
A Self-Replication Algorithm
to Flexibly Match Execution Traces

Paul Leger Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile - Santiago, Chile
{pleger,etanter}@dcc.uchile.cl

Abstract
Stateful aspects react to the history of a computation. State-
ful aspect developers define program execution patterns of
interest to which aspects react. Various stateful aspect lan-
guages have been proposed, each with non-customizable se-
mantics for matching a join point trace. For instance, most
languages allow multiple matches of a sequence when the
associated context information is different. Obtaining a dif-
ferent matching semantics requires ad hoc modifications
of the aspects, if at all possible. In order to allow flexi-
ble customization of the matching semantics of a given as-
pect, this paper presents a self-replication algorithm called
MatcherCells. Through the composition of simple reaction
rules, MatcherCells makes it possible to express a wide
range of matching semantics, per aspect. In addition, we
present an initial implementation of our proposal.

Categories and Subject Descriptors D.3.3 [Software]:
Programming Languages

General Terms Algorithms, Design

Keywords Self-replication algorithms, execution traces,
stateful aspects.

1. Introduction
Aspect-Oriented Programming (AOP) [5] allows developers
to use a set of language features to modularize crosscutting
concerns. Aspects can only react to the current execution
event, called join point. The standard matching process of an
aspect just consists in the evaluation of a pointcut with a join
point. If the pointcut matches the join point, the associated
advice is executed [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’12, March 26, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1099-4/12/03. . . $10.00

sequence aV b

a a b
1 2 join point

trace

Figure 1. Possible matches of a sequence.

In most languages, pointcuts can also refer to the execu-
tion context as represented by the call stack. However, some
crosscutting concerns cannot be directly expressed through
the reaction to the current join point, even considering stack
inspection, e.g. error detections [7]. Stateful aspects [2] can
react to join point traces, i.e. to the whole history of a com-
putation. The matching process of a stateful aspect consists
in the evaluation of a sequence (instead of a pointcut) with
a join point trace. A sequence can match and bind free vari-
ables multiple times. For example, Figure 1 shows two pos-
sible matches of the sequence av → b in a join point trace.
Apart from the definition of the trace “a followed by b”, this
sequence specifies that the free variable v is bound when
an a join point is matched. Depending on the semantics of
the matching process, the sequence can match either once
or twice, where the first match binds v to 1, and the second
binds v to 2.

In existing stateful aspect languages [1, 3, 4, 7, 11], state-
ful aspects have the same fixed semantics for the match-
ing process. For example, EventJava [3], HALO [4], and
tracematches [1] only support multiple matches of a se-
quence if the values bound are different. Therefore, if the
desired matching process of a particular stateful aspect does
not fit the default, the developer ends up overburdening the
definitions of the sequence and/or advice.

To illustrate this, let us consider an autosave feature of
a text editor application; this feature saves the document
every three editions. The stateful aspect that implements this
feature needs to only match once every three editions. Using
tracematches [1], we could define the aspect as follows:

27

tracematch() {
sym edit after : cal l (∗ Editor . edit ()) ;
edit edit edit {

Editor .save() ;
}
}

However this definition is not correct because tracematches
performs multiple matches. As a result, once three edits hap-
pen, each subsequent edit triggers a save. The programmer
has to tweak the aspect definition to artificially introduce an-
other symbol, save, which is then excluded from the regular
expression (tracematches require contiguous occurrences of
the events denoted by the symbols in the regular expression):

tracematch() {
sym edit after : cal l (∗ Editor . edit ()) ;
sym save after : cal l (∗ Editor .save()) ;
edit edit edit {

Editor .save() ;
}

This showcases the fact that the default matching semantics
of a stateful aspect language is not adequate in all cases.
This motivates the need to open up the language in order
to customize its semantics when needed.

In this paper, we propose that the use of a self-replication
algorithm [9], named MatcherCells, allows developers to
flexibly express the semantics of a matching process. The
following two sections present MatcherCells and an initial
implementation, and Section 4 concludes.

2. MatcherCells
Through small entities with simple rules, self-replication al-
gorithms [9] allow developers to flexibly express the seman-
tics of a process. This is because each rule defines a portion
of the semantics of a process and the combination of them
defines the full semantics. In this section, we define a self-
replication algorithm, named MatcherCells, to match join
point traces and express different semantics of the matching
process of a stateful aspect.

2.1 Self-Replication Algorithms
Self-replication algorithms are inspired by the cellular be-
havior. Concretely, these algorithms emulate the reactions of
a set of biological cells into a solution to a trace of reagents.
Figure 2 shows the different possible reactions of a cell to
a reagent. The reaction of a cell to a reagent can be a) the
creation of an identical copy of itself with a small variation
in order to persist in the solution, b) nothing, c) death, d) or
some of these combinations. An algorithm that follows self-
replicating behavior is defined by a pair (C0,R), where C0 is
the set of first cells into a solution (a.k.a. seeds) and R is the
set of rules that govern the evolution of the solution.

