
Event Type Polymorphism ∗

Rex D. Fernando Robert Dyer Hridesh Rajan
Dept. of Computer Science, Iowa State University

Ames, IA, 50011, USA
{fernanre,rdyer,hridesh}@iastate.edu

Abstract
Subtype polymorphism is an important feature available in
most modern type systems which makes code reuse and spe-
cialization possible. Recent works on separation of cross-
cutting concerns have created event interfaces (types) to de-
couple subjects from handlers. Extending the notion of sub-
typing to these event interfaces is a logical step. In this pa-
per, we define event type polymorphism in the context of
the Ptolemy language. Ptolemy allows declaring quantified,
typed events which provide an interface between subjects
and handlers. We add the notion of polymorphic event types
to the Ptolemy language, defining a subtype relation among
event types which in turn allows for both depth and width
subtyping with regard to event context. Since Ptolemy only
has explicit event announcement, our semantics is simpler
and easier to reason about when compared to previously de-
fined approaches. We also give the first formally defined
static semantics for polymorphic events as well as demon-
strate its usefulness via examples.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory — Semantics;
D.3.3 [Programming Languages]: Language Constructs and
Features — Inheritance

General Terms Languages, Theory

Keywords event type, polymorphism, subtype, inheritance

1. Introduction
There has been a significant recent interest in defining
an interface to fully decouple crosscutting and object-
oriented (OO) concerns [2, 5, 6, 9, 10]. Among them are

∗ This work was supported in part by the NSF grant CCF-10-17334. We
thank Mehdi Bagherzadeh for some initial discussion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’12, March 26, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1099-4/12/03. . . $10.00

Ptolemy [6] and implicit invocation with implicit announce-
ment (IIIA) [9] that propose a type-based formulation. The
Ptolemy language provides a notion of quantified, typed
events [6]. An event type abstraction defines a set of abstract
events in software1. IIIA’s join point types [9] are similar.

To illustrate, consider a simple expression language with
a type checker, an evaluator, and an abstract syntax tree
(AST) tracer. A parser for such a language generates AST
nodes and provides a visitor, ASTVisitor. A visitor pattern-
based design would implement the type checker, evaluator,
and AST tracer as subclasses of ASTVisitor. This would ei-
ther require making three visits over an AST or implement-
ing a multi-dispatch to all visitors in a list2. An alternative
design may be to define an event type per AST node type,
e.g. NumVisited and MultVisited, and implement a visi-
tor ASTAnnouncer that would signal these events upon vis-
iting an AST node of the corresponding type. Consumers of
AST nodes would then listen to these events and respond
by doing their respective action3, e.g. a type checker would
listen to a MultVisited event and check whether both sub-
expressions of the currently visited node are well-typed. A
tracer would log that expression and an evaluator would
compute its value.

This alternative event-based design works out nicely us-
ing event types except for a caveat. Different consumers of
AST nodes that listen to AST-related events (referred to as
handlers from here onward), often require different granular-
ity of AST events. For example, for an AST tracer it may be
sufficient to treat the entire set of expression-related events
at once. Similarly, for a type checker it may be sufficient to
treat the entire set of binary arithmetic expressions at once
– checking a binary arithmetic expression involves verifying
whether left and right expressions are well-typed arithmetic

1 The main difference between Ptolemy [6] and implicit invocation [3, 8] is
quantification, the new ability to register with a set of events using the name
of the event type, which improves decoupling.
2 A third design may be to do type checking, expression evaluation, and
tracing as part of a single visitor, but that would tangle these three concerns
and thus also may not be desirable.
3 Note that sequencing different handlers in phases can be achieved by
controlling which handlers are active via (un)registration.

33

expressions. On the other hand, an evaluator needs specific
information to implement the semantics of expressions.

Thus it makes sense to provide a hierarchy of events sig-
naled by ASTAnnouncer, such that handlers are able to target
specific AST nodes (or subtypes thereof). Such an event hi-
erarchy would require a notion of event polymorphism to
facilitate greater reuse of handlers.

In response to this need, Steimann et al. defined a no-
tion of join point type polymorphism [9]. However, their ap-
proach allows implicit announcement, which causes the se-
mantics of subtyping to become slightly confusing for a few
cases. Thus there is a need for a simpler notion of event poly-
morphism.

In this paper, we propose our notion of event type poly-
morphism. Unlike previous work, our approach is based on
Ptolemy which has only explicit event announcement. The
lack of implicit announcement makes our semantics of event
type polymorphism simpler and allows for easier reasoning.

In the rest of the paper, we describe our initial formaliza-
tion and static semantics of event type polymorphism in an
extension of the Ptolemy language we call Ptolemy�:.

