

Modular Reasoning about Region Composition

Thomas Cottenier

UniqueSoft, LLC

thomas.cottenier@uniquesoft.com

Aswin van den Berg

UniqueSoft, LLC

aswin.vandenberg@uniquesoft.com

Thomas Weigert

Missouri University of S&T

weigert@mst.edu

Abstract

Region composition is an operation where transitions of
different automaton are woven together according to syn-
chronization constraints. Reasoning about properties across
regions is difficult, which is problematic in systems that are
assembled by composing a large number of regions. We
introduce two transactions constructs to enforce causality
properties between transitions of a state machine. We show
that transactions can be checked statically and that they
support modular reasoning about region composition by
preserving liveness properties within the scope of a transac-
tion.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features –
classes and objects, modules, packages.

General Terms Design, Languages, Verification

Keywords Statecharts, Composition, Liveness

1. Introduction

Orthogonal regions are a language construct to modularize
the implementation of different features of a system into
separate automatons. Region composition consists of inter-
leaving the transitions of the different regions according to
a set of synchronization constraints. Although region com-
position mechanisms are less expressive than Aspect-
Oriented Programming (AOP) language features, they
share a certain number of characteristics. Regions that im-
plement different features can react to the same events the-
reby implicitly weaving their behavior. The execution of a
transition in one region can be guarded by the state of
another region, thereby modifying its control flow.

We decompose a system by modularizing different fea-
tures of the system into different regions. In systems that
are composed of a large number of regions, the interactions
between the regions make it difficult to reason in a modular

way about the system. Modular reasoning about region
composition means that we can understand some properties
of the entire system by looking at the topology of a single
region or a subset of regions.

 In practice, debugging a system that is composed from
multiple regions is a difficult task because it requires rea-
soning about the set of valid configurations of the system,
which increases exponentially with the number of regions.

In this paper, we extend the statechart language to in-
clude two concepts of transactions. Transactions help rea-
soning about the properties of a state machine by establish-
ing causality relations between different transitions within a
region or across regions. We show that these relations can
be checked statically and that they improve the ability to
reason about liveness properties across regions.

2. Region Composition

2.1 Introduction

Statecharts [1] introduce 2 constructs to manage system
complexity: hierarchy and orthogonality. Hierarchy is used
to cluster and refine behaviors. Orthogonality allows differ-
ent features of the system to be represented using ortho-
gonal automatons which interact through synchronization
signals. Figure 1 shows two regions R1 and R2 that inte-
ract through 3 types of interactions:
1. Common inputs: both regions respond to input u.

When u is received in the state configuration (B, Y) or
(C, Y), region R1 steps into state A and region R2 steps
into state X in a single step of execution. The order of
execution between the transitions does not matter.

2. Internal events: an internal event i is generated in R2
using the gen keyword. The signal is consumed in R1
when it is in state B. When input t is received in confi-
guration (B, X) and region R2 steps into state Y, the
event i is generated. This event is sensed in the next
step of execution, causing region R1 to step into state
C.

3. Guards: Two transitions in region R1 are guarded by
the state Y of region R2, meaning that these transitions
can only be triggered when region R2 is in state Y.
Guards are evaluated at the beginning of each step. If
the guard evaluates to false, the input is discarded by
the region.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

FOAL’12, March 26, 2012, Potsdam, Germany.
Copyright 2012 ACM 978-1-4503-1099-4/12/03...$10.00.

15

Figure 1. Composition of 2 orthogonal regions

2.2 Semantics

Figure 1.b shows a state diagram composed of a single re-
gion that was obtained by weaving together the regions of
Figure 1.a. The states of the state machine of Figure 2 cor-
respond to the reachable combination of the states of the
regions. Such a combination is called a configuration. A
state machine that consists of multiple regions executes
according to steps between state configurations. A step cor-
responds to the execution of a set of enabled transitions
from different regions. The series of steps that are executed
in response to an external event until the state machine
reaches a quiescent state is called a macro-step. The corres-
ponding configurations are called macro-configurations.
Our approach follows the following guiding principles:
1. Determinism: our semantics do not allow non-

determinism.
2. No shared variables between regions. The sharing of

variables between regions is a cause of non-
determinism. Transitions that access the same variable
in the same step can cause race conditions.

