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Abstract
AOP can be applied to not only modularization of crosscut-
ting concerns but also other kinds of software development
processes. As one of the applications, this paper proposes
a design traceability mechanism originating in join points
and pointcuts. It is not easy to design software architecture
reflecting the intention of developers and implement the re-
sult of design as a program while preserving the architec-
tural correctness. To deal with this problem, we propose two
novel ideas: Archpoint (Architectural point) and Archmap-
ping (Archpoint Mapping). Archpoints are points for repre-
senting the essence of architectural design in terms of be-
havioral and structural aspects. By defining a set of arch-
points, we can describe the inter-component structure and
the message interaction among components. Archmapping
is a mechanism for checking the bidirectional traceability
between design and code. The traceability can be verified
by checking whether archpoints in design are consistently
mapped to program points in code. For this checking, we
use an SMT (Satisfiability Modulo Theories) solver, a tool
for deciding the satisfiability of logical formulas. The idea
of archpoints, program points, and their selection originates
in AOP.

Categories and Subject Descriptors: D.2.11 Software En-
gineering: Software Architectures—Languages

General Terms: Design, Verification

Keywords: Design traceability, SMT solver

1. Introduction
AOP can be applied to not only modularization of crosscut-
ting concerns but also other kinds of software development
processes. As one of the applications, this paper proposes
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a design traceability mechanism in which the essential idea
originates in join points and pointcuts.

Although architectural design plays an important role in
software development, it is not easy to design architecture
reflecting the intention of developers and implement the
result of design as a program while preserving architectural
correctness and adequate abstraction level, because there is
a gap between design and code.

To deal with this problem, we propose two novel ideas:
Archpoint (Architectural point) and Archmapping (Arch-
point Mapping). The purpose of these ideas is to describe
software design based on the component-and-connector ar-
chitecture [2] and verify the traceability between design and
its implementation. Archpoints are points for representing
the essence of architectural design in terms of behavioral
and structural aspects. By defining a set of archpoints, we
can describe the inter-component structure and the message
interaction among components. Archmapping is a mecha-
nism for checking the design traceability. An archpoint such
as message send in design is mapped to a program point such
as method call in code. All program points are not associ-
ated to archpoints because architectural design should be
abstract and the detailed considerations about implementa-
tion should not be included in the design. Archpoints can be
considered as selected program points that should be shared
between design and code. The idea of archpoints, program
points, and their selection originates in AOP notion such as
join points and pointcuts. The traceability can be verified
by checking whether archpoints are consistently mapped
to program points. This mapping is bidirectional. For this
checking, we use an SMT (Satisfiability Modulo Theories)
solver [4], a tool for deciding the satisfiability of logical for-
mulas. SMT generalizes SAT (Satisfiability) [4] by adding
equality reasoning, arithmetic, and other first-order theories.
The properties of archpoints and program points are encoded
to logical formulas and checked by an SMT solver.

The remainder of this paper is structured as follows.
In Section 2, we point out the problems concerning de-
sign traceability. In Section 3, the notion of Archpoint and
Archmapping is introduced. In Section 4, SMT-based veri-
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Figure 1. Observer pattern described in UML

fication is illustrated. Related work and concluding remarks
are provided in Section 5.

2. Motivation
In this section, we point out what kinds of problems occur
between design and code by using an example.

2.1 Design traceability

The Observer pattern, one of the GoF design patterns, is
convenient for discussing the problems between design
and code, because the pattern not only has architectural
characteristics such as collaboration but also is relatively
close to implementation. The Observer pattern consists of a
Subject and an Observer. When the state of a subject is
changed, the subject notifies all observers of this new state.

Figure 1 illustrates the Observer pattern described in
UML (Unified Modeling Language). Design models can be
represented by using class diagrams, interaction diagrams,
and so on. The note in Figure 1 shows that notify should
be called under the control flow of setState.

Although UML is easy to read and understand, it is not
easy to write a program consistent with the design intent
because it tends to be informally described.

List 1 is a program written by a novice. The class struc-
ture conforms to the design model and this program behaves
correctly. However, List 1 does not conform to the note in
Figure 1 because notify is not called.

[List 1]
01: public class Subject {
02: private Vector observers = new Vector();
03: private String state = "";
04: public void addObserver(Observer o){
05: observers.add(o);
06: }
07: public void removeObserver(Observer o){
08: observers.remove(o);
09: }
10: public void notify() {
11: for (int i = 0; i < observers.size(); i++)
12: ((Observer)observers.get(i)).update();
13: }
14: public String getState() { return state; }
15: public void setState() {
16: state = s;
17: for (int i = 0; i < observers.size(); i++) // code clone
18: ((Observer)observers.get(i)).update();
19: }
20: }
21:
22: public class Observer {
23: private subject = new Subject();
24: private String state = "";
25: public void update() {
26: state = subject.getState();
27: System.out.println("Update received from Subject,
28: state changed to : " + state);
29: }
30: }

In List 1, there is a code clone (line 11 - 12, line 17 -
18). A code clone tends to occur while debugging. It is not
easy for most programmers to be aware that they violate
the intent of architectural design because their programs
successfully execute even if there is a code clone. List 2 is
an implementation conforming to the design.