2. Polymorphic Event Types
In this section we present Ptolemy�:, a language model that
enhances Ptolemy [6] with the notion of polymorphic event
types.

2.1 Abstract Syntax
The syntax is presented in Figure 1. This syntax defines a
program as a collection of declarations followed by an ex-
pression, which is like a main method in Java. There are two
kinds of declarations: events and classes. Classes are defined
with a single inheritance model. In examples and in concrete
syntax, we take an omitted extends clause to mean extends

Object. For simplicity, this syntax does not provide pack-
ages, modifiers, abstract classes and methods, static mem-
bers, interfaces, constructors, initializers, or built-in types.
Ptolemy has a unified language model like Eos [7], i.e. han-
dlers are just normal classes with regular methods inside that
take a handler chain as first argument. A class may have zero
or more fields, methods, and binding declarations.

An event type declaration is a new feature in Ptolemy,
which gives a name to a set of abstract events. A novelty
of Ptolemy�: is to add a single event inheritance model to
event declarations. An event type may extend exactly one
event type or the top event type Event. In examples and in
concrete syntax, we take an omitted extends clause to mean
extends Event.

A binding declaration in Ptolemy is the main quantifica-
tion feature. It declares an event of interest for a handler and
corresponding handler method. For example, a binding dec-
laration when p do m; says to run method m when events of
exact type p are announced. This semantics is modified. In
Ptolemy�:, a binding declaration when p do m; says to run

prog ::= decl* e
decl ::= class c extends d { field* meth* binding* }
| c event p extends q { form* }

field ::= c f
meth ::= t m (form*) { e }
t ::= c | thunk p
form ::= t var, where var 6=this
binding ::= when p do m
e ::= new c() | var | null | e.m(e*) | e.f
| e.f = e | cast c e | form = e ; e
| register(e) | unregister(e) | announce p (e*) { e } | e.invoke()

where
c ∈ C, a set of class names
d ∈ C ∪ {Object}, a set of superclass names
p ∈ P, a set of event type names
q ∈ P ∪ {Event}, a set of super event type names
f ∈ F, a set of field names
m ∈ M, a set of method names

var ∈ {this} ∪ V,V is a set of variable names

Figure 1. Ptolemy�:’s syntax[6] with polymorphic events

method m when events of type p or any of its subevents are
announced. This allows quantification over event types in an
event inheritance hierarchy.

There are standard OO expressions in the syntax for ob-
ject constructions, var, null, method call, field get and set,
cast, and local variable definition.

Event-related expressions are for (un)registration, an-
nouncement, and for running the event handler chain. The
registration expression register(e) evaluates e to a loca-
tion and then takes all binding declarations in the declaring
class of the object stored at that location and makes them
active. The expression unregister(e) naturally deactivates
such bindings. An announce expression announce p(e1,..,

en){e} in Ptolemy�: evaluates e1,..,en to values v1,..,

vn, creates a closure for expression e, binds v1,..,vn to
context variables of p in the newly created closure, creates
a chain of registered handlers for p and all its superevents
(up to the top event type Event) and runs the first handler in
that chain. The handlers in this chain are in the order of their
dynamic registration. The last link in this chain is the pre-
viously created event closure. These handlers may access a
subset of values v1,..,vn via their first parameter, the event
handler chain. The invoke expression e.invoke() evaluates
e, which must evaluate to an event handler chain and runs
the next element in this chain.

2.2 Events in Expression Interpreter
An example in Ptolemy is given in Figure 2. On the left
side, we see several declarations of events with no notion
of event type polymorphism. Notice the repeated left and
right context declarations (left side, lines 5, 10, and 15). On
the right side, we give the same event type declarations but
with inheritance. You can see both depth subtyping [1] (the
context node is narrowed the further down the inheritance
tree you go, e.g. right side, lines 2, 4, 9, and 12) as well as
width subtyping (new contexts left/right appear in event
BinaryArithVisited right side, line 5).

These events are then used by event handlers, such as the
one in Figure 3. Again we show both versions without and

34

WITHOUT EVENT SUBTYPING
1 void event ExpVisited { Exp node; }
2 void event ArithVisited { Arith node; }
3 void event BinaryArithVisited {
4 BinaryArith node;
5 Exp left;
6 Exp right;
7 }
8 void event MultVisited {
9 Mult node;

10 Exp left;
11 Exp right;
12 }
13 void event DivVisited {
14 Div node;
15 Exp left;
16 Exp right;
17 }

WITH EVENT SUBTYPING
1 void event ExpVisited { Exp node; }
2 void event ArithVisited extends ExpVisited { Arith node; }
3 void event BinaryArithVisited extends ArithVisited {
4 BinaryArith node;
5 Exp left;
6 Exp right;
7 }
8 void event MultVisited extends BinaryArithVisited {
9 Mult node;

10 }
11 void event DivVisited extends BinaryArithVisited {
12 Div node;

13 }

Figure 2. Event hierarchy for an expression visitor. These events are announced by the visitor as it parses nodes of that type.