2.2 Using MatcherCells to Match Traces
In MatcherCells, a cell contains the sequence that should
be matched, the free variables bound during this matching,

iteration t iteration t +1

creation

nothing

death

reaction

Legend

: solution :cell :reagent

Figure 2. Different reactions of a cell to a reagent.

b v=1av b a1 Mbb

a) b)

Figure 3. a) The cell creates a cell that expects to match
the next join point and keeps the bindings. b) When a cell
matches the last join point specified, the cell creates a match
cell.

a ba b

M

R = {apply reaction}C0 = { }a b

a b

bb

a b a

b

a b

b b

M

Figure 4. Using MatcherCells to match multiple times.

and a reference to its creator. Cells react to join points,
which corresponds to reagents. As Figure 3a) shows, if a
cell matches a join point, it creates a new cell that expects
to match the next join point specified by the sequence. In
addition, this new cell contains the possible values bound
when the join point was matched. These bound values are
stored in an environment, which can be accessed by the
sequence. As Figure 3b) shows, when there is no next join
point to expect, a match cell is created to indicate a match of
the join point trace.

A stateful aspect in MatcherCells is defined by a se-
quence, an advice, and an optional set of rules (R)1. Each
rule defines a portion of the semantics of the matching pro-
cess and the set of rules defines entirely the semantics. Fig-
ure 4 shows a stateful aspect in MatcherCells that matches
twice. The solution begins with a set of only one seed (C0),
which contains the specified sequence2, and evolves accord-
ing to the set of rules defined for this stateful aspect. For
example, Figure 4 shows that the “apply reaction” rule only
applies the reaction of each cell.

1 If R is not defined, a stateful aspect uses a default R.
2 If the stateful aspect language supports the definition of a stateful aspect
with multiples pairs sequence-advice, the solution begins with more seeds.

28

a b

a b

Sequence:
a b

Trace:
a a b

a) Single match

d) The first match

Rules:
apply reaction,
kill creators

b b

b) One sequence at a time

Rules:
apply reaction,
kill creators,
add seed

Sequence:
a b

Trace:
a a b

b b

c) Life-time for a sequence

Rules:
apply reaction,
kill creators,
trace life-time,
add seed

Sequence:
a b

Trace:
a t>time a

b t > time

Sequence:
a b v = z

Trace:
a a b

Rules:
apply reaction,
kill all cells after matching

av bz
v=z M v=2

Sequence:
a b

Trace 1: a a b
1 1

Trace 2: a a b Trace 2

Trace 1

1 2

Rules:
apply reaction,
cells with different bindings

e) Some stateful aspect
 language semantics

a b

a a b
M

a a b
a b M

a a b b

1 2 2v z
a1 a2 b2

av bz
v=z

av bz
v=z

av b a1 a1 b

v

. . . a

bz
v=z v=1

bz
v=z v=1

bz
v=z v=2

M v=1
b v=1

. . .

. . .

. . .

a1 a2 b

M v=1 . . .

av b

av b
b v=1

av b

b v=1

av b

b v=1

av b

b v=2

av b

b v=1

M v=2
av b

b v=1

b v=2

Figure 5. Different semantics for the matching process of a stateful aspect.

2.3 Using MatcherCells to Express Matching Process
Semantics

Figure 5 shows that using simple rules, it is possible to
achieve different semantics of a matching process:

• Figure 5a) The “kill creators” rule kills the cells that cre-
ate a new cell. Adding this rule, a stateful aspect cannot
match multiple times anymore.
• Figure 5b) The “add seed” rule adds a seed if there are no

cells or only match cells in the solution. This rule allows
a stateful aspect to match again.
• Figure 5c) The “trace life-time” rule kills all cells whose

time of the join point trace that are matching has ex-
ceeded a specific period. Adding this rule, developers can
define stateful aspects that only match join points traces
that occurs at a period of time.

• Figure 5d) The “kill all cells after matching” rule kills
all cells when a match cell is found. This rule allows a
stateful aspect to have various possible matches until the
first join point trace is matched. In this figure, the match
cell contains the value 1, which was bound when the a1

join point was matched3.
• Figure 5e) The “cells with different bindings” rule only

allows cells to create new cells with different values
bound. For example, the reaction to the second a1 join
point in the trace 1 does not create a new cell. Instead,
the reaction to the a2 join point in the trace 2 creates a
new cell. This rule emulates the semantics of HALO [4],

3 Like in pointcuts, the definition of a sequence also involves its constrains
to match. In favor of flexibility to define sequences, we assume that these
constrains are explicitly developed by a programmer (e.g. v = z and v > z).

