
SPECTACKLE: Toward a Specification-based
DSAL Composition Process ∗

David H. Lorenz Oren Mishali
Open University of Israel,

1 University Rd., P.O.Box 808, Raanana 43107 Israel
{lorenz,omishali}@openu.ac.il

Abstract
DSAL composition frameworks are tools used in the pro-
cess of composing multiple DSAL mechanisms into a single
multi-DSAL weaver. The DSAL composition process starts
with specifying the desired interactions between the DSAL
mechanisms being composed, and concludes with produc-
ing a multi-DSAL weaver which satisfies the composition
specification. However, the lack of tool support for defining
the composition specification, and the coding effort required
in composition frameworks to implement the specification,
make this process complex and error prone.

This work presents a specification-based approach to
DSAL composition. The approach is based on having a speci-
fiction manifest file for the composition and for each of the
individual mechanisms involved. A novel tool, named SPEC-
TACKLE, analyzes the manifests and helps the composition
designer define the desired specification. Based on the com-
position specification produced, the composition framework
can generate a significant part of the implementation code
for the mechanisms and for the multi-DSAL weaver. The
specification-based DSAL composition process is illustrated
in the context of the AWESOME composition framework.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications—Tools; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—
Frameworks.

General Terms Design, Languages.

Keywords Domain Specific Aspect Languages (DSALs).

∗ This research was supported in part by the Israel Science Foun-
dation (ISF) under grant No. 926/08.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DSAL’12, March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1128-1/12/03. . . $10.00

1. Introduction
DSAL composition refers to a process in which a multi-DSAL
weaver is composed out of individual DSAL mechanisms [3].
The DSAL composition process begins with defining a com-
position specification that determines how the DSALs inter-
act. The process ends with an implementation of a multi-
DSAL weaver capable of weaving code written in these mul-
tiple DSALs [8]. In this process, the role of the composition
designer is to write the composition specification. The role
of the composition implementer is to realize the multi-DSAL
weaver according to the specification.

The DSAL composition process is aided by composition
frameworks (such as AWESOME [5]). However,

• composition frameworks do not assist the composition
designer in formulating a desired composition specifica-
tion;
• composition frameworks offer the composition imple-

menter only limited assistance in coding the composition
specification.

In a realistic setting, where multiple DSALs are being
combined, there is a need for also the definition of the
composition specification to be guided by the composition
framework. For instance, tools for inspecting basic compo-
sition properties and for investigating potential feature inter-
actions should be a part of the service that the composition
framework offers the designer.

Even the service that is provided to the composition im-
plementer by composition frameworks leaves much to be
desired. Typically, the specification is implemented impera-
tively rather than declaratively. This makes the composition
process less intuitive and demands a greater coding effort.
For example, in AWESOME, the composition configuration
logic is coded by implementing an aspect in ASPECTJ (or
several aspects). This is a significant improvement over a
tangled crosscutting implementation, but is still a matter of
writing code, not a specification.

Moreover, composition frameworks deal mainly with
composition of existing mechanisms. The task of imple-
menting new DSALs remains outside their scope. Therefore,

9

also here, due to a tool gap, it is difficult to implement a
DSAL mechanism [4].

In this paper we present a specification-based DSAL com-
position process. The process is illustrated in the context
of the AWESOME composition framework. The process fea-
tures:

• A formal composition specification. The composi-
tion specification, which in state-of-the-art composition
frameworks is informal, is made formal.
• An explicit description of an aspect mechanism. The

properties characterizing each DSAL mechanism are
made explicit in a dedicated manifest file.
• A tool for analyzing the composition. A new prototyped

tool, named SPECTACKLE, reads the manifests and as-
sists the composition designer in analyzing the interac-
tions and then in generating the composition specifica-
tion.
• A generative specification-based implementation. The

composition specification with the DSAL manifests are
read by AWESOME, allowing part of the code of the indi-
vidual DSAL mechanisms and of the composition config-
uration to be automatically generated.

The result is an improved DSAL composition process. The
composition process becomes more effective and more af-
fordable. Another advantage of a specification-based com-
position process is support for reasoning about the compo-
sition. The specification expresses the composition logic in
high-level terms, making it more accessible to the develop-
ment team. This is important, especially with domain experts
that are not comfortable with code-level reasoning.

Outline. In Section 2, we demonstrate the SPECTACKLE
tool and illustrate how it helps the composition designer an-
alyze and specify the desired DSAL interactions. In Section 3
we explain how AWESOME uses the produced specification
to simplify the implementation of a multi-DSAL weaver.