[List 2]
01: public void setState() {
02: state = s;
03: notify();
04: }

There is another problem in List 1. Although List 1 in-
cludes libraries such as Vector, add, remove, and println,
they do not appear in the design model. Should we reflect
these elements in the model ? Our answer is NO because
software architecture should be abstract and include only
the essence of design intent.

Next, assume that a developer changes the old code
to a new version in which notify is not called directly
but a method is called from setState and the method
calls notify. In this case, the design model has only con-
straints such that notify is called under the control flow of
setState. Thus, the design model should not be changed
even if the code is modified. A design model can be related
to multiple code implementations.

2.2 Current MDD technology

Although many MDD (Model-Driven Development) tools
can generate code from UML diagrams, most of them gen-
erate only skeleton code. A developer then must add code
to the auto-generated code and in doing so might make a
mistake. Interaction diagrams are useful for describing be-
havioral design intents. For example, an interaction diagram
can represent such a design intent that notify should be
called under the control flow of setState. However, it is
not necessarily easy to generate code from interaction dia-
grams because one interaction can be mapped to a variety of
code. Moreover, it is so difficult to maintain the traceability
between interaction diagrams and code with preserving ade-
quate abstraction level. Although it is relatively easy to gen-
erate code from state machine diagrams, the maintenance of
traceability is not easy due to the same reason.

The developer might create a detailed model using action
semantics to generate full code from UML diagrams. How-
ever, the contents of the diagrams are semantically equiv-
alent to the code. This violates a principle of abstractions
required in architectural design as mentioned above. A de-
sign model should be at an adequately abstract level, not at
the same level as code.

2.3 Problems to be tackled

Problems between design and code can be summarized as
follows: 1) It is not easy to reflect the design decisions at
the code level; and 2) It is not easy to synchronize design
and code with preserving adequate abstraction level. These
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Figure 2. Archpoint and Archmapping

Category Archpoint Program point (Java)
Class diagram class class definition
(UML) method method definition

field variable definition
Interaction diagram message send method call
(UML) message receive method execution
Data flow def field set

use field get

Table 1. Archpoint and program points (a part)

problems indicate that a mechanism for checking the design
traceability is needed.

3. Archpoint and Archmapping
To deal with the problems in Section 2, two novel ideas
Archpoint and Archmapping are provided.

3.1 Basic concept

Figure 2 illustrates the concept of Archpoint and Archmap-
ping. Archpoints are points for describing the essence of ar-
chitectural design at the adequate abstraction level. The no-
tion of archpoints is similar to that of join points (or program
points) in AOP.

Table 1 shows major archpoints. In general, software ar-
chitecture is represented by structural and behavioral as-
pects. The former can be modeled by class diagrams, and
the latter can be represented by interaction diagrams. Here,
for simplicity, some features including object instantiation
and inheritance are omitted in Table 1.

As mentioned before, archpoints can be considered as
selected program points that should be shared between de-
sign and code. So, an archpoint can be mapped to a program
point. Archmapping is a mechanism for this purpose. Table
1 shows a mapping in case of Java.

As illustrated in Figure 2, in our approach, an abstract
model of architectural design is represented by archpoints
and constraints among them. In the same way, an abstract
model of a program is also represented by program points
and constraints among them. The synchronization (or trace-
ability) between design and code is maintained by bidi-

setState
send

setState
receive

update
send

getState
receive

setState
call
(send)

setState
execution
(receive)

update
call
(send)

getState
execution
(receive)

vector size
call

Execution order of
archpoints is preserved

even if program points are added

Design

Code

archpoints

Figure 3. Bidirectional traceability

rectionally mapping archpoints and corresponding program
points. We can preserve adequate abstraction level by ig-
noring other program points that are not associated to arch-
points as shown in Figure 3. The execution order of arch-
points representing the Observer pattern is preserved even if
program points, which do not change the sequence of arch-
points, are added to the code. In other words, the traceabil-
ity between design and code can be maintained if there is a
bisimulational relation between them in terms of archpoints
and added program points do not violate this bisimulation.
The constraints such as execution order of archpoints are en-
coded to logical formulas. The traceability can be verified
by checking the satisfiability of the logical formulas as men-
tioned below.

3.2 Design description

Architecture is define as a set of archpoints A = A1, ..., An

and a set of constraints among them. Design is regarded
correct if the logical formula below is satisfied. Archcondi

is a logical expression for specifying a property that should
be satisfied at a set of related archpoints.

