
Towards Typesafe Weaving for Modular
Reasoning in Aspect-Oriented Programs ∗

Invited Keynote Talk †

Eric Bodden
Secure Software Engineering Group

European Center for Security and Privacy by Design (EC SPRIDE)
Technische Universität Darmstadt

Darmstadt, Germany
bodden@acm.org

Abstract
In previous work, we and others have studied how aspects
can implement important cross-cutting concerns, such as
runtime monitors, security monitors, and other security
primitives. It is hard to design aspects that implement such
concerns correctly. Therefore, once written, one desires to
reuse the according aspect definitions for other systems.

In current aspect-oriented systems, however, aspects usu-
ally carry, through their pointcuts, explicit references to the
base code. Those references are fragile and give up impor-
tant software engineering properties such as modular rea-
soning and independent evolution of aspects and base code,
hence hindering aspect reuse. A well-studied solution to this
problem is to separate base code and aspects using an inter-
mediate interface abstraction.

In this keynote talk, I will show that previous approaches
to solving the problem for AspectJ fail at restoring mod-
ular reasoning because they do not provide modular type
checking; programs can fail to compose when woven, even
though their interfaces are compatible. As I will show, the
approaches fail for different reasons. Some represent join
points as structs or objects, which breaks lexical scoping.
Others lack important information in join point type descrip-
tors, which precludes Java-like typing guarantees.

∗ This work was supported by the German Federal Ministry of Education
and Research (BMBF) within EC SPRIDE and by the Hessian LOEWE
excellence initiative within CASED.
† This is joint work with Milton Inostroza and Éric Tanter from the Univer-
sidad de Chile.

Copyright is held by the author/owner(s).
FOAL’12, March 26, 2012, Potsdam, Germany.
ACM 978-1-4503-1099-4/12/03.

I will report on a novel abstraction called Join Point In-
terfaces (JPIs), which, by design, supports modular reason-
ing and independent evolution by providing a modular type-
checking algorithm [1, 2]. JPIs further offer polymorphic
dispatch on join points, with an advice-dispatch semantics
akin to multi-methods. As I will show, our semantics solves
important problems present in previous approaches to advice
dispatch.

We have fully implemented JPIs as an open-source ex-
tension to the AspectBench Compiler. A study on existing
aspect-oriented programs of varying sizes and domains sup-
ports our major design choices and reveals potential for ex-
ploiting polymorphism through non-trivial join-point type
hierarchies. However, as the study also reveals, our current
language design is not yet perfect, and thus further work is
needed.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Aspect-oriented programming, modularity

References
[1] Milton Inostroza, Éric Tanter, and Eric Bodden. Modular rea-

soning with join point interfaces. Technical Report TUD-CS-
2011-0272, CASED, October 2011.

[2] Milton Inostroza, Éric Tanter, and Eric Bodden. Join point
interfaces for modular reasoning in aspect-oriented programs.
In ESEC/FSE ’11: Joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 508–511,
2011.

1




