
Design by Contract for Aspects, by Aspects

Tim Molderez ∗ Dirk Janssens
Dept. of Mathematics and Computer Science

University of Antwerp, Belgium
{tim.molderez,dirk.janssens}@ua.ac.be

Abstract
Run-time contract enforcement is a useful means to help en-
sure the reliability of a software system. Due to the scatter-
ing and tangling nature of crosscutting concerns, aspects can
have a high degree of coupling with other modules. Contract
enforcement should therefore prove especially useful for as-
pects. This paper presents such a run-time enforcement al-
gorithm for a minimal aspect-oriented language, guided by
the advice substitution principle: an aspect-oriented version
of Liskov substitution. As contract enforcement in itself is a
crosscutting concern, the algorithm is specified using aspects
as well.
Categories and Subject Descriptors F.3.1 [Theory of
Computation]: Specifying and Verifying and Reasoning
about Programs
General Terms Design, Languages, Reliability
Keywords run-time contract enforcement, substitutability,
aspect-oriented programming

1. Introduction
Aspect-oriented programming (AOP) languages have intro-
duced powerful mechanisms to be able to modularize cross-
cutting concerns, as it allows for the modification of a pro-
gram’s behaviour in a quantifiable manner. However, while
quantification allows for crosscutting concerns to be ex-
pressed as separate modules, i.e. aspects, the difficulty of
verifying whether an aspect always performs correctly is
quantified as well. This is evidenced by the large body of
work that currently exists in the field of aspect-oriented pro-
gram verification. This paper focuses on AOP from a de-
sign by contract (DbC) perspective. The essential idea is that,
whenever a method call is made, its preconditions and cor-
responding class invariants must be met in order for its post-
conditions to hold. We are interested in how this principle
translates itself to AOP.

In object-oriented programming, it is the responsibility of
the caller to ensure that the preconditions and invariants are

∗ Funded by a doctoral scholarship of the Research Foundation - Flanders
(FWO)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL ’12, March 26, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1099-4/12/03. . . $10.00

met. However, aspects follow the inversion of control prin-
ciple. That is, an aspect decides for itself when an advice is
“called”. When aspects have contracts, this means that the
aspect itself should ensure that the preconditions and invari-
ants are met whenever an advice is executed. Additionally,
its postconditions should not break the postconditions of the
method call being advised.

This responsibility is quite similar for subclass methods
overriding another method. Because the method’s caller may
be oblivious towards the dynamic type of a method call’s
receiver, the overriding method is responsible for comply-
ing with the expectations of the caller. The Liskov sub-
stitution principle [3] ensures this compliance by requir-
ing that preconditions may not be strengthened in a sub-
class, postconditions may not be weakened and invariants
must be preserved. This paper discusses how Liskov sub-
stitution can be easily adapted for aspects, resulting in the
advice substitution principle. A contract enforcement algo-
rithm is then presented, which applies the advice substitution
principle to a minimal aspect-oriented language called Con-
tractAJ. Both this language and enforcement algorithm are
based on Findler et al. [2], where contract enforcement is im-
plemented for ContractJava, a minimal object-oriented lan-
guage. Whereas ContractJava makes use of wrapper meth-
ods to implement contract enforcement, the implementation
in ContractAJ purely uses aspects and therefore does not
need to make any modifications to the program, as contract
enforcement is a prime example of a crosscutting concern.

The remainder of this paper is structured as follows:
Sec. 2 presents the syntax and semantics of ContractAJ.
Sec. 3 then discusses the advice substitution principle. The
contract enforcement algorithm is introduced in Sec. 4.
Sec. 5 presents related work; Sec. 6 concludes the paper
and discusses future work.

2. ContractAJ
The aspect-oriented language in which our contract enforce-
ment algorithm is expressed is called ContractAJ, based
on the object-oriented ContractJava language introduced in
Findler et al. [2].

2.1 Syntax
The syntax of ContractAJ is shown in Fig. 1. What is notice-
able immediately is that we have not introduced a separate
module type dedicated to aspects, i.e. there is no aspect key-
word. Similar to Classpects [5], definitions of pointcuts and
advice are allowed in regular classes, such that they can ef-
fectively serve as aspects as well. We made this choice as
it makes the contract enforcement algorithm more concise,
as aspects no longer need to be treated as a different case.

