
Language-Oriented Modularity through AWESOME DSALs ∗

Summary of Invited Talk

David H. Lorenz
Open University of Israel

Dept. of Mathematics and Computer Science,
1 University Rd., P.O.Box 808, Raanana 43107 Israel.

lorenz@openu.ac.il

Abstract
In this talk we coin the term language-oriented modular-
ity to refer to the process of constructing and compos-
ing DSALs to better support aspect-oriented modularity.
Language-oriented modularity strives to keep our aspect
language as abstract as possible and our software code as
modular as possible. While general purpose aspect-oriented
languages offer low-level abstractions for modularizing a
wide range of crosscutting concerns, they lack the modu-
larity abstractions to tackle all cases of crosscutting. With
language-oriented modularity, a solution to unanticipated
crosscutting concerns is to construct and combine multiple
DSALs to form aspect-oriented modularity of new kinds. We
evaluate the AWESOME composition framework in terms of
its support for language-oriented modularity.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—Programmer work-
bench; D.3.2 [Programming Languages]: Language Classi-
fications—Extensible languages.

General Terms Design, Languages.

Keywords Domain Specific Aspect Languages (DSALs),
Language-Oriented Programming (LOP).

1. Language-Oriented Modularity
Language-oriented modularity puts DSALs at the center of
the aspect-oriented software development process. DSALs
are defined to fulfill a need for aspect-oriented modular-
ity that is specific to the problem or to the domain. These

∗ This research was supported in part by the Israel Science Foun-
dation (ISF) under grant No. 926/08.

Copyright is held by the author/owner(s).
DSAL’12, March 27, 2012, Potsdam, Germany.
ACM 978-1-4503-1128-1/12/03.

DSALs are then used to implement the software solution,
providing better modularity [8] in comparison to the use of
a general-purpose aspect language. With language-oriented
modularity, modularization occurs middle-out. One starts
with defining the DSALs, proceeding with modularizing
crosscutting concern using these DSALs, which is done in
parallel with implementing the DSALs. Language-oriented
modularity is a special case of a paradigm generally referred
to as language-oriented programming [10].

Composition frameworks for language-oriented modular-
ization can be evaluated by how well they adhere to the
DSALs’ “Bill of Rights” [7]:

DEFINITION: (“freedom of expression”) The definition of
DSALs should permit syntactic and semantic freedom in
forming aspect-oriented modularity that is most suitable for
modularizing the crosscutting problem at hand.

IMPLEMENTATION AND USE: (“economic freedom”)
The implementation and use of DSALs should be practi-
cal and cost-effective. Composition frameworks, like AWE-
SOME [4], should reduce the complexity and cost of im-
plementing and composing DSALs. Productivity tools, like
debuggers [1], should also make aspect-oriented modular-
ization with these DSALs effective.

INTEROPERABILITY: (“DSALs’ freedom of associa-
tion”) The interoperability of DSALs must be supported to
enable the composition of multiple DSALs and the concur-
rent use of multiple forms of aspect-oriented modularity.

AWESOME is a composition framework that enables the
definition, implementation, use, and interoperability of mul-
tiple DSALs.

2. AWESOME DSALs
An aspect-oriented language (e.g., AspectJ) extends syn-
tactically and semantically a conventional base language
(e.g., Java). The syntactical extension, called an aspect ex-
tension, provides the programmer with means of aspect-
oriented modularity (e.g., AspectJ provides an aspect con-
struct). The semantical extension, called an aspect mecha-

1



nism, extends the base language semantics, called a base
mechanism, with concern integration capabilities (e.g., As-
pectJ extends Java with an advice binding mechanism). A
compiler implementation of an aspect mechanism (e.g., ajc)
is called an aspect weaver.

Let Base be a base language and let DSAL1, ..., DSALn

be n domain specific aspect language extensions for Base.
LetB denote the base mechanism for Base. LetM1, ...,Mn

denote the aspect mechanisms for DSAL1, ..., DSALn, re-
spectively. Let A denote a multi-mechanism comprising B
andM1, ...,Mn.

AWESOME is a composition framework for constructing
a multi-mechanismA for the multi-DSAL language Base×
DSAL1 × · · · ×DSALn by means of third-party composi-
tion of the mechanisms B andM1, ...,Mn. We discuss the
AWESOME framework in terms of addressing the following
problems:

THE DSAL COMPOSITION PROBLEM [2]: Construct a
multi-DSAL language Base×DSAL1 × · · · ×DSALn.

