
Taming Aspects with Membranes

Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile — Chile

etanter@dcc.uchile.cl

Nicolas Tabareau Rémi Douence
ASCOLA group

INRIA
Nantes — France
first.last@inria.fr

Abstract
In most aspect-oriented languages, aspects have an unre-
stricted global view of computation. Several approaches for
aspect scoping and more strongly encapsulated modules
have been formulated to restrict this controversial power of
aspects. This paper leverages the concept of programmable
membranes of Boudol, Schmitt and Stefani, as a means to
tame aspects by customizing the semantics of aspect weav-
ing locally. Membranes have the potential to subsume previ-
ous proposals in a uniform framework. Because membranes
give structure to computation, they enable flexible scoping
of aspects; because they are programmable, they enable vis-
ibility and safety constraints, both for the advised program
and for the aspects. The power and simplicity of membranes
open interesting perspectives to unify multiple approaches
that tackle the unrestricted power of aspects.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features
General Terms: Languages, Design
Keywords: Aspect-oriented programming, scoping, pro-
grammable membranes

1. Introduction
In the pointcut-advice model of aspect-oriented program-
ming, crosscutting behavior is defined by means of point-
cuts and advices. Because join points identified by point-
cuts can be scattered, weaving typically requires aspects to
have a global view of computation. The fact that aspects
have an unrestricted global view on computation has how-
ever raised many concerns about the pertinence of AOP, es-
pecially in terms of modular reasoning [1]. Different propos-
als have emerged to tackle this extreme power given to as-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’12, March 26, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1099-4/12/03. . . $10.00

pects. Some proposals make it possible to control the scope
of aspects; the scope of an aspect is defined as the set of join
points against which its pointcuts are matched. Examples in-
clude statically and dynamically-scoped aspects [4], scoping
strategies [12], as well as execution levels [13]. These pro-
posals can be seen as ways to reduce the impact of an as-
pect on the aspect deployment side. Other proposals have
adopted the dual perspective and focused on how to make
it possible for a given module to protect its own compu-
tation from advising. Examples include Open Modules [1],
XPIs [6], IIIA [11], and Join Point Interfaces [7]. Yet other
proposals rely on types to control the effects that aspects can
induce [8], or on behavioral contracts [2].

Stepping back, aspect-oriented programming can be seen
as exposing computation as events to which aspects can re-
act. The underlying issues discussed above are therefore re-
lated to scoping and control of events in general. These is-
sues have been explored in particular by the distributed sys-
tems community (where, of course, many other concerns ap-
ply). In this respect, we find the notion of programmable
membranes developed by Boudol [3] and Schmitt and Ste-
fani [10], themselves loosely inspired by the biological no-
tion of cells and membranes, to be particularly appealing as a
general control mechanism. This paper proposes to adapt the
notion of programmable membranes to control the contro-
versial power of aspects. We describe a notion of membranes
in an AOP context, which subsumes and makes it possible to
combine various existing proposals for controlling aspects,
in a single uniform framework.

Consider the basic weaving protocol between a base pro-
gram and an aspect. The program emits join points that are
passed to the aspect for weaving. The aspect may then pro-
ceed (with a possibly modified join point). When the pro-
gram is done with the original computation, the value is
passed back to the aspect so that it can complete its advice.
Finally, the advice returns a (possibly modified) value, which
is used to resume the base program.

The basic idea is to wrap the program and the aspect in-
side their own membranes. In our approach, membranes are
thus overlaid on top of computation, in charge of propagat-
ing joint points and controlling the weaving protocol of their

3

X

Y Z

X

Y Z

X

Y Z

X

Y Z

A

deploy m1 deploy m2 deploy and bind m3control
flow

m1 m1 m1

m2 m2

m3

(a) (b) (c) (d)

Figure 1. Membranes deployment and aspectual bindings.
Membrane m1 (resp. m2) wraps computation X and Y (resp.
Y and Z). Membrane m3 is bound to m1: join points from
m1’s computation will be visible to m3’s aspect, A.

inner computation. We introduce the possibility to register
aspects in membranes, and to bind membranes so as to ad-
vise the computation of other membranes. Because mem-
branes are programmable, join point propagation and weav-
ing can be customized locally.

Programmable membranes bring two major benefits to
AOP: (a) because they give structure to computation, they
enable flexible scoping (they actually generalize the notion
of execution levels [13] to arbitrary topologies); (b) because
they are programmable, they make it possible to define vis-
ibility and safety constraints on both the “base” and “as-
pect” sides of the weaving protocol, hence tailoring particu-
lar weaving semantics and guarantees locally. This paper ex-
plores the notion of programmable membranes for AOP, de-
scribing the general concepts and benefits of membranes for
taming aspects— without committing to a specific language
design. A companion report [15] contributes both a Scheme
implementation and a formal definition of membranes in the
Kell calculus [10].