29

EventJava [3], and tracematches [1]: a sequence can
match multiple times if values bound are different.

3. An Implementation of MatcherCells
In MatcherCells, rules are functions that can be composed
in order to define the semantics of the matching process of a
stateful aspect. This section presents an initial implementa-
tion of our proposal.

3.1 Cell Reaction

react : Cell × JP → Cell

The react function carries out the reaction of a cell to a
join point. If the cell matches the join point, the function re-
turns a new cell, otherwise the function returns the same cell.
Our proposal does not impose restrictions about how a cell
matches a join point. Therefore, the implementation of react
only depends on the expressiveness of the stateful aspect lan-
guage to define sequences. MatcherCells only requires that
this function follows this semantics.

3.2 Rules

rule : List<Cell> × JP → List<Cell>

A rule is a function that takes as parameters a list of cells
and a join point, and returns the list of cells of the next
iteration. For example, the implementation of the “apply
reaction” rule is:

var applyReaction = function(cells , jp) {
return removeDuplicates(

append(cells ,map(cells , react , jp))) ;
};

The applyReaction function returns the cells and their re-
actions. A cell, whose reaction is itself, is in the list of cells
and the list of reactions, meaning that this cell is dupli-
cated when both lists are joined. To prevent this duplication,
the removeDuplicates function is used. Using rule designators
(i.e. functions that return rules), developers are able to create
rules that can be composed:

var killCreators = function(rule) {
return function(cells , jp) {

var newCells = rule (cells , jp) ;
return difference (newCells,getCreators(newCells, cells)) ;

} };

var addSeed = function(sequence) {
return function(rule) {

return function(cells , jp) {
var newCells = rule (cells , jp) ;
return length (newCells) == 0||onlyMatchCells(newCells)?

append(newCells , [createSeed(sequence)]) : newCells ;
} } };

var traceLifeTime = function(delta) {
return function(rule) {

return function(cells , jp) {
var newCells = rule (cells , jp) ;

return f i l t e r (function(cel l) {
return currentTime() − cel l . time <= delta ;
},newCells) ;

} } };

var killAllCellsAfterMatching = function(rule) {
return function(cells , jp) {

var newCells = rule (cells , jp) ;
return isAMatchCell (newCells)? [] : newCells ;

} };

var cellsWithDifferentBindings = function(rule) {
return function(cells , jp) {

var newCells = rule (cells , jp) ;
return f i l t e r (function(cel l) {

return hasDifferentBindings(cell ,newCells) ;
},newCells) ;

} };

These rule designators are parametrized by a rule, which
corresponds to the rule that should be applied before the
current one. The rule returned by killCreators first applies a
previous rule (e.g. applyReaction) to obtain a list of cells,
where the cells that created new cells are removed for the
next iteration. The addSeed4 rule designator returns a rule
that adds a seed if there are no cells or only match cells.
Some rules can need that cells contain additional informa-
tion. For example, traceLifeTime needs cells that contain the
time when the matching of the trace begins (cell.time). To add
information to cells, the MatcherCells framework supports a
custom cell creation functions that can be used to annotate
newly-created cells; this custom cell creation is a function
creation: Cell→ Cell. To annotate a cell with the trace time,
one needs to provide the following function:

var creation = function(cel l){
i f (! isSeed(cel l))

cel l . time = isSeed(cel l . parent)? currentTime () : cel l . parent . time ;
return cel l ;
};

The piece of code above adds the current time when the
matching of a join point trace is beginning. The rule returned
by killAllCellsAfterMatching returns an empty list of cells if it
finds a match cell in the list, otherwise returns the same list.
The last rule designator returns a rule that only keeps the
cells with different bindings or expect to match a different
join point.

Developers can compose these functions to obtain one
rule that represents the composition. For example, the rule
that only permits one match of a sequence at a time (Fig-
ure 5b) is:

var oneAtATime = addSeed(sequence)(kil lCreators (applyReaction)) ;

4 Notice that addSeed is in fact a higher-order rule designator, parameter-
ized by the original sequence.

30

The order of the composition determines when a rule is
applied. For example, the piece of code above first applies
the applyReaction rule and then killCreators and addSeed.