WITHOUT EVENT SUBTYPING
1 class ASTTracer {
2 void printArith(ArithVisited next){
3 logVisitBegin(next.class);
4 next.invoke();
5 logVisitEnd(next.class);
6 } when ArithVisited do printArith;

8 void printBArith(BinaryArithVisited next){
9 logVisitBegin(next.class);

10 next.invoke();
11 logVisitEnd(next.class);
12 } when BinaryArithVisited do printBArith;

14 void printMult(MultVisited next){
15 logVisitBegin(next.class);
16 next.invoke();
17 logVisitEnd(next.class);
18 } when MultVisited do printMult;

20 void printDiv(DivVisited next){
21 logVisitBegin(next.class);
22 next.invoke();
23 logVisitEnd(next.class);
24 } when DivVisited do printDiv;
25 }

Figure 3. Expression AST tracing.

with the notion of event type polymorphism in Figure 3 and
Figure 4 respectively. As you can see, adding event type
polymorphism allows targeting a large number of events
with only one handler (Figure 4, lines 2–6), thus providing a
higher degree of code reuse in the system.

Examples of the new syntax are shown in the right side of
Figure 2 and in Figure 4. An additional example that demon-
strates type checking for the expression language is shown
in Figure 5. Note that once again, event type polymorphism
has allowed us to only create one event handler (for the event
BinaryArithExpVisited, lines 6–11). Without this new fea-
ture, the class would require 2 handlers with identical bodies.
This trend also extends to the other AST types (not shown

WITH EVENT SUBTYPING
1 class ASTTracer {
2 void printExp(ExpVisited next) {
3 logVisitBegin(next.node().class);
4 next.invoke();
5 logVisitEnd(next.node().class);
6 } when ExpVisited do printExp;
7 }

Figure 4. Expression AST tracing. Note significant reuse of
handler code due to event subtyping.

1 class Checker {
2 // code for interface Type elided
3 static class NumType implements Type {}
4 Stack typeStack = new Stack();

6 void chkBinArth (BinaryArithVisited next){
7 next.invoke();
8 NumType t1 = (NumType) typeStack.pop();
9 NumType t2 = (NumType) typeStack.pop();

10 typeStack.push(new NumType());
11 } when BinaryArithVisited do chkBinArth;
12 }

Figure 5. Expression type checking

here), allowing the full type checking class to save around
50 lines of code (33%) and have half as many handlers.

3. Static Semantics
In this section, we give the static semantics of Ptolemy�:.
The semantics uses the attributes defined in Figure 6. These
attributes are borrowed from [6]4.

We state the type checking rules using a fixed class table
(list of declarations CT). The class table can be thought of as
an implicit inherited attribute used by the rules and auxiliary

4 The only exception is that the original paper [6, Fig. 7] had types for
pointcut descriptions (pcd), which were later eliminated.

35

(IS EVENT)
(c event p extends q {t1 var1, ..., tn varn}) ∈ CT

isEvent(p)

(�: TOP)
isEvent(p)

p�: Event

(�: TRANS.)
isEvent(p) isEvent(q) isEvent(q′) p�: q

′
q
′ �: q

p�: q

(�: REFL.)
isEvent(p)

p�: p

(�: BASE)
(c event p extends q {t1 var1, ..., tn varn}) ∈ CT isEvent(q) [t

′
1 var

′
1, ..., t

′
m var

′
m] = contextsOf (q)

(∀i ∈ [1..n] :: ti vari ∈ [t1 var1, ..., tn varn]⇒ (∃j ∈ [1..m] :: t
′
j vari ∈ [t

′
1 var

′
1, ..., t

′
m var

′
m]))⇒ ti <: t

′
j

p�: q

Figure 7. Definition of sub-event type relation �:

θ ::= “type attributes”
OK “program/top-level decl.”
| OK in c “method, binding”
| var t “var/formal/field”
| exp t “expression”

τ ::= c | > | ⊥ “class type expressions”
π,Π ::= {I : θI}I∈K , “type environments”

whereK is finite,K ⊆ (L ∪ {this} ∪ V)

Figure 6. Type attributes (based on [6, Fig. 7])

functions. We require that top-level names in the program
are distinct and that the inheritance relation on classes and
events is acyclic.