2. Programmable Membranes
We propose to adapt the notion of programmable mem-
branes [3, 10] as a means to structure execution and control
aspect weaving: membranes can be deployed around a given
computation and serve as a scoping mechanism for the join
points emitted by that computation. A membrane is itself a
programmable entity that is responsible for a number of de-
cisions, such as dealing with the propagation of join points
produced by its inner computation.

2.1 Deploying and binding membranes
In the general case, membranes can be deployed around any
computation. Consider for instance a control flow graph be-
tween arbitrary computations X, Y and Z (Fig. 1(a)). One
can deploy a membrane m1 around the computations X and
Y (b); and a membrane m2 around Y and Z (c). Membranes
control propagation of join points produced by these compu-
tations. Membranes give structure to the computation so that
aspects can be flexibly scoped. Aspects can be registered in
a membrane. We call advising membrane a membrane that
is bound to another membrane, called advised membrane.
Aspects registered in an advising membranes are woven on
the join points emitted by advised membranes. In our exam-

jp

X

jp

m1
jp

m3

jp
weave(jp)

A

(2)
(3) m3 (4)

(5)

(6)(1)

Figure 2. From join point emission to aspect weaving.
Computation X produces a join point (1), which travels
through membranes m1 and m3 (2-5) before being processed
by aspect A (6).

ple, aspect A is registered in membrane m3; m3 is bound to
m1 (d), as denoted by the lollypop arrow. As a result, join
points produced by the computation of X and Y will be visi-
ble to A. The advising relation between membranes derived
from binding opens the door for topological scoping of as-
pects (Sections 3).

2.2 Propagation of join points and aspect weaving
Binding m3 to m1 informs m1 that m3 wishes to see (and
potentially affect) the join points produced by the computa-
tion inside m1. For each produced join point, m1 is then free
to decide whether to propagate the join point to m3 or not
(and also to enforce certain restrictions, as will be discussed
later). Figure 2 illustrates join point propagation and aspect
weaving with membranes. Computation X produces a join
point jp (1); this join point is then absorbed by the mem-
brane m1 (2). Since m1 is a programmable membrane, it can
implement different visibility policies. Suppose that m1 de-
cides to propagate the join point to m3, it will then make the
join available in its outer environment, tagging it with the
destination membrane m3 (3). On its side, m3 always listens
for join points addressed to it in its outer environment. When
a join point is addressed to it, it is absorbed in the membrane
m3 (4). Here again, because m3 is programmable, it may
decide to discard the join point, or to actually weave its in-
ner aspects (5); in that case, aspects residing inside m3 are
woven on the join point (6).

2.3 Visibility and safety policies
Binding membranes together produces particular topologi-
cal arrangements, which can be used for flexible scoping of
aspects; this is explored further in Sections 3. In addition
to topological scoping, programmable membranes can be
used to control at a fine-grained level the propagation of join
points between membranes. Transparent membranes simply
relay join points that are either emitted by their inner com-
putation or received (for advising) from their outer environ-
ment. For either security or encapsulation reasons, it is how-
ever sometimes necessary to protect some computation from
aspect advising. This can be achieved with membranes by
defining opaque membranes, i.e. that never let any join point
traverse through them. In between transparent and opaque

4

membranes, translucent membranes relay only a subset of
the join points produced by their inner computation. This
makes it possible to use membranes to model Open Mod-
ules [1]. The model allows for opacity to be dynamic, based
on characteristics of the execution environment.

Programmable membranes can also be used to enforce
safety policies that limit the power of aspects, as in [8],
for instance by preventing aspects from changing the argu-
ments of proceed, or its return value. To see how this can be
achieved, it is necessary to detail a bit more the weaving pro-
cess described above (Figure 2). When aspect A is woven on
join point jp, it executes its before advice and then informs
m1 that it wants to proceed (potentially with a different join
point jp′) by sending a message. The message flows from
m3 to m1, and then m1 invokes the original computation X.
The base result v is then repropagated back to m3 so that A
can execute its after advice. Finally, when A finishes, it tells
m1 to resume (potentially with a different result v′) .