3.3 Stateful Aspect Deployment
A stateful aspect is defined by a sequence, an advice, and a
composition of rules. For example, suppose that developers
need to add the autosave feature to an application of a text
editor. This feature automatically saves the document when
it is edited three times. The stateful aspect that implements
this feature is:

var threeEditions = seq(edit , edit , edit) ;

var autosave = {
sequence: threeEditions ,
advice : function (matchCell) {

/ / getting the editor from bindings of the match cell
var editor = matchCell . bindings . editor ;
editor .save() ;
},
rule : addSeed(threeEditions)(kil lCreators (applyReaction)) ;
};
/ / deploy of the stateful aspect
deploy(autosave) ;

The autosave stateful aspect has to only match each three
editions; thereby, this stateful aspect uses a rule that avoids
multiple matches (KillCreators) and permits to match again
a join point trace (addSeed). Although we have provided a
piece of code to define a sequence and an advice, theses def-
initions depend on the expressiveness of the stateful aspect
language. In MatcherCells, if the rule property is not defined,
a default composition of rules is used. To define a stateful
aspect that only matches once (Figure 5d), the rule property
must simply be changed:

var statefulAspect = {
/ / sequence and advice definitions
rule : killAllCellsAfterMatching (applyReaction) ;
};

3.4 Weaving of a Stateful Aspect
The weaving of a stateful aspect consists in evolving its list
of cells and executing the advice with each match cell found:

var StatefulAspectWeaving = function(sAsp, jp) {
var tempCells = sAsp. rule (sAsp. cells , jp) ;
var matchCells = f i l t e r (isAMatchCell , tempCells) ;
sAsp. cells = f i l t e r (isANotMatchCell , tempCells) ;
i f (length (matchCells) > 0)

/ / execute advice with bindings of each match cell
else

/ / execute the join point proceed
}

The evolution of the list of cells is determined by a rule,
which is the composition of rules defined for a stateful as-
pect. If match cells are found after the rule is applied, these
cells are removed from the list and the advice is executed for
every one of them.

4. Conclusion
Languages that support stateful aspects all adopt fixed se-
mantics with respect to how execution traces are matched.
We have shown that such a fixed semantics is necessarily not
adequate in some cases, for which developers have to over-
burden their aspect definitions, if at all possible. We have
proposed a self-replication algorithm in which the composi-
tion of simple rules makes it possible to express a wide range
of trace matching semantics.

We plan to work on two lines: performance and practical
implementation. Performance is a recurrent subject in state-
ful aspect languages [1, 4, 11]. We think a static analysis
can allow us to create rules at compile time that prevent the
creation of cells that will not match a join point trace, there-
fore, less cells are evaluated at each join point. Implementing
a practical stateful aspect language that uses MatcherCells
will allow us to compare more exhaustively the approach
with the matching processes of existing stateful aspect lan-
guages. Hence, we plan to use MatcherCells to implement
OTM [6], a model of an open stateful aspect language, for
the JavaScript language.

Availability. A proof of concept of our proposal is available
on http://pleiad.cl/otm/matchercells.

References
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to AspectJ. In OOPSLA 2005 [10], pages 345–364. ACM
SIGPLAN Notices, 40(11).

[2] R. Douence, P. Fradet, and M. Südholt. Trace-based aspects. In R. E. Filman,
T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software Develop-
ment, pages 201–217. Addison-Wesley, Boston, 2005.

[3] P. Eugster and K. Jayaram. EventJava: An extension of java for event corre-
lation. In S. Drossopoulou, editor, Proceedings of the 23rd European Confer-
ence on Object-oriented Programming (ECOOP 2009), number 5653 in Lecture
Notes in Computer Science, Genova, Italy, july 2009. Springer-Verlag.

[4] C. Herzeel, K. Gybels, and P. Costanza. A temporal logic language for con-
text awareness in pointcuts. In D. Thomas, editor, Workshop on Revival of Dy-
namic Languages, number 4067 in Lecture Notes in Computer Science, Nantes,
France, July 2006. Springer-Verlag.

[5] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda, and
A. Mendhekar. Aspect oriented programming. In Special Issues in Object-
Oriented Programming. Max Muehlhaeuser (general editor) et al., 1996.

[6] P. Leger and É. Tanter. An open trace-based mechanism. In J. Aldrich and
R. Massa, editors, Proceedings of the 14th Brazilian Symposium on Program-
ming Languages (SBLP 2010), Salvador - Bahia, Brazil, Sept. 2010.

[7] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
flaws using PQL: a program query language. In OOPSLA 2005 [10], pages
365–383. ACM SIGPLAN Notices, 40(11).

[8] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimization
model for aspect-oriented programs. In G. Hedin, editor, Proceedings of Com-
piler Construction (CC2003), volume 2622 of Lecture Notes in Computer Sci-
ence, pages 46–60. Springer-Verlag, 2003.

[9] J. V. Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Champaign, IL, USA, 1966.

[10] Proceedings of the 20th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA 2005), San Diego,
California, USA, Oct. 2005. ACM Press. ACM SIGPLAN Notices, 40(11).

[11] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. In A. P. Black, editor, Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 3586 of LNCS, pages 214–
240. Springer-Verlag, 2005.

31