3. Causality: Internal events are only sensed in the step
that follows the step in which they are generated. They
do not persist after the following step.

A state machine is composed of an event queue and a
state machine structure. The state machine structure is
composed of a set of regions. Each region is composed of a
set of states and a set of transitions. A transition is
composed of a list of actions. Properties of the static

structure of the state machine are expressed as follows:
- A ∈ R1 : R1 contains state A
- transition (for A input req action1) ∈ R1 : region R1

contains the transition characterized by the source state
A and the trigger req, along which action1 is executed.

Actions supported by the language include the following:
- Input action: an input action takes the form ‘for’ A ‘[‘

g ‘]’ ‘input’ req ‘{‘ action1 .. actionn ‘}’ where A is the
name of a state of the region, g is a boolean expression,
req is the name of a signal and action1 .. actionn is a
list of actions. The signal req is consumed when the
region is in state A and the guard g is true.

- Nextstate action: a nextstate action takes the form
‘nextstate’ A ‘ ;’ where A is the name of a state of the
region. The action makes the region step into state A.

- Stop action: a stop action takes the form ‘stop’ ‘;’. A
stop action terminates the state machine.

- Output action: an output action takes the form ‘output’
rsp ‘;’, where rsp is the name of a signal. The action
outputs the signal rsp.

- Gen action: a gen action takes the form ‘gen’ ev ‘;’.
The action generates the internal event ev.

- Call action: a call action takes the form ‘call’ fun ‘;’.
The action calls the function fun.

- Compound action: a compound action has the form {

action1 .. actionn } where action1 .. actionn is a list of
actions. A compound action executes the sequence of
its actions.

- Decision action of the form ‘switch’ c ‘{‘ ‘[‘v1’]’ ac-
tion1 .. ‘[‘vn’]’ actionn ‘}’ where c is an expression, v1

and vn are values to which the actions action1 and ac-

tionn are associated.
The state machine executes as defined by the lisp pseudo-
code for the state machine interpreter Listing 1.

The sm structure contains the queue of external signals
received by the state machine. The sm structure also
contains the set of states and transitions of the state
machine. The status structure maintains the current
configuration of the state machine, as well as the list of
events to be processed.

The execute-statemachine function contains the main
loop of the system. The state machine will execute steps
until a stop action is executed. Each step updates the status
of the state machibe.

The execute-step function executes a single step of the
state machine. If the list of internal events is empty, the
state machine is in a quiescent state and will fetch the next
external signal from the queue. If the queue is empty the
state machine is blocked in the wait statement. When a new
signal is received, the state machine is notified and it
resumes its execution. Next, the execute-step function
computes the set of enabled transitions based on the current
configuration, the set of active events and the set of
transitions of the state machine. Finally, all the enabled
transitions are executed and the status of the state machine
is updated by the execute-transitions function.

A

B

C

X

Y

AX

BX

CY

AY

BY

input s /
 call f;

input i /
 call g;

input t

call n;

input u /
 call n;

input s /

 call f;

input t call m;

call m;
call g;

input t

call n;

call n;

call n;

input u /
 call h;

 call n;

input s /

 call f;

input u /
 call n;

input u /
 call h;
 call n;

[R2::Y]
input u /
 call h;

1.a.

1.b

c1

c1

c1

R1

R12

[R2::Y]
input u /

 call h;

gen i;
call m;

R2

16

The execute-transition function executes a single
transition. It updates the status of the state machine based
on the actions executed along the transition. Nextstate and
stop actions update the configuration, whereas gen actions
add internal events to the set of active events to be
considered in the next execution step.