Therefore, a membrane can simply store the original join
point jp and use it (instead of the potentially modified jp′)
in order to trigger the original computation. This means that
any modification to the join point (e.g., new arguments) will
not be considered. Similarly, the return value of the original
computation can also be stored and used when resuming
the base computation after weaving has finished. Another
example of a safety policy is to program the membrane
such that there is exactly one proceed call to the original
computation. If an aspect tries to perform more than one
proceed, the membrane can skip it and return the result of the
previous proceed or a default value. It can also insert a call to
proceed when no aspect call it (for instance with the original
arguments, their current values if they have been modified by
the advice, or default values). An immutable membrane is a
membrane that enforces all the properties described above:
exactly one call to proceed, with a fixed join point, and a
fixed return value.

For instance, let us consider a web browser executed
in one membrane and a caching aspect running in an-
other membrane bound to the browser membrane. When the
browser wishes to download a URL with get(URL), the cor-
responding join point is propagated to the aspect that checks
if the corresponding page is already stored in its cache. A
translucent membrane around the browser computation can
filter out HTTPS requests so that they are not visible to
the caching aspect. If the browser membrane is made im-
mutable, then we are sure that even an untrusted cache as-
pect cannot create security leaks, e.g., by changing the actual
URL being retrieved.

Variations are endless. For instance, a translucent mem-
brane can anonymize outgoing join points by erasing or ob-
fuscating information (e.g., login or password parameters).
A membrane can also adapt parameters of incoming join
points before they are passed to its registered aspects.

cache

quota

browser

cache

quota

quota

b ca

cache quota

browser browser

Figure 3. Topological scoping. (a) tower—corresponds to
execution levels; (b) tree; (c) DAG.

2.4 Symmetry of the model
Membranes can play a dual role, as both advised and advis-
ing membranes. On the one hand, they control the emission
of join points from their inner computation towards advising
membranes. This is useful to control if and how specific join
points are propagated, to which advising membranes and
in which order, and possibly implementing safety policies
as described above. On the other hand, membranes receive
join points for weaving by their registered aspects, thereby
controlling which join points are actually seen, and possibly
controlling the weaving order of its registered aspects.

The model is therefore totally symmetric. Both roles of a
membrane can be programmed independently of each other,
or cooperate if required. This is particularly important when
talking about transparent/translucid/opaque membranes. In-
deed, a membrane can be programmed with a translucent
advised interface and a transparent advising interface. As a
consequence, its aspects see all join points that it receives,
and it can control which join points of its inner computation
are visible to the outside.

3. Topological Scoping
In addition to enabling safety properties, membranes make it
possible to express flexible topologies of computation, going
beyond execution levels [13]. This section shows how basic
and more advanced topological scoping can be achieved.

3.1 Basic topological scoping
Membranes in a tower: execution levels. The basic exam-
ple of a browser and a caching aspect, each running in their
own membranes, has a two-level topology: the browser run-
ning at level 0, and the caching aspect at level 1. Suppose
now that the cache aspect stores the pages in a file and that
we wish to limit the disk consumption of this aspect. We
can simply introduce a quota aspect that applies to the cache
aspect: in other words, we can register the cache aspect in
a new membrane (corresponding to level 2), and bind this
level-2 membrane to the level-1 membrane (Figure 3a). Note
that this specific membrane topology respects the guarantees
provided by execution levels: the quota aspect (at level 2)
does not see the join points of the browser (at level 0) but
only those of the caching aspect, so the browser can con-
sume arbitrary disk space.

5

cache log

admin user guest

Figure 4. Crosscuting membranes.

In essence, execution levels give rise to a restricted topo-
logical picture—a linear order between groups of aspects.
This makes execution levels not well suited in the general
case when there is no such meaningful order; the rest of this
section illustrates how membranes go beyond levels.

Membranes in a tree. Suppose we also want to control the
disk consumption of the browser, separately from the disk
consumption of the web cache. We can create two instances
of the quota aspects, register them in two different mem-
branes, and then bind these membranes to the browser and
cache membranes, respectively (Figure 3b). The resulting
tree-based composition ensures that one quota aspect ob-
serves only the join points of the browser, while the other
quota aspect observes only the join points of the cache.

Membranes in a DAG. If the overall consumption of the
complete application is required, a single instance of the
quota aspect can be used. This is illustrated in Figure 3c:
the membrane in which quota is registered advises both the
cache and browser membranes.

With execution levels, this scenario means that the quota
aspect must observe computation at two levels at the same
time. The only way to achieve this is to deploy the same
aspect instance at both levels [14]. This however reopens the
door to infinite regression, because the aspect deployed at
both levels can now observe its own computation. Adopting
a graph-based topology with no cycle allows us to express
this scenario without reintroducing conflation.

3.2 Crosscutting membranes
It is also possible to devise more advanced topological mech-
anisms for membranes. We now discuss crosscutting mem-
branes. In [15] we also describe hierarchical membranes and
a relation of co-observation between membranes.