2. A SPECTACKLE Tool
SPECTACKLE is a tool for analyzing a multi-DSAL compo-
sition as well as specifying the desired feature interactions.
When initially tackling a multi-DSAL composition, and also
when incrementally adding a new DSAL to an existing com-
position, many questions regarding the nature of the compo-
sition need to be answered. For example:

• Which mechanisms already participate in the composi-
tion?
• What join points in an input program may each mecha-

nism affect?
• Are there join points that may be affected by multiple

mechanisms, and if so, in what manner?
• Is there any order that is present between advice of exist-

ing mechanisms?

SPECTACKLE is a command-line tool that helps answer
such questions. The input to SPECTACKLE is a set of man-
ifest files characterizing the DSAL mechanisms that partic-
ipate in the composition. Each manifest is defined by the
provider of the corresponding DSAL, and contains particular
properties of the DSAL mechanism, e.g., the Id of the mecha-
nism, the kind of join points that it may affect, and the types
of advice that the mechanism introduces. The intended user
of SPECTACKLE is the composition designer.

2.1 Basic Exploration of the Composition
To demonstrate the basic function of the SPECTACKLE tool,
consider a specific multi-DSAL composition for which the
composition designer needs to resolve emerging feature in-
teractions.

The composition designer starts by exploring the basic
properties of the composition. Essentially, this means to
identify the DSAL mechanisms that take part in the compo-
sition, and to query for the basic properties of each partici-
pating mechanism. The command mech presents a list of all
the mechanisms in the composition. For our specific compo-
sition, mech lists three mechanisms:

spectackle> mech

validate
cool
aspectj

VALIDATE [1] is a simple DSAL that supports validation of
input parameters of methods, constructors and fields (field
assignments). COOL [7] is a DSAL that handles synchroniza-
tion of JAVA methods, and ASPECTJ [2] is a general purpose
aspect language.

The composition designer continues to explore for the
properties of each mechanism, beginning with a basic ex-
ploration of the COOL mechanism:

spectackle> adv cool

lock→ before
unlock→ after

spectackle> gran cool

method-invocation→ execution(method)

The first command in the transcript, adv cool, lists the
advice types that COOL defines. Each line in the output
refers to a single advice type, where the left-hand side is the
name of the advice type in the terminology of COOL, and the
right-hand side is the normalized advice type. In AWESOME,
all advice types are normalized to a common base.

The second command in the transcript, gran cool,
shows the granularity [6] of the COOL mechanism, i.e.,
the kinds of join point computations in the base system
that COOL may affect (advise). The left-hand side of the

10

output describes the join point computation in a platform-
independent fashion. The right-hand side is the mapping to a
normalized join point model defined by AWESOME. Overall,
the output implies that COOL may affect the behavior of the
program by inserting lock and unlock advice before and
after method executions, respectively.

2.2 Exploring and Configuring Co-Advising
After gaining a general understanding of the mechanisms
participating in the composition, the composition designer
proceeds with investigating the possible interactions be-
tween them. Each mechanism introduces one or more advice
types. In our example, there are six advice types (three of
ASPECTJ, two of COOL, and one of VALIDATE). The num-
ber of advice types may significantly increase as new DSALs
are added to the composition. Naturally, advice belonging
to different DSAL mechanisms may operate at the same join
point. This kind of interaction is called co-advising [9].

SPECTACKLE provides means for exploring and config-
uring the co-advising in a composition. The composition de-
signer may investigate the co-advising by issuing the com-
mand jp base -adv. The output of is shown in Figure 1.

Each section in the figure lists the advice types that may
surround a join point of a particular kind. The first section
shows the advice that may be applied at any join point of
kind call(method). The possibility of a before advice is ex-
pressed by printing a line before the join point, around ad-
vice in the same line of the join point, and after advice are
shown in the line after the join point. Since, in our composi-
tion, call(method) join points are neither in the granularity of
COOL nor of VALIDATE, only ASPECTJ advice may affect
method calls.

The second section in Figure 1 is more informative. Here,
all the possible advice types surround the execution(method)
join point kind. This indicates that all of them may be ap-
plied at join points of this kind. Note that the advice that op-
erate before and after the join point appear in red (sans
serif font). It indicates that no order is specified for these par-
ticular advice, which means that their execution order is arbi-
trary. This, of course, may be undesired. For instance, if an
aspectj.before advice is executed before a cool.lock

advice, then code executed within aspectj.before is not
synchronized. If the code accesses shared application re-
sources, this may lead to incorrect behavior.

Therefore, all sections in Figure 1 with red advice (three
in our case) indicate a possible conflict that should be re-
solved with the SPECTACKLE command adv set. The
command supports resolution of advice ordering conflicts.
For instance, by running the set of commands in Figure 2,
the composition designer sets an ordering for before and
after advice, and then verifies the result.