When compiling the state machine program, a checker is
used to compute the set of reachable macro-configurations
of the system and to detect problems with the region com-
position such as deadlocks or non-determinism. The check-
er algorithm can also be adapted to statically compose the
regions into a single region by weaving together the actions
of the region transitions into macro-transitions between
macro-configurations, as illustrated in Figure 1.b. The
checker algorithm performs a depth-first traversal on the
reachable configurations by iterating over all possible ex-
ternal inputs and paths. During the state machine traversal,
configurations for which the set of internal events is empty
are macro-configuration. The algorithm then considers all
possible external inputs to drive the traversal further. We
refer to [2][3][4] for a detailed description of statechart
model checking.

(defstruct sm queue states transitions)

(defstruct status configuration events)

(defun execute-statemachine (sm)

 (let (status)

 (while (status.configuration != stop)

 (set status (execute-step sm status)))))

(defun execute-step (sm status)

 (while (status.events = ())

 (let ((event (pop-event-from-queue sm)))

 (if event

 (push event status.events)

 else

 (wait))))

 (let ((trs (get-enabled-transitions sm status))

 (events status.events))

 (set status.events ())

 (set status (execute-transitions sm trs

 status events))))

(defun execute-transitions (sm trs status events)

 (let ((ustatus status))

 (dolist (tr trs)

 (set ustatus (execute-transition sm tr

 ustatus events)))

 (set status ustatus)))

(defun execute-transition (tr sm status events)

 (let (a)

 (while (set a (get-next-action a tr))

 (when (is-input-action a)

 (set tr (bind-params-to-actuals a events))

 (when (is-gen-action a)

 (push a.event status.events))

 (when (is-nextstate-action a)

 (set status.configuration

 (update-configuration sm

 status.configuration (get-nextstate a)))

 (when (is-stop-action a)

 (set status.configuration stop))

 (execute a)))

 status)

Listing 1. State machine interpreter

3. Reasoning about Region Composition

3.1 Temporal Properties of Statecharts

In this section, we introduce a temporal logic notation to
reason about the semantics of region composition. The
notation was adapted from Linear Temporal Logic (LTL) to
take into account concepts that are proper to the semantics
of region composition, such as steps and macro-steps.

We correlate the topology of a region and the execution
traces of the state machine by relating two levels of proper-
ties: transition properties and step properties.

Transition properties express temporal properties about
the execution of actions within a transition. They are used
to define relationships between actions executed within the
scope of the same invocation of the execute-transition func-
tion. Executing a transition consists of executing a se-
quence of actions. Given an index i in a sequence of actions
α of the same transition and a property p, we have:

(α, i) satisfies FT p iff))((, jpij α≥∃

These operators are used to derive runtime temporal
properties from the static structure of a transition. For ex-
ample, we have:

 transition (for A input req nextstate B) ∈R1
))::(::(11 BRnextstateFreqinputARforG T⇒⇒

where G is the global invariant operator. A transition from
state A triggered by the signal req in region R1, during
which nextstate B action is executed, implies that region R1
will step into state B when signal req is received in state A.

Step properties express temporal properties about the
traces of the composed system. It is not possible to reason
about temporal properties of actions that are executed in
different macro-steps without knowledge of the other enti-
ties the state machine communicates with. Transitions that
are executed within the same step execute independently of
each other and do not interact. Yet, we can reason about
actions of transitions that execute in different steps of the
same macro-step. Given an index i in a sequence of steps σ
of the same macro-step and a property p, we have:

(σ, i) satisfies FS p iff))((, jpij σ≥∃

Step properties are used to express causality relation-
ships between transitions. The following relation expresses
that when the transition from state A triggered by the signal
req is executed in region R1, the transition from state X
triggered by the event i and which executes the action out-
put rsp is eventually executed in region R2, within the same
macro-step.
 G (transition(for R1::A input req)

 ⇒ FS (transition(for R2::X input i output rsp)))

We also define the next step operator XS::

(σ, i) satisfies XS p iff p(σ(i+1)

which indicates that a property holds in the next step of
execution, within the same macro-step.

17

3.2 Liveness Properties of Regions

Region composition does not affect the control flow within
transitions. We therefore have the property:

))(())((qFpGqFpG
ST

⇒⇒⇒

which expresses that region composition preserves liveness
properties within a transition.