Consider two different concerns; we can deploy a mem-
brane around the computations that depend on the first con-
cern, and deploy a second membrane around the computa-
tions that depend on the second. Such membranes crosscut
when some computation happens in both membranes.

For instance, let us consider three base computation: a
web browser for an administrator, one for a standard user and
one for a guest. For efficiency reasons, the administrator and
the standard user browsers must use a web cache. There is
no point in caching internet accesses of the guest because we
consider they have a short life span. On the other hand, the
standard user and guest accesses must be logged for security
reasons, while administrator accesses are not. If we allow

membranes to crosscut each other, such a scenario can be
directly expressed (Figure 4). A first membrane is deployed
around the admin and standard user browser computations.
The cache aspect is registered in another membrane and
this cache membrane is bound to the first membrane. A
second membrane is deployed around the standard user and
guest browser computations. The log aspect is registered in
another membrane and this log membrane is bound to the
second membrane. The membranes crosscut for the standard
user browser computation, which is concerned with both
security and efficiency.

The flexibility provided by crosscutting membranes is a
double-edged sword. Because of their overlap, crosscutting
membranes reintroduce the possibility to run into infinite
loops: an advising membrane that is crosscutting with one
of its advised membranes is exposed to its own join points.

4. Language Support for Membranes
Our description of programmable membranes for expressive
aspect scoping does not commit to any specific API or set
of language constructs that deal with membrane creation,
deployment and configuration. This is intentional, because
the design space in that regard is wide, and it is not our
objective to settle for a specific point in that space. It is the
responsibility of concrete implementations of membrane-
based aspect systems to specify these features precisely.
Here, we just briefly describe some possible approaches.

Membrane creation and configuration could all be done
statically, similarly to the extension of AspectJ with execu-
tion levels [14]. Membranes are defined statically by spec-
ifying the aspects that are registered in each of them, and
by describing how membranes are bound together. An ini-
tial startup membrane is created for the main program. With
such a static approach, the same efficient implementation
technique as that used for execution levels can be applied.In
addition, it can be possible to ensure that membranes never
crosscut each other.

It is also possible to support a much more dynamic set of
mechanisms for membrane creation and deployment, such
as creating a new membrane object and explicitly spawn-
ing some computation in it, similarly to how dynamically-
scoped aspects are deployed in many aspect languages; or
deploying membranes explicitly on objects. It could even be
possible to define membrane deployment more intentionally,
by specifying activation predicates (e.g., all computation that
is in the control flow of X and not Y is considered to be
inside m). Of course, dynamic creation and deployment of
membranes can easily produce crosscutting membranes. Yet
another possibility is to design a DSL for specifying possibly
dynamic topologies, and support static analyses to enforce
properties of the topology, such as acyclicity or the absence
of problematic crosscutting membranes.

To date, we know of two aspect languages so far that
support membranes, both in the dynamic end of the spec-

6

trum. MAScheme [15] is our implementation of membranes
and aspects for Scheme, which supports dynamic deploy-
ment of membranes and different scoping semantics. PHAN-
tom [5] is a new aspect extension of Pharo Smalltalk that
integrates membranes. It supports both per-object mem-
branes and intentionally-defined membranes (using point-
cuts to specify the boundaries).

5. Putting membranes in perspective
Programmable membranes can express most interesting pro-
posals for protecting base code from unwanted advising.
Open Modules [1] make it possible to define that only certain
public pointcuts are advisable by aspects outside the module.
As illustrated in [15], translucent membranes can encode
open modules by exposing only the join points correspond-
ing to these public pointcuts. In the same way as Aldrich uses
logical equivalence to justify modular reasoning, we should
be able to use bisimulation techniques at the level of mem-
branes, although this is future work. A fundamental differ-
ence between open modules and membranes is that mem-
branes can be dynamic. EffectiveAdvice [8] uses monads to
explicitly reason about the effects of advice. Membranes can
enforce restrictions on computational effects like number of
calls to proceed, as well as modification of arguments and
return values, etc. Interestingly, membranes support these
restrictions even in presence of quantification (pointcuts),
which is missing in EffectiveAdvice. On the other hand, be-
cause EffectiveAdvice uses monads, it can statically enforce
these restrictions, and also supports arbitrary effects.

Beyond existing proposals, membranes suggest new
mechanisms. Most interestingly, membranes can not only be
used to protect the advised computation, but also the advis-
ing one. In other words, it is possible to protect aspects from
seeing unwanted join points. This can be particularly use-
ful in two scenarios. First, we have seen that in presence
of crosscutting membranes, infinite regression can happen;
an advising membrane can filter out reentrant join points to
avoid this. Second, generalizing, an advising membrane can
filter out join points for security reasons, for instance join
points produced by untrusted threads, or under suspicious
conditions. To the best of our knowledge, this dual view on
encapsulation has not been explored elsewhere.