ARCHITECTURE = archcondA1∧...∧archcondAm

(1)

In case of the Observer pattern, a part of architecture (no-
tification sequence) can be described below. Message se-
quence is a predicate that is satisfied when the order of arch-
point occurrence is correct. Message iteration is a pred-
icate showing iteration. By defining a set of predicates such
as inheritance relation, control flow, and data flow, we can
describe a variety of architectural properties.

Observer_Pattern :=
message_sequence( ; [predicate]
cSubject_setState_message_send, ; archpoint
cSubject_setState_message_receive, ; archpoint
cSubject_notify_message_send, ; archpoint
cSubject_notify_message_receive, ; archpoint
massage_iteration( ; [predicate]

cObserver_update_message_send, ; archpoint
cObserver_update_message_receive, ; archpoint
cSubject_getState_message_send, ; archpoint
cSubject_getState_message_receive)) ; archpoint

3.3 Program description

A program can be abstracted as a set of program points
P = P1, ..., Pn′ and a set of constraints among them. An
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implementation is consistent if the logical formula below is
satisfied. Progcondi is a logical expression for specifying
a property that should be satisfied in a set of program points.

PROGRAM = progcondP1 ∧ ... ∧ progcondPm′ (2)

In case of List 1, the behavioral aspect can be described
below. Calling sequence is a predicate specifying the
calling sequence of methods. Calling iteration is a
predicate showing iteration.

Program_List1 :=
calling_sequence( ; [predicate]
cSubject_setState_call, ; program point
cSubject_setState_execution, ; program point
calling_iteration( ; [predicate]

Vector_size_call, ; program point
Vector_size_execution, ; program point
Vector_get_call, ; program point
Vector_get_execution, ; program point
cObserver_update_call, ; program point
cObserver_update_execution, ; program point
cSubject_getState_call, ; program point
cSubject_getState_execution, ; program point
System_out_println_call, ; program point
System_out_println_execution)) ; program point

3.4 Archmapping for traceability

A refinement mapping from an architectural design to the
code can be defined as a mapping function refine. In case
of the Observer pattern, a part of refinement mapping can
be defined below. The predicates message sequence and
message iteration should be also mapped to calling se-
quence and calling iteration, respectively.

refine( cSubject_setState_message_send ) =
cSubject_setState_call

refine( cSubject_setState_message_receive ) =
cSubject_setState_execution

The refinement is correct if the following is satisfied.

refine(ARCHITECTURE)∧ PROGRAM (3)

In case of the Observer pattern, the logical formula
refine(Observer Pattern)∧Program List1 can be de-
scribed as follow. In this case, the formula is not satisfied
because the first calling sequence is false (notify is not
called and executed). That is, List 1 does not conform to the
architectural design (Observer pattern).

calling_sequence( ; not satisfied (mapped from Observer_Pattern)
cSubject_setState_call,
cSubject_setState_execution,
cSubject_notify_call,
cSubject_notify_execution,
calling_iteration(
cObserver_update_call,
cObserver_update_execution,
cSubject_getState_call,
cSubject_getState_execution))

∧
calling_sequence( ; satisfied (List 1)

cSubject_setState_call,
cSubject_setState_execution,
calling_iteration(
Vector_size_call,
Vector_size_execution,
Vector_get_call,
Vector_get_execution,
cObserver_update_call,
cObserver_update_execution,
cSubject_getState_call,
cSubject_getState_execution,
System_out_println_call,
System_out_println_execution))

Table 2. Yices input language (a part)
Language construct Syntax
Type definition (define-type [name] [type])
Constant definition (define [name]::[type] [expr])
Basic types real, int, nat, bool
Subtype (subtype ([id]::[type]) [expr])
Sub range (subrange exprl expru)
Boolean operators (and [expr1] ... [exprn])

(or [expr1] ... [exprn])
(not [expr])

Equality (= [expr1] [expr2])
Disequality (/= [expr1] [expr2])
Arithmetic <, <=, >, >=,+,−, ∗, /, div, mod
Assert (assert [expr])
Check (check)

On the other hand, List 2 conforms to the design because the
first calling sequence is satisfied. Calling sequence
is true if the program points specified in the arguments
are in order. In architectural design, we do not have to
consider the existence of System out println call and
System out println executionbecause architecture should
be abstract. So, architecture does not have to be modified
even if println is removed from List 2 because the first
calling sequence remains true. As mentioned here, the
bidirectional traceability between design and code can be
maintained with preserving the adequate abstraction level.

4. SMT-based traceability check
We are developing an SMT-based support tool that auto-
mates the traceability check. We use Yices [9] as an SMT
solver. We plan to develop a tool consisting of three features:
automatic archpoints extraction from UML design models,
automatic program points (shadows) extraction from Java
programs, and encoding to the Yices input language.