9

program ::= def ∗expr
def ::= class c extends {field∗ meth∗ adv∗}

field ::= t [c.]f
method ::= t [c.]m (arg∗){expr}contract

adv ::= t advt a (arg∗) : prec? pcut{expr}contract
contract ::= @pre{expr}@post{expr}

advt ::= before | after | around
arg ::= t var

expr ::= new c | var
| expr .f | expr .f = expr
| expr .m(expr∗)
| super.m(expr∗)
| proceed(expr∗)
| (t) expr
| let{binding∗} in {expr}
| if(expr){expr} else {expr} | true | false
| error(expr)

binding ::= var = expr
pcut ::= exec && this(var)
exec ::= exec(t c.m(var∗)) | exec(t c.a(var∗)
prec ::= @first |@last

var ::= a variable name or this
c ::= a class name (or Object)
f ::= a field name

m ::= a method name
a ::= an advice name
t ::= c | boolean

.

Figure 1: Surface syntax

It also is more flexible than AspectJ’s aspects, in the sense
that the developer regains precise control over the instanti-
ation of aspects. As pointcuts and advice are now regular
class members, aspects can extend other aspects as well. As
advice are named in ContractAJ, this allows for advice hid-
ing/overriding. In case of overriding semantics, whenever a
class with an overriding advice is instantiated, the overrid-
ing advice becomes active instead of the overridden advice.
This implies that the contracts of an overriding advice should
comply with the overridden counterpart, i.e. regular Liskov
substitution applies. However, because we prefer to focus
on how an advice should comply with the join points in its
pointcut, we assume hiding semantics, which do not involve
substitution.

Regarding the syntax of pointcuts, shown in the pcut
rule, there are only two constructs available: Method and
advice execution can be captured with exec, and the this
object can be bound. These are the only constructs that we
need to implement contract enforcement. However, because
enforcement is applied per join point, it is independent of the
pointcut language, which is then free to be extended.

Another rule open for extension is the prec rule, which
shows the syntax of the precedence/composition mecha-
nism. The contract enforcement algorithm only makes use
of @last to indicate that a particular advice needs to be ex-
ecuted last if there are other advice that apply to the same
join point.

Finally, note the optional c. in the method and field rules;
it allows for inter-type declarations.
2.2 Semantics
The semantics of ContractAJ is a fairly straightforward ex-
tension of ContractJava. It is not a pure extension, in the
sense that support for interfaces is removed. The join point
model in ContractAJ only includes method and advice exe-
cutions, as these are the only points in time where we wish
to check contracts. In other words, advice can be executed
whenever a method, or another advice, is about to be exe-
cuted.

As mentioned in 2.1, the pointcut language is minimal; it
mainly consists of the exec construct to capture both method

class A {
@pre x > 0
public void foo(int x) {...}}

class B extends A {
@pre x > -10 // Weaker than A’s @pre
public void foo(int x) {...}}

aspect C {
@pre x > -5 // Also weaker than A’s @pre
around(int x): execution(void A.foo(int))

&& args(x) {...}}

B inst = new B();
inst.foo(-8); // Contract violation in C

Figure 2: Aspect inadvertently causing contract violation

and advice executions. While there is no args construct to
bind parameters as in AspectJ, method/advice arguments are
bound within the exec construct itself. For simplicity, we
require that all method/advice parameters are bound, as they
may be needed when checking contracts. Wild cards are still
allowed in the class and method name.
2.2.1 Execution pointcuts and subtyping
An important difference between ContractAJ’s exec and
AspectJ’s execution construct is the way subtyping is
treated: In AspectJ, an execution pointcut matches if the
type that is specified is a subtype of the join point’s dy-
namic type. For example, given that class B extends A and
we execute B b=new B(); b.foo(); , then the pointcut
execution(* A.foo) will match on the latter statement.
ContractAJ’s exec construct however only matches if the
type specified in the pointcut is equal to the join point’s
static type. This implies that exec(* A.foo()) would not
match, but exec(* B.foo()) of course would match, disre-
garding the dynamic type of b. At first, we made this choice
because it would be more convenient to implement our con-
tract enforcement algorithm.