These rules make use of auxiliary relations concreteType
and contextsOf to compute all context variables (inherited
and current) of an event type. The relation concreteType
is defined by the two rules (CONCRETE TYPE INH.) and
(CONCRETE TYPE DEPTH) in Figure 8. This relation takes a
context declaration and a list of context declarations and
returns the former if no context with the same name is
in the list, otherwise it returns the context type from the
list. The relation contextsOf is defined by the two rules
(CONTEXT VARS) and (TOP CONTEXT VARS) in Figure 8. This
relation walks the declared event inheritance hierarchy and
collects concrete context variable declarations.

(CONCRETE TYPE INH.)
var

′
i 6∈ {var1, ..., varn}

concreteType(t′i var
′
i, [t1 var1, ..., tn varn]) = t

′
i var

′
i

(CONCRETE TYPE DEPTH)
∃j ∈ [1..n] :: tj var

′
i ∈ [t1 var1, ..., tn varn]

concreteType(t′i var
′
i, [t1 var1, ..., tn varn]) = tj var

′
i

(TOP CONTEXT VARS)
contextsOf (Event) = •

(CONTEXT VARS)
(c event p extends q {t1 var1, ..., tn varn}) ∈ CT

[t
′
1 var

′
1, ..., t

′
m var

′
m] = contextsOf (q)

contextsOf (p) = [∀i ∈ [1..m] :: concreteType(t′i var
′
i, [t1 var1, ..., tn varn])]

+ [∀i ∈ [1..n] :: ti vari :: vari 6∈ {var′1, ..., var
′
m})]

Figure 8. Definition of contextsOf relation

The main new relation in the type system formalizes
event subtyping. We write p �: q to mean that p is a well-
typed subevent of q. This relation is defined in Figure 7.
The definition of this relation makes uses of one other re-

lation: isEvent. The relation isEvent is defined by the rule
(IS EVENT) that checks the program’s class table CT for
that event’s presence.

The rule (�: TOP) defines the event type Event as the
root of the subtyping relation. The rules (�: TRANS) and
(�: REFL) define event subtyping as a transitive and reflex-
ive relation.

The rule (�: BASE) defines the depth [1] and width sub-
typing for event inheritance. This rule allows subevent types
to specialize the type of a context variable. An example
usage was presented in Figure 2, where the context vari-
able node’s type Exp in the event ExpVisited was spe-
cialized by subevent ArithVisited to be Arith. This con-
text variable type was further specialized by the subevent
BinaryArithVisited to be BinaryArith. Allowing special-
ization thus permits passing richer context about an event
without an increased number of context variables.

The rule also indirectly defines the width subtyping for
event inheritance, via the contextsOf relation. This rule al-
lows subevent types to add additional context variables. An
example usage was presented in Figure 2, where the con-
text variables left and right were added to the subevent
BinaryArithVisited.

Figure 9 presents the type rules which are modified from
[6]. All omitted rules are essentially unmodified.

(CHECK EVENT)
isClass(c) ∀i ∈ [1..n] :: isClass(ti) p�: q

Π ` c event p extends q {t1 var1, ..., tn varn} : OK

(CHECK BINDING)
isClass(c′) (c event p extends q {t1 var1, ..., tn varn}) ∈ CT

c
′
<: c (c

′
m(thunk p var){e}) = methodBody(c,m)

Π ` when p dom : OK in c

(ANNOUNCE EXP TYPE)
isEvent(p) [t1 var1, ..., tn varn] = contextsOf (p)

Π ` e1 : exp t1 . . . Π ` en : exp tn Π ` e : exp c′ c
′
<: c

Π ` announce p(e1, . . . , en) {e} : exp c

Figure 9. Type-checking rules (based on [6, Fig. 8])

The (CHECK EVENT) rule makes use of the relation p �: q
defined in Figure 7. This rule also verifies that all declared
types of context variables and the return type of the event c
are valid class types (event type names are not allowed as
context variable types).

36

The (CHECK BINDING) rule in [6] specifies that the handler
method should take context variables of the announced event
as arguments. As we have changed that behavior as stated
previously, modifications have been made to this rule to
reflect those changes. Handler methods should only take one
argument, the event handler chain that has type (thunk p).