In this section, the overview of our approach is illustrated
in terms of Yices encoding.

4.1 Yices

Yices provides an input language whose syntax is similar to
Scheme as shown in Table 2. Yices decides the satisfiability
of formulas containing uninterpreted function symbols with
equality, linear real and integer arithmetic, scalar types, re-
cursive datatypes, tuples, records, extensional arrays, fixed-
size bit-vectors, quantifiers, and lambda expressions. Yices
is effective for traceability check mentioned in Section 3 be-
cause these expressive logical formulas can be used.

4.2 Yices encoding

The formula refine(Observer Pattern)∧Program List1
can be encoded to List 3.
[List 3]
01: (define-type_count (subrange 0 11)) ; 0<= count <= 11
02: (define i0::count)
03: ...
04: (define i7::count)
05:
06: (assert (and ; assertion
07: ;; refine(Observer_Pattern)
08: (< i0 i1) (< i1 i2) (< i2 i3) (< i3 i4)
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09: (< i4 i5) (< i5 i6) (< i6 i7)
10: (= (list1 i0) cSubject_setState_call)
11: (= (list1 i1) cSubject_setState_execution)
12: (= (list1 i2) cSubject_notify_call)
13: (= (list1 i3) cSubject_notify_execution)
14: (= (list1 i4) cObserver_update_call)
15: (= (list1 i5) cObserver_update_execution)
16: (= (list1 i6) cSubject_getState_call)
17: (= (list1 i7) cSubject_getState_execution)
18: ;; Program_List1
19: (= (list1 0) cSubject_setState_call)
20: (= (list1 1) cSubject_setState_execution)
21: ...
22: (= (list1 11) System_out_println_execution)))
23:
14: (check) ; check the assertion

The symbol list1, whose definition is omitted due to the
space limitation, is an array including all program points in
List 1. The occurrence order of refine(archpoint) specified in
calling sequence and calling iteration is encoded
in line 08 - 17. The predicate calling iteration can be
encoded to Yices by expanding the iteration limited times
(one time in List 3). In this case, only the bounded checking
is available. As shown in List 3, predicates representing
architectural constraints can be compiled into the Yices input
language.

4.3 Traceability check

The assertion in List 3 is not satisfied because line 12 - 13
is not satisfied. As demonstrated here, we can automatically
check the design traceability by using Yices.

Our approach can be used as a bounded model checker
for verifying temporal behavior of architectural design.

For example, a temporal specification

cSubject_setState_message_receive
-> <>cObserver_getState_message_send

can be checked. <> (in the future) is an operator of LTL
(Linear Temporal Logic). The meaning of the formula is as
follow: getState message will be sent from an observer in
the future if setStatemessage is received in a subject. This
LTL formula can be encoded to List 4. The symbol alist is
an array including all archpoints in Figure 1.

[List 4]
01: (assert (and
02: (< i j)
03: (= (alist i) cSubject_setState_message_receive)
04: (= (alist j) cObserver_getState_message_send)))

This assertion is satisfied. Observer pattern in Figure 1 is
designed correctly in terms of the above specification. In the
above case, we can regard that this temporal specification
is correctly implemented as program code (List 2), because
both of architectural design and its refinement are correct.

5. Discussion and Future work
There are several attempts to unify architecture, code, and
components. ArchJava [1] ensures that an implementation
conforms to architectural constraints. Archface [8] separates
architecture definitions from an actual implementation by
introducing a new interface mechanism. Mezini et al. pro-
posed adaptive plug and play components called aspectual
components [6]. Eichberg et al. proposed declarative queries

for grouping source elements across programming language
module boundaries, because dependencies between program
elements need to be modeled from different perspectives re-
flecting architectural, design, and implementation level deci-
sions [5]. Bagheri et al. showed a way for automated formal
derivation of style-specific architectures [3]. An application
model should be mapped to one or more architectures.

Archface plays a role as an ADL (Architecture Descrip-
tion Language) at the design phase and as a programming in-
terface at the implementation phase. The result of the design
modeling is stored in the form of Archface (ADL). After that,
a program preserving the architectural intention is developed
by implementing the Archface (programming interface). One
may think that it is not easy to support Archmapping be-
cause it is difficult to automatically extract program points
and associate them with archpoints. Adopting Archface, this
task becomes easy because program points shared between
design and code are explicitly declared using AspectJ-like
pointcuts such as call and cflow.

In this paper, we considered only one-to-one mapping
between archpoints in design and program points in code.
We plan to support one-to-multiple mapping to model not
only code generation (forward traceability) but also design
recovery (backward traceability) more practically. We think
that we have to introduce the notion of a virtual program
point consisting of real program points in order to convert
one-to-multiple mapping to one-to-one mapping.
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