However, we also found that using this semantics for exec
is more appropriate from a DbC perspective, which is ex-
plained with the AspectJ example in Fig. 2. We assume in
this example that aspect C and class B were written by two
different people, unaware of each other’s work. Suppose Al-
ice wrote aspect C and Bob wrote class B. Alice refers to the
A class in her pointcut, and makes sure that the precondition
of her advice is weaker than A’s. Bob as well ensures that
B.foo’s precondition is weaker than A’s. Whenever the static
type of method calls is A, no contract violations will occur,
as long as the caller complies with A’s preconditions. If it is B
however, the aspect is applied and it should comply with B’s
contracts. Alice however was not aware of B, resulting in her
aspect’s precondition failing. This problem is easily avoided
by adopting ContractAJ’s semantics for exec: Use the static
type to perform matching.
2.2.2 Lookup semantics
Weaving advice is done by extending the method lookup
mechanism. As a result, advice are late-bound, which al-
lows for more flexibility and, in turn, enables ContractAJ
to be mapped to a wider range of aspect-oriented languages.
Method lookup in ContractAJ follows these steps:

1. Perform normal method lookup, i.e. traverse the subtype
hierarchy upwards until the method body is found.

2. For all object instances that belong to a class with point-
cuts, try to match these pointcuts. This implies that a
pointcut only becomes active as soon as the class contain-

10

ing the pointcut has been instantiated. The pointcut will
remain active until the instance is out-of-scope. If there
are multiple instances of the same class, the pointcut is
checked multiple times as well.

3. Given all matching pointcuts, the composition mecha-
nism will determine the order in which the corresponding
advice should be executed. Store this composition order
in a global map, associated with the current join point.

4. Remove the first advice from the composition and exe-
cute this advice. If the composition is empty, execute the
method body determined by normal method lookup.

A similar set of steps exists for advice execution; the main
difference is that there is no analogous concept of normal
method lookup in this case, i.e. there is no step 1.

The semantics of a proceed call are straight-forward:
Retrieve the composition for the join point this advice is
being applied to, remove the first element and execute it.

3. The advice substitution principle
The advice substitution principle is the result of adapting
the Liskov substitution principle [3] to aspect-oriented lan-
guages. This advice substitution principle is not new; the
term was first introduced in Wampler [6]. This paper will
cover the principle as well, but also takes into account ad-
vice execution join points and relaxes the principle at shared
join points. The key idea to adapt Liskov substitution to AOP
is to view the weaving of an advice as a form of substitu-
tion, which it effectively is. This is quite easy to see if all
advice are viewed as around advice: This is not a simplifi-
cation, as a before advice simply is an around advice where
the proceed statement at the end is implicit. An after advice
similarly is an around advice where the proceed statement
in the beginning is implicit. If the pointcut associated with
an around advice matches on a certain join point, then that
join point essentially is replaced with the execution of that
advice. In other words, the join point representing a method
call/execution is substituted for the execution of an advice.
3.1 Around advice
From the point of view that advice weaving can be seen as
a form of substitution, Liskov substitution translates itself as
follows to around advice:

Given an around advice that is applied to a particular join
point representing an execution of method/advice y, where
the static type of the receiver is class X, then:
• The around advice’s preconditions must be equal to or

weaker than those of X.y.
• The around advice’s postconditions must be equal to or

stronger than those of X.y.
• The around advice must preserve all invariants of X.

3.2 Before and after advice
Even though a before/after advice can be interpreted as an
around advice, a distinction must be made from a design by
contract perspective. This is due to the fact that the postcon-
dition of a before advice intuitively refers to the moment just
before executing the implicit proceed statement at the end of
the advice body. As a consequence, the advice substitution
rule for postconditions becomes: The before advice’s post-
conditions may not invalidate the preconditions of X.y.

Similarly, an after advice’s precondition refers to the mo-
ment after the implicit proceed statement in the beginning;

its rule for preconditions becomes: The after advice’s pre-
condition may rely on the postcondition of X.y.

