together
with the corresponding pointcut language predicates. The
ultimate goal of the work is to use aspects to compose as-
pects, since aspect composition can be considered a cross-
cutting concern. To the best of our knowledge, PHASE has
only been used as a proof of concept, which is in accordance
to its stated goal. PHANtom on the other hand aims to be
a general-purpose aspect language for Pharo Smalltalk, and
already has been successfully used in various (small-sized)
applications and research projects.

PHANtom is currently implemented using MethodWrap-
pers [2], a meta-object protocol that allows the implemen-
tation of a method to be swapped with an alternative im-
plementation. Pointcuts are parsed using the PetitParser [9]
framework and are matched using the descriptions of classes
and of methods. Matches identify methods that need to be
replaced by the infrastructure of PHANtom that is in charge
of executing advice, along with the original behavior of the
method. Work is in progress to replace the current imple-
mentation of PHANtom with a complier, based on the new
compiler framework (Opal) being implemented for Pharo.

Bio of the Presenter
Johan Fabry is an assistant professor in the PLEIAD lab-
oratory of the computer science department of the Univer-
sity of Chile. His main research interests are the use of
AOSD in building distributed systems, the design and im-
plementation of domain-specific aspect languages and as-
pect composition and interaction. Further research interests

include the design of pointcut languages and weaver imple-
mentations. He was co-organizer of the DSAL Workshops at
GPCE’06, AOSD’07, ’08 ’09, ’10 and ’12, co-organizer of
the workshops on Aspects, Dependencies, and Interactions
at ECOOP’06, ’07, and ’08 and editor of the special section
“Dependencies and Interactions With Aspects” of the jour-
nal Transactions in Aspect-Oriented Software Development.

Additional Information
Additional information on PHANtom is available on its web-
site: http://pleiad.cl/phantom

References
[1] Ali Assaf and Jacques Noyé. Dynamic aspectj. In Proceedings

of the 2008 symposium on Dynamic languages, DLS ’08,
pages 8:1–8:12, New York, NY, USA, 2008. ACM.

[2] John Brant, Brian Foote, Ralph Johnson, and Donald Roberts.
Wrappers to the rescue. In Eric Jul, editor, ECOOP’98 -
Object-Oriented Programming, volume 1445 of Lecture Notes
in Computer Science, pages 396–417. Springer Berlin / Hei-
delberg, 1998.

[3] Christopher Dutchyn, David B. Tucker, and Shriram Krish-
namurthi. Semantics and scoping of aspects in higher-order
languages. Science of Computer Programming, 63(3):207 –
239, 2006. Special issue on foundations of aspect-oriented
programming.

[4] Johan Fabry and Daniel Galdames. PHANtom: a modern as-
pect language for Pharo Smalltalk. In Proceedings of 2011 In-
ternational Workshop on Smalltalk Technologies (IWST’11).
ACM Press, 2011.

[5] Robert Hirschfeld. AspectS - Aspect-Oriented Programming
with Squeak. In Mehmet Aksit, Mira Mezini, and Rainer Un-
land, editors, Objects, Components, Architectures, Services,
and Applications for a Networked World, volume 2591 of
Lecture Notes in Computer Science, pages 216–232. Springer
Berlin / Heidelberg, 2003.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold. An overview of aspectj.
In Jorgen Knudsen, editor, ECOOP 2001 - Object-Oriented
Programming, volume 2072 of Lecture Notes in Computer
Science, pages 327–354. Springer Berlin / Heidelberg, 2001.

[7] Antoine Marot. Preserving the Separation of Concerns while
Composing Aspects with Reflective AOP. PhD thesis, Univer-
sité Libre de Bruxelles, 2011.

[8] H. Rajan and K.J. Sullivan. Classpects: unifying aspect- and
object-oriented language design. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference
on, pages 59 – 68, may 2005.

[9] Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar
Nierstrasz. Practical dynamic grammars for dynamic lan-
guages. In 4th Workshop on Dynamic Languages and Ap-
plications (DYLA 2010), Malaga, Spain, June 2010.

[10] Éric Tanter, Nicolas Tabareau, and Rémi Douence. Taming as-
pects with membranes. In Proceedings of the 11th Workshop
on Foundations of Aspect-Oriented Languages (FOAL 2012),
Potsdam, Germany, March 2012. ACM Press.

32