THE COMPOSITION SEMANTICS PROBLEM [2]: De-
fine the meaning of a program 〈base, aspect1, ..., aspectn〉 ∈
Base×DSAL1 × · · · ×DSALn.

THE MECHANISM ABSTRACTION PROBLEM [3]: Spec-
ify the semantics of a single-extension aspect language
Base × DSALi as a modular composition of the base
mechanism B for Base and an aspect mechanism Mi for
DSALi.

THE MECHANISM COMPOSITION PROBLEM [2]: En-
able the assembly of B and M1, ...,Mn into a multi-
mechanism A, where:

• Units of independent production: M1, ...,Mn are in-
dependently defined. B is defined independently from
M1, ...,Mn; andM1, ...,Mn rely only on B and have
an explicit context dependency only on A.

• Units of composition: A is constructed by third-party
composition [9] of B andM1, ...,Mn.

• Units of collaboration: the semantics of A is the “sum”
of the semantics of B andM1, ...,Mn.

THE COMPOSITION SPECIFICATION PROBLEM [5, 6]:
Identify and resolve the feature interactions in the composi-
tion ofM1, ...,Mn.

THE COMPOSITION IMPLEMENTATION PROBLEM [4]:
Design a composition framework with a plug-in architec-
ture, such that, given n third-party aspect mechanism plu-
ginsM1, ...,Mn for DSAL1, ..., DSALn, and a composi-
tion specification S, plugging them into the framework im-
plements the multi-mechanism A under the specification S.

3. Speaker Biography
David H. Lorenz is an Associate Professor in the Depart-
ment of Mathematics and Computer Science at the Open

University of Israel. His research interests lie primarily
in the areas of aspect-oriented software engineering and
language-oriented programming, particularly involving mul-
tiple domain-specific languages. Lorenz received his PhD
in Computer Science from the Technion–Israel Institute of
Technology. He’s a member of the ACM and the IEEE. Con-
tact him at lorenz@openu.ac.il.

References
[1] Y. Apter, D. H. Lorenz, and O. Mishali. A debug interface

for debugging multiple domain specific aspect languages. In
Proceedings of the 11th International Conference on Aspect-
Oriented Software Development (AOSD’12), Potsdam, Ger-
many, March 2012. ACM.

[2] S. Kojarski and D. H. Lorenz. Pluggable AOP: Designing
aspect mechanisms for third-party composition. In Proceed-
ings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’05), pages 247–263, San Diego, CA, USA,
October 2005. ACM Press.

[3] S. Kojarski and D. H. Lorenz. Modeling aspect mechanisms:
A top-down approach. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE’06), pages
212–221, Shanghai, China, May 2006. ACM Press.

[4] S. Kojarski and D. H. Lorenz. AWESOME: An aspect co-
weaving system for composing multiple aspect-oriented ex-
tensions. In Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’07), pages 515–534,
Montreal, Canada, October 2007. ACM Press.

[5] S. Kojarski and D. H. Lorenz. Identifying feature interaction
in aspect-oriented frameworks. In Proceedings of the 29th In-
ternational Conference on Software Engineering (ICSE’07),
pages 147–157, Minneapolis, MN, May 2007. IEEE Com-
puter Society.

[6] D. H. Lorenz and O. Mishali. SPECTACKLE: Toward a
specification-based DSAL composition process. In Pro-
ceedings of the 7th AOSD Workshop on Domain-Specific As-
pects Languages (DSAL’12), Potsdam, Germany, March 2012.
ACM.

[7] D. H. Lorenz and B. Rosenan. Cedalion: A language for
language oriented programming. In Proceedings of the
26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’11), pages 733–752, Portland, Oregon, USA, October
2011. ACM.

[8] M. Shaw. Modularity for the modern world: summary
of invited keynote. In Proceedings of the 10th Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’11), pages 1–6, Porto de Galinhas, Brazil, March
2011. ACM.

[9] C. Szyperski. Component Software, Beyond Object-Oriented
Programming. Addison-Wesley, 2nd edition, 2002. With
Dominik Gruntz and Stephan Murer.

[10] M. P. Ward. Language-oriented programming. Software-
Concepts and Tools, 15(4):147–161, 1994.

2


	Language-Oriented Modularity
	Awesome DSALs
	Speaker Biography