Next to these two changes, the other rules concerning
around advice remain unaltered for before/after advice.

3.3 Shared join points
If two or more advice need to be applied to the same join
point, the above rules still hold. If an aspect A has higher
precedence than an aspect B, it is sufficient that the contracts
of A comply with those of the static type of the join point. At
this point we diverge from the advice substitution principle
presented in Wampler [6], which suggests that A should also
comply with B. We argue that it is sufficient to comply the
static type’s contracts, as the caller will only take those
contracts into account. The caller can be oblivious towards
aspects, and aspects themselves can be oblivious to the fact
that other aspects are sharing join points with them.

3.4 Aspects that intercept advice execution
As our join point model includes the execution of advice,
it is possible that one advice is applied to another advice.
For example, it is possible that advice myAdvice intercepts
executions of myMethod, and that there is another advice
myMetaAdvice which intercepts executions of myAdvice. In
this case the advice substitution rules can be applied just the
same; e.g. the preconditions of myMetaAdvice may not be
stronger than those of myAdvice, which may not be stronger
than those of myMethod.

3.5 Relation to quantification and obliviousness
Finally, it is important to keep in mind that the advice substi-
tution principle is checked per join point. As a pointcut is a
quantification mechanism, an advice may apply to a large set
of join points, which correspond to various different meth-
ods, each with their own contracts. In other words, an advice
should comply with the contracts of all the different meth-
ods it applies to. This number of different methods may be
a suitable metric to measure how tightly coupled an aspect
is. However, it should be combined with another metric that
indicates how closely an aspect interacts with the base sys-
tem. For example, a logging aspect is often applied to a large
number of methods, due to the use wildcards, yet the aspect
is unlikely to cause harm, as a logging aspect typically only
observes the base system and is only loosely coupled in this
sense.

In terms of obliviousness, strictly enforcing the advice
substitution principle means that the base system can effec-
tively be unaware of aspects. If a developer makes a method
call and ensures its pre- and postconditions, the substitution
principle ensures that the postcondition should hold, even
in the presence of subtypes and aspects. However, some as-
pects, such as an authentication aspect, are likely to break
the advice substitution principle: For example, if a user is no
longer logged in to his internet bank (due to a session time-
out), and attempts to access his/her bank account’s informa-
tion, the authentication aspect should deny access. However,
if the preconditions in the bank account class do not state
“The user must be logged in.”, which is realistic in an aspect-
oriented implementation, the authentication aspect violates
the substitution principle: The precondition was strength-
ened by the aspect. In such a case, the bank account class
cannot be oblivious towards the aspect and should be made
aware of it. Further exploration in this direction is however
left as future work.

11

def c

P, c ` methj ⇀adv meth_checkj P, c ` methj ⇀pre meth_prej for j ∈ [1,m]
P, c ` methj ⇀post meth_postj P, c ` advk ⇀adv adv_checkk for k ∈ [1, n]

P ` class c extends c′ ⇀d P ` class c extends c′ {meth1 . . .methm adv1 . . . advn}
meth1 . . .methm adv1 . . . advn class contract_c extends Object {

meth_check1 . . .meth_checkm
c.meth_pre1 . . . c.meth_prem c.meth_post1 . . . c.meth_postm
adv_check1 . . . adv_checkn

}

advm
eprePreP 〈t,md〉 epostPostP 〈t,md〉

P, t ` t′ md(t1 x1, t2 x2, . . . , tm xm) ⇀adv

@last around t′ md(t dyn, t1 x1, t2 x2, . . . , tm xm) :
exec(t′ t.md(t1 x1, t2 x2, . . . , tm xm)) && this(dyn) {

if(epre) {
dyn.md_hierarchyPreCheck(x1, x2, . . . , xm)
let (returnV al = proceed(x1, x2, . . . , xm)) {

if(epost) {
dyn.md_hierarchyPostCheck(true, x1, x2, . . . , xm)