However, reasoning about properties across regions is
difficult. Figure 2 shows two regions that interact to pro-
duce a response rsp to the request req. In order to guaran-
tee that region R2 will respond to the internal event i, we
need to ensure that R2 will be in state X in the step that di-
rectly follows the step where internal event i is generated.

G (for R1::A input req ⇒ XS (R2::X))

Reasoning about the state of the next step requires evaluat-
ing different possibilities: when the req signal is consumed
by region R1 either
1. Region R2 is in state X, and there does not exist a tran-

sition from X to another state than X.
2. Region R2 is in another state S, and it will always step

into state X when the signal req is received
In terms of a state S,

2RXS ∈≠ :

 G (for R1::A input req ⇒ XS (R2::X))

 ⇔ G (for R1::A input req ⇒

))))::(::(::(

)))::(::(::(

222

222

XRnextstateFreqinputXRforGXR

XRnextstateFreqinputSRforGSR

T

T

⇒∧∨

⇒∧

If transition(for X input req) ∉ R2 and transition(for * in-

put req nextstate X) ∉ R2, the condition simplifies to:

 G (for R1::A input req ⇒ XS (R2::X))

 ⇔ G (for R1::A input req ⇒ R2::X)

A guard [R2::X] could be used to prevent the req signal
from being consumed when the region R2 is not ready to
collaborate in the interaction. However, this means the re-
quest will be discarded by the system or saved for later
processing depending on the guard semantics chosen. The
language does not provide support to statically validate the
composition between regions. If the interaction requires
multiple steps, reasoning about the execution requires en-
suring that all regions align to execute specific internal
events. The complexity of the necessary conditions to guar-
antee liveness from the perspective of one region increases
exponentially with the number of other regions it interacts
with. Hence, reasoning about region composition is hard.

Figure 2. Interactions between regions

4. Transactional Regions

4.1 Closed Transactions

Closed transactions group a set of transitions of one or
more regions, and enforce the following properties:
1. The transitions are always executed in the same macro-

step
2. There exists a direct causality relation between the

transitions through internal events.
Transitions of other regions can participate in the macro-
step, but are not allowed to affect the control flow of the
transaction. Figure 5 shows a transaction that spans over 2
regions and groups the transitions transition(for A input

req) ∈ R1 and transition(for X input i output rsp) ∈ R2.
The transaction ensures that the transitions have a direct
causality relation and will always execute in the same ma-
cro-step. We can therefore derive liveness properties be-
tween actions of different regions, such as:

 G (transition(for R1::A input req gen i)

⇒ FS (transition(for R2::X input i output rsp)))

G (for R1::A input req ⇒ FS (output rsp))

When region R1 is in state A and receives a request req, the
state machine eventually sends a response rsp within the
same execution macro-step.

Closed transactions are enforced by the state machine
checker. During the traversal, the checker computes the set
of all possible macro-configurations and macro-steps. It can
therefore ensure that transitions that are part of the same
transaction are always executed in the same macro-step.
The direct causality property is enforced by considering
each macro-step that contains the transaction and ensuring
that all transitions are triggered by events generated within
the transactions.

Figure 3. A closed transaction across regions

Figure 4. An open transaction within a region

 input req /
 gen i;

R1 R2

input j2 /
 output rsp;

X

Y Z

 input i

gen j1;

A

B

C D

input j1 /
 output rsp;

gen j2;

trb

input req /
 gen i;

R1 R2

 input i /
 output rsp;

A

B

X

Y

tra

input req /
 gen i;

R1 R2

 input i /
 output rsp;

A

B

X

Y

Rn

Rn

Rn

18

4.2 Open Transactions

Open transactions group a set of states of one or more
regions, and enforce the following properties:
1. The states are always entered within the same macro-

step

2. The states are never part of a macro-configuration

Figure 4 shows a state machine where the state R1::B is
annotated as being part of a transition trb. As R1::B is never
part of a macro-configuration, the transition transition (for

A input req) must always be executed always in the same
macro-step as transition transition (for B input j1) or transi-
tion transition (for C input j2).