The jp command with the -kind flag lists the co-
advising information for a specific kind of join point. We
can see that now the before and after advice are printed
in green (typewriter font), which means that an advice or-

spectackle> jp base -adv

aspectj.before
call(method) aspectj.around
aspectj.after

aspectj.before cool.lock validate.validate
execution(method) aspectj.around
aspectj.after cool.unlock

aspectj.before
call(constructor) aspectj.around
aspectj.after

aspectj.before validate.validate
execution(constructor) aspectj.around
aspectj.after

aspectj.before
initialization
aspectj.after

aspectj.before
preinitialization
aspectj.after

aspectj.before
staticinitialization aspectj.around
aspectj.after

aspectj.before
get(field) aspectj.around
aspectj.after

aspectj.before validate.validate
set(field) aspectj.around
aspectj.after

aspectj.before
handler

Figure 1: Co-advising weaving schedule for a composition
of ASPECTJ, COOL, and VALIDATE.

der was defined, and the order that they appear is their order
of execution.

3. From Specification to Implementation
SPECTACKLE supplies AWESOME with the composition
specification and with the manifest files of the DSAL mecha-
nisms that participate in the composition. This enables AWE-
SOME to generate part of the multi-DSAL weaver code that
would otherwise be coded manually by the composition im-
plementer. In this section, we explain why a specification-
based composition approach reduces significantly the man-
ual coding effort.

11

spectackle> adv set -before validate.validate

cool.lock aspectj.before

advice order was set

spectackle> adv set -after aspectj.after cool.unlock

advice order was set

spectackle> jp -kind execution(method) -adv

validate.validate cool.lock aspectj.before

execution(method) aspectj.around
aspectj.after cool.unlock

Figure 2: Setting an advice order

3.1 Configuring Advice Order
In Section 2, the composition designer specified in SPEC-
TACKLE an order between pieces of before advice: a
validate advice is executed first, followed by a COOL
lock advice, and eventually by ASPECTJ before advice.
It was also specified that ASPECTJ after advice should
precede COOL unlock advice. The corresponding entries
that SPECTACKLE creates in the composition specification
file are:

before-advice-order: validate.validate, cool.lock,
aspectj.before
after-advice-order: aspectj.after, cool.unlock

Provided with this specification, AWESOME is able to
automatically generate the aspects that advise the multi-
DSAL weaver code and configure the specified advice order.

Figure 3 shows a simplified version of an ASPECTJ as-
pect that configures the before advice order. The aspect ad-
vises the multiOrderBefore method, which is a part of the
AWESOME weaving process. The method is provided with
multiEffects, a list of all before advice (effects) that are
going to be woven at a specific join point shadow. Each ele-
ment in the list is in itself a list, holding the effects of a par-
ticular mechanism. The method extracts all the effects from
the inner lists and returns a single flattened list of effects.
The aspect ensures that the advice are ordered according to
their specified execution order.

The code in Figure 3 is not overly complicated, but still
requires ASPECTJ coding skills and basic understanding
of the AWESOME weaving process, including knowledge
of low-level APIs (e.g., the BcelShadow class). Hence, an
automatic generation of the aspect saves time and effort.
Moreover, the specification is both explicit and precise, and
thus promotes reasoning and communication.

4. Related Work
Similar to SPECTACKLE, the Reflex composition framework
supports the detection of co-advising interactions. The Re-
flex runtime is provided with a base system and with aspects
of multiple DSALs, and translates each aspect to a common
intermediate representation (Reflex API calls). The transla-
tion is handled by the appropriate DSAL plug-in. The com-
mon representation allows Reflex to detect co-advising in-
teractions. The user is able to define composition rules for
the interactions. If a composition rule is missing, the user is
notified.

However, there are also significant differences between
the approach presented here and that of Reflex. First, Reflex
operates at the aspect level, detecting and resolving the inter-
actions in a particular application. AWESOME, on the other
hand, operates at the language level. The SPECTACKLE tool
helps to identify and resolve the interactions between the
DSAL mechanisms, hence affecting the behavior of all de-
rived multi-DSAL programs.

Second, the composition rules in Reflex are expressed
imperatively in JAVA. The specification we discuss here is
declarative and expressed in higher-level notations which are
more intuitive.

Third, SPECTACKLE allows to query composition prop-
erties other than co-advising interactions, e.g., the mecha-
nisms that participate in the composition, basic mechanism
properties, and the advice order that is currently set.

