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Abstract
In this talk we coin the term language-oriented modular-
ity to refer to the process of constructing and compos-
ing DSALs to better support aspect-oriented modularity.
Language-oriented modularity strives to keep our aspect
language as abstract as possible and our software code as
modular as possible. While general purpose aspect-oriented
languages offer low-level abstractions for modularizing a
wide range of crosscutting concerns, they lack the modu-
larity abstractions to tackle all cases of crosscutting. With
language-oriented modularity, a solution to unanticipated
crosscutting concerns is to construct and combine multiple
DSALs to form aspect-oriented modularity of new kinds. We
evaluate the AWESOME composition framework in terms of
its support for language-oriented modularity.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—Programmer work-
bench; D.3.2 [Programming Languages]: Language Classi-
fications—Extensible languages.

General Terms Design, Languages.

Keywords Domain Specific Aspect Languages (DSALs),
Language-Oriented Programming (LOP).

1. Language-Oriented Modularity
Language-oriented modularity puts DSALs at the center of
the aspect-oriented software development process. DSALs
are defined to fulfill a need for aspect-oriented modular-
ity that is specific to the problem or to the domain. These
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DSALs are then used to implement the software solution,
providing better modularity [8] in comparison to the use of
a general-purpose aspect language. With language-oriented
modularity, modularization occurs middle-out. One starts
with defining the DSALs, proceeding with modularizing
crosscutting concern using these DSALs, which is done in
parallel with implementing the DSALs. Language-oriented
modularity is a special case of a paradigm generally referred
to as language-oriented programming [10].

Composition frameworks for language-oriented modular-
ization can be evaluated by how well they adhere to the
DSALs’ “Bill of Rights” [7]:

DEFINITION: (“freedom of expression”) The definition of
DSALs should permit syntactic and semantic freedom in
forming aspect-oriented modularity that is most suitable for
modularizing the crosscutting problem at hand.

IMPLEMENTATION AND USE: (“economic freedom”)
The implementation and use of DSALs should be practi-
cal and cost-effective. Composition frameworks, like AWE-
SOME [4], should reduce the complexity and cost of im-
plementing and composing DSALs. Productivity tools, like
debuggers [1], should also make aspect-oriented modular-
ization with these DSALs effective.

INTEROPERABILITY: (“DSALs’ freedom of associa-
tion”) The interoperability of DSALs must be supported to
enable the composition of multiple DSALs and the concur-
rent use of multiple forms of aspect-oriented modularity.

AWESOME is a composition framework that enables the
definition, implementation, use, and interoperability of mul-
tiple DSALs.

2. AWESOME DSALs
An aspect-oriented language (e.g., AspectJ) extends syn-
tactically and semantically a conventional base language
(e.g., Java). The syntactical extension, called an aspect ex-
tension, provides the programmer with means of aspect-
oriented modularity (e.g., AspectJ provides an aspect con-
struct). The semantical extension, called an aspect mecha-
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nism, extends the base language semantics, called a base
mechanism, with concern integration capabilities (e.g., As-
pectJ extends Java with an advice binding mechanism). A
compiler implementation of an aspect mechanism (e.g., ajc)
is called an aspect weaver.

Let Base be a base language and let DSAL1, ..., DSALn

be n domain specific aspect language extensions for Base.
LetB denote the base mechanism for Base. LetM1, ...,Mn

denote the aspect mechanisms for DSAL1, ..., DSALn, re-
spectively. Let A denote a multi-mechanism comprising B
andM1, ...,Mn.

AWESOME is a composition framework for constructing
a multi-mechanismA for the multi-DSAL language Base×
DSAL1 × · · · ×DSALn by means of third-party composi-
tion of the mechanisms B andM1, ...,Mn. We discuss the
AWESOME framework in terms of addressing the following
problems:

THE DSAL COMPOSITION PROBLEM [2]: Construct a
multi-DSAL language Base×DSAL1 × · · · ×DSALn.

THE COMPOSITION SEMANTICS PROBLEM [2]: De-
fine the meaning of a program 〈base, aspect1, ..., aspectn〉 ∈
Base×DSAL1 × · · · ×DSALn.

THE MECHANISM ABSTRACTION PROBLEM [3]: Spec-
ify the semantics of a single-extension aspect language
Base × DSALi as a modular composition of the base
mechanism B for Base and an aspect mechanism Mi for
DSALi.

THE MECHANISM COMPOSITION PROBLEM [2]: En-
able the assembly of B and M1, ...,Mn into a multi-
mechanism A, where:

• Units of independent production: M1, ...,Mn are in-
dependently defined. B is defined independently from
M1, ...,Mn; andM1, ...,Mn rely only on B and have
an explicit context dependency only on A.

• Units of composition: A is constructed by third-party
composition [9] of B andM1, ...,Mn.

• Units of collaboration: the semantics of A is the “sum”
of the semantics of B andM1, ...,Mn.

THE COMPOSITION SPECIFICATION PROBLEM [5, 6]:
Identify and resolve the feature interactions in the composi-
tion ofM1, ...,Mn.

THE COMPOSITION IMPLEMENTATION PROBLEM [4]:
Design a composition framework with a plug-in architec-
ture, such that, given n third-party aspect mechanism plu-
ginsM1, ...,Mn for DSAL1, ..., DSALn, and a composi-
tion specification S, plugging them into the framework im-
plements the multi-mechanism A under the specification S.
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