The transaction makes it possible to derive liveness
property between actions of different transitions, such as

 G (transition(for R1::A input req nextstate B) ⇒

 FS (transition(for R1::B input j1 output rsp))

 ∨ transition(for R1::B input j2 output rsp)))

G (for R1::A input req ⇒ FS (output rsp))

Open transactions support modular reasoning about the
properties of a state machine. Liveness properties within
one region can be ensured without requiring knowledge
about all regions that participate in the macro-step. The
compiler will generate an error if there exists a path in the
system for which j1 or j2 is not generated in the same ma-
cro-step. However, there is no guarantee that j1 or j2 will
be generated by region R2. Region R2 can be replaced by
another region that always generates the interval event j1 or
the event j2, making one of the branches unreachable.

Open transactions are enforced by the state machine
checker. The checker computes the set of all reachable ma-
cro-configuration, and will ensure that states that are part of
an open transaction are never part of a macro-
configuration.

5. Related Work

This works builds on research on the verification of
temporal properties of statecharts. [3] shows how
statecharts can be checked for safety, liveness and existence
properties using CTL. In [4], the authors show that
temporal model checking of state charts is tractable on
large systems.
Behavioral contracts for aspects [5][6] intend on
controlling the effects of aspects on a base system by
adding constraints to an interface. Transactions restrict the
effects of region composition to modifications that preserve
liveness properties, and can therefore be seen as type of
contract. We are not aware of approaches that explicitly aim
at preserving liveness properties of a base program.
Verification of aspect-oriented programs techniques [7]
could be used to generalize the transaction concepts to
contracts for aspect-oriented programs.

6. Conclusions

Regions are a language construct to modularize the
implementation of different features of a system into
separate automatons. The automatons are composed
according to a set of synchronization constraints.
Reasoning about the correctness of region composition
requires knowledge of the global state configuration of the
system. Ensuring liveness properties across transitions is
therefore difficult, as it requires evaluating all possible state
combinations of the other regions. We introduce a concept
of transaction which groups together transitions that should
always be executed in the same macro-step. We show that
this property can be checked statically and that it support
modular reasoning about region composition, by preserving
liveness properties across transitions within the scope of a
transaction.

References

[1] Harel, D. 1987. Statecharts: A visual formalism for
complex systems, Science of Computer Programming,
8:3. 231-274.

[2] Cottenier, T., van den Berg, A., Weigert, T. 2012.
Management of Feature Interactions with Transactional
Regions. In Proceedings of the International Confe-
rence on Aspect-Oriented Software Development,
Postdam, Germany.

[3] Zhao, Q. and Krogh, B. 2006. Formal Verification of
Statecharts Using Finite-State Model Checkers, IEEE
Transactions on Control Systems Technology, 14:5.
943-950.

[4] Mikk, E., Lakhnech, Y., Siegel, M. and Holzmann, G.
1998. Implementing Statecharts in PROMELA/SPIN.
In Proceedings of the Second IEEE Workshop on In-
dustrial Strength Formal Specification Techniques. 90-
101.

[5] Sullivan, K.J., Griswold, W.G., Rajan, H., Song, Y.,
Cai, Y., Shonle, M., Tewari, N. 2010. Modular aspect-
oriented design with XPIs. ACM Transactions on
Software Engineering and Methodology. 20:2

[6] Bagherzadeh, M., Rajan H., Leavens, G. and Mooney,
H. 2010. Translucid Contracts: Expressive Specifica-
tion and Modular Verification for Aspect-Oriented In-
terfaces, In Proceedings of the 10th International Con-
ference on Aspect-Oriented Software Development,
Porto de Galinhas, Brazil. 141-152.

[7] Krishnamurthi S. and Fisler K. 2007. Foundations of
Incremental Aspect Model-Checking. ACM Transac-
tions on Software Engineering and Methodology. 16: 2.

19