5. Conclusion
In this work we describe an improved process for composing
multiple DSALs and illustrate it in the context of the AWE-
SOME composition framework. The process is based on ex-
plicit specification manifests for each of the DSAL mecha-
nism, and on the composition specification itself. The pro-
cess begins with an analysis of the composition using a novel
tool called SPECTACKLE. The analysis helps the composi-
tion designer formulate the composition specification. AWE-
SOME is provided with the specifications to facilitate auto-
matic code generation.

The specification-based DSAL composition process was
demonstrated by identifying and resolving co-advising in-
teractions. Clearly, there are more kinds of interactions to
(SPEC)tackle. We are currently working on extending SPEC-
TACKLE to support the detection and resolution of foreign
advising interactions. Another topic for future work is to en-
hance the usability of the tool, e.g., by providing more so-
phisticated visualization.

DSAL composition frameworks make the development of
applications using multiple DSALs possible. Yet, the com-
plexity of the composition process hinders the adoption of
the approach. We hope that a specification-based composi-
tion process, with the appropriate tool support, has the po-
tential to make the multi-DSAL development more practical
and more accessible.

12

public aspect BeforeAdviceOrderConfig {

List around(MultiMechanism mm, List multiEffects, BcelShadow shadow):

execution(List MultiMechanism.multiOrderBefore(List, BcelShadow))

&& this(mm) && args(multiEffects, shadow) {

int coolPos = mm.getMechanismPos(COOLWeaver.class);
int ajPos = mm.getMechanismPos(AJWeaver.class);
int validatePos = mm.getMechanismPos(ValidateWeaver.class);
List<IEffect> result = new ArrayList<IEffect>();

// multiEffects is a List of List<IEffect>

List<IEffect> ajEffects = (List<IEffect>)multiEffects.get(ajPos);

List<IEffect> coolEffects = (List<IEffect>)multiEffects.get(coolPos);

List<IEffect> validateEffects = (List<IEffect>)multiEffects.get(validatePos);

// setting the desired advice order

result.addAll(validateEffects);

result.addAll(coolEffects);

result.addAll(ajEffects);

return result;

}

Figure 3: An ASPECTJ aspect configuring an order for before advice

References
[1] Y. Apter, D. H. Lorenz, and O. Mishali. A debug interface

for debugging multiple domain specific aspect languages. In
Proceedings of the 11th International Conference on Aspect-
Oriented Software Development (AOSD’12), Potsdam, Ger-
many, March 2012. ACM.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. In Proceedings of the
15th European Conference on Object-Oriented Programming
(ECOOP’01), number 2072 in Lecture Notes in Computer
Science, pages 327–353, Budapest, Hungary, June 18-22 2001.
Springer Verlag.

[3] S. Kojarski and D. H. Lorenz. Pluggable AOP: Designing
aspect mechanisms for third-party composition. In Proceed-
ings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA’05), pages 247–263, San Diego, CA, USA, October
2005. ACM Press.

[4] S. Kojarski and D. H. Lorenz. Modeling aspect mechanisms:
A top-down approach. In Proceedings of the 28th International
Conference on Software Engineering (ICSE’06), pages 212–
221, Shanghai, China, May 2006. ACM Press.

[5] S. Kojarski and D. H. Lorenz. Awesome: An aspect co-
weaving system for composing multiple aspect-oriented ex-
tensions. In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’07), pages 515–534, Mon-
treal, Canada, October 2007. ACM Press.

[6] S. Kojarski and D. H. Lorenz. Identifying feature interaction
in aspect-oriented frameworks. In Proceedings of the 29th

International Conference on Software Engineering (ICSE’07),
pages 147–157, Minneapolis, MN, May 2007. IEEE Computer
Society.

[7] C. V. Lopes and G. Kiczales. D: A language framework for
distributed programming. Technical Report SPL97-010, Xerox
PARC, Palo Alto, CA, USA, Feb. 1997.

[8] D. H. Lorenz and S. Kojarski. Parallel composition of aspect
mechanisms: Design and evaluation. In J. Brichau, S. Chiba,
K. D. Volder, M. Haupt, R. Hirschfeld, D. H. Lorenz, H. Ma-
suhara, and E. Tanter, editors, AOSD 2006 Workshop on Open
and Dynamic Aspect Languages (ODAL), Bonn, Germany,
Mar. 20 2006.

[9] D. H. Lorenz and S. Kojarski. Understanding aspect inter-
actions, co-advising and foreign advising. In Proceedings of
ECOOP’07 Second International Workshop on Aspects, De-
pendencies and Interactions, pages 23–28, Berlin, Germany,
July 30 2007.

13

	Introduction
	A SpecTackle Tool
	Basic Exploration of the Composition
	Exploring and Configuring Co-Advising

	From Specification to Implementation
	Configuring Advice Order

	Related Work
	Conclusion