The (ANNOUNCE EXP TYPE) rule (based on rule
(EVENT) [6]) is modified in order for the announce expres-
sion to take context variable values as arguments instead of
collecting them from the surrounding environment. Also, an
event’s context variables are now defined as its immediately
declared context variables as well as any context variables
which are declared in a superevent. contextsOf (p) calculates
that list of context variables, in the order they were declared
(superevent context variables are first, new context variables
are last to handle width subtyping) and with the concrete
type (handling depth subtyping)

4. Related Work
Similar to Ptolemy [6], Steimann et al. describe a system
with implicit invocation and implicit announcement (IIIA)
that contains a notion of an event interface between base
code and aspects [9]. Their notion of a join point type is
analagous to Ptolemy’s notion of event type in that both pro-
vide named types to describe events and any context infor-
mation passed by those events. Since their system also al-
lows implicit announcement (unlike Ptolemy’s explicit only
announcement) their join point types also provide pointcuts.
Join point types may define a subtyping relation, with se-
mantics that are very similar to those described in this paper.
Join point subtypes inherit the context from their supertypes
and have the ability to specify additional context.

The key differences between Ptolemy�: and IIIA relate
to IIIA’s support for implicit announcement, which compli-
cates the semantics and makes reasoning about the code dif-
ficult. Since IIIA allows implicit announcement, the seman-
tics of subtyping become slightly confusing in a few cases.
For example consider a class that exhibits two join point
types and the pointcuts of both types match the same point
of execution. The question becomes, how many event an-
nouncements occur at that location? The answer depends on
the relationship between the two join point types. If one sub-
types the other, then only the most specific type is announced
at that point. In all other cases, two events will be announced
at that location. However note that if the two types are sib-
lings with a common supertype, a handler listening to the su-
pertype will now execute twice. In the case where one type
subtyped the other, there is only one event announcement
and thus the handler listening to the supertype only executes
once. Ptolemy�: does not suffer from this because it allows
only explicit announcement.

Gasiunas et al. extend the Scala language with explicitly
defined events, which can be imperative or declarative [4].
Events are declared as members in classes and are inherited

in the classes’ subtypes. The inheritance semantics is anal-
ogous to method inheritance, which restricts the event sub-
typing to depth subtyping.

5. Conclusion and Future Work
Several recent languages provide a new interface to decou-
ple subjects from handlers [6, 9]. Extending the notion of
subtype polymorphism to such interfaces seems like a logi-
cal next step. In this paper we showed examples to demon-
strate the level of code reuse possible with event type poly-
morphism, clearly demonstrating its benefit. Prior work pro-
vided a notion of event polymorphism [9], however their se-
mantics are complicated due to the language allowing im-
plicit announcement. We provide a simpler semantics for
the Ptolemy language (which only allows explicit announce-
ment) and gave our initial formalization of those semantics.

In the future, we plan to finish formalizing these se-
mantics as well as prove the soundness of the type sys-
tem. We have writen out the static and dynamic semantics
rules in Coq [11]. A type soundness proof using the stan-
dard progress and preservation argument [12] is in progress.
We also plan to finish an implemention of these semantics in
the OpenJDK-based Ptolemy compiler.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-

Verlag, 1996.

[2] J. Aldrich. Open Modules: Modular reasoning about advice.
In ECOOP, pages 144–168, 2005.

[3] D. Garlan and D. Notkin. Formalizing design spaces: Implicit
invocation mechanisms. In VDM, pages 31–44, 1991.

[4] V. Gasiunas, L. Satabin, M. Mezini, A. N. nez, and J. Noyé.
Escala: modular event-driven object interactions in scala. In
AOSD, pages 227–240. ACM, 2011.

[5] K. Hoffman and P. Eugster. Bridging Java and AspectJ
through explicit join points. In PPPJ ’07, pages 63–72, 2007.

[6] H. Rajan and G. T. Leavens. Ptolemy: A language with quan-
tified, typed events. In ECOOP, pages 155–179. Springer-
Verlag, 2008.

[7] H. Rajan and K. J. Sullivan. Unifying aspect- and object-
oriented design. ACM TOSEM, 19(1), August 2009.

[8] S. P. Reiss. Connecting tools using message passing in the
Field environment. IEEE Softw., 7(4):57–66, 1990.

[9] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and
modularity for implicit invocation with implicit announce-
ment. ACM TOSEM, 20:1–43, July 2010.

[10] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari. Modular aspect-oriented design
with XPIs. ACM TOSEM, 20(2), 2011.

[11] The Coq Development Team. The coq proof assistant refer-
ence manual. Technical Report V8.3pl2, INRIA, 2011.

[12] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, Nov
1994.

37

	Introduction
	Polymorphic Event Types
	Abstract Syntax
	Events in Expression Interpreter

	Static Semantics
	Related Work
	Conclusion and Future Work