Because membranes control both emission and reception
of join points, they can as well be used to raise the level
of abstraction of join points to domain-specific join points,
similarly to the mechanisms for explicit custom event an-
nouncements in Ptolemy and IIIA [9, 11]. The advantage of
using membranes is that custom join points can be gener-
ated by the membranes themselves (either upon reception
or upon emission), thereby preserving the implicit nature
of join points. This suggests that membranes can combine
aspect-based and event-based systems in a unified frame-
work with flexible topologies.

6. Conclusion
To conclude, we believe that adapting the notion of pro-
grammable membranes in order to control the controversial
power of aspects is a promising direction. Membranes sup-
port flexible topological scoping with locally programmable
weaving rules. Much work remains to be done to unleash the
potential of membranes for modular reasoning, encapsula-
tion, security, and scoping of aspects, including in presence
of concurrency and distribution.

Specifically, a major challenge lies in supporting cross-
cutting membranes properly. On the one hand, dynamic
membrane deployment—as supported by both MAScheme
and PHANtom—makes crosscutting inevitable. On the other
hand, unrestricted crosscutting between membranes can de-
stroy the guarantees that one seeks with membranes, such as
avoiding infinite loops and enforcing encapsulation policies.
Addressing this tension is necessary to find a proper design
for membrane-based aspect languages.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In A. P. Black,

editor, ECOOP 2005, number 3586 in LNCS, pages 144–168, Glasgow, UK,
July 2005. Springer-Verlag.

[2] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney. Translucid contracts:
expressive specification and modular verification for aspect-oriented interfaces.
In AOSD 2011, pages 141–152, Porto de Galinhas, Brazil, Mar. 2011. ACM
Press.

[3] G. Boudol. A generic membrane model (note). In Global Computing Workshop,
vol. 3267 of LNCS, pages 208–222. Springer-Verlag, 2005.

[4] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and scoping
of aspects in higher-order languages. Science of Computer Programming,
63(3):207–239, Dec. 2006.

[5] J. Fabry and D. Galdames. PHANtom: a modern aspect language for Pharo
Smalltalk. In International Workshop on Smalltalk Technologies. ACM Press,
2011. To Appear.

[6] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and
H. Rajan. Modular software design with crosscutting interfaces. IEEE Software,
23(1):51–60, 2006.

[7] M. Inostroza, É. Tanter, and E. Bodden. Join point interfaces for modular
reasoning in aspect-oriented programs. In ESEC/FSE 2011, New Ideas track,
pages 508–511, Szeged, Hungary, Sept. 2011.

[8] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. EffectiveAdvice: discplined
advice with explicit effects. In AOSD 2010, pages 109–120, Rennes and Saint
Malo, France, Mar. 2010. ACM Press.

[9] H. Rajan and G. T. Leavens. Ptolemy: A language with quantified, typed
events. In J. Vitek, editor, ECOOP 2008, number 5142 in LNCS, pages 155–
179, Paphos, Cyprus, july 2008. Springer-Verlag.

[10] A. Schmitt and J. Stefani. The Kell calculus: A family of higher-order dis-
tributed process calculi. In Global Computing, pages 146–178. Springer, 2005.

[11] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and modularity for
implicit invocation with implicit announcement. ACM Transactions on Software
Engineering and Methodology, 20(1):1, 2010.

[12] É. Tanter. Expressive scoping of dynamically-deployed aspects. In AOSD 2008,
pages 168–179, Brussels, Belgium, Apr. 2008.

[13] É. Tanter. Execution levels for aspect-oriented programming. In AOSD 2010,
pages 37–48, Rennes and Saint Malo, France, Mar. 2010.

[14] É. Tanter, P. Moret, W. Binder, and D. Ansaloni. Composition of dynamic
analysis aspects. In GPCE 2010, pages 113–122, Eindhoven, The Netherlands,
Oct. 2010. ACM Press.

[15] É. Tanter, N. Tabareau, and R. Douence. Exploring membranes for controlling
aspects. Technical Report TR/DCC-2011-8, University of Chile, June 2011.

7

	Introduction
	Programmable Membranes
	Deploying and binding membranes
	Propagation of join points and aspect weaving
	Visibility and safety policies
	Symmetry of the model

	Topological Scoping
	Basic topological scoping
	Crosscutting membranes

	Language Support for Membranes
	Putting membranes in perspective
	Conclusion