} else {
error("Postcondition violation, blame this")}

returnV al
}
} else {

error("Precondition violation, blame getStackStrace[1]")}
}

advaround
epre_aPreP 〈t,md〉 epost_aPostP 〈t,md〉
epre_bPreP 〈t′′,md〉 epost_bPostP 〈t′′,md〉

P, t ` around t′ md(t1 x1, t2 x2, . . . , tm xm) :
exec(t′ t′′.md′(t1 x1, t2 x2, . . . , tm xm) ⇀adv

@last around t′ md(t dyn, t1 x1, t2 x2, . . . , tm xm) :
exec(t′ t.md(t1 x1, t2 x2, . . . , tm xm)) && this(dyn) {

if(epre_b) {
if(!epre_a) {error("Substitution principle error: Precondition too strong")}
let (returnV al = proceed(x1, x2, . . . , xm)) {

if (epost_b) {
if(!epost_a) {error("Substitution principle error: Postcondition too weak")}

} else {
error("Postcondition violation, blame dyn")}

returnV al
}
} else {

error("Precondition violation, blame getStrackTrace[1]")}
}

hierpre
P, c ` t md(t1 x1, t2 x2, . . . , tm xm) {e}@pre{epre}@post{epost}
⇀pre boolean md_hierarchyPreCheck (t1 x1, t2 x2, . . . , tm xm) {
let (next = (∃?super.md_hierarchyPreCheck (x1, x2, . . . , xm) || res = epre) {

if (!next || res) {
res
} else {

error("Substitution principle error: Precondition too strong")}
}

Figure 3: Judgements that implement contract enforcement and blame compilation

4. Contract enforcement in ContractAJ
Based on the contract enforcement algorithm for Contract-
Java in Findler et al. [2], contract enforcement for Contrac-
tAJ is implemented as a number of judgements. Applying
these judgements will transform a ContractAJ program into
a version where contract enforcement has been added. Note
that, in this transformation, we do not modify any parts of
the original program, but only add a number of aspects. The
most important judgements of the contract enforcement al-
gorithm are shown in Fig. 3. These judgements make use
of two relations on the abstract syntax: PreP and PostP .
These are used to retrieve the pre/postconditions of a par-
ticular method/advice. Given a pair consisting of the name
of a method/advice, and a type, the expression representing
the pair’s pre/postconditions is returned.

The [def c] rule in Fig. 3 specifies the ⇀d judgement,
which creates the contract-checking aspect for each class
in the original program. Keep in mind that in ContractAJ,
aspects are classes; i.e. the use of pointcuts and advice
is allowed in classes. As such, the contract-checking as-

pects are implemented as classes. Suppose the original pro-
gram contains a class A, then its contract-checking aspect
is named contract_A. For each method in A, there is one
advice contract_A and two methods are added to A (us-
ing inter-type declarations). The advice, specified in rule
[advm], is applied whenever the corresponding method in A
is called. The two methods added to A are helper methods
that check whether Liskov substitution holds. One method
checks Liskov substitution on the precondition, which is
specified in rule [hierpre]; the other checks the postcondi-
tions. For each advice in A, there is one advice in contract_A
that checks it. Rule [advaround] specifies this advice in case
it checks an around advice. (The cases for before and after
advice are not shown, as they are similar.) To avoid con-
fusion, henceforth we will call the advice that implement
contract-checking “contract-advice”. Normal advice defined
in the original program will be called “user-advice”.

Rule [advm] specifies the contract-advice that checks
methods. An around contract-advice is used for this pur-
pose, associated with an exec pointcut that matches when-

12

ever the static type is t in a method execution. The pointcut
also binds this to the dyn variable. In the contract-advice
body, the precondition of t is checked. If it fails, we state
that getStackTrace[1] is to be blamed. In most cases,
this simply means that the caller of the method is to be
blamed. If however, one or more user-advice are applied to
the method call, the last user-advice in the composition is to
be blamed. It can only be the last advice; otherwise an error
would have been generated earlier by the contract-advice
that check each user-advice. After checking the precondi-
tion of t, we invoke the Liskov substitution-checking helper
method on dyn, which traverses up the subtype hierarchy tree
to check whether each precondition complies with its super-
type, as specified in rule [hierpre]. (The ∃? symbol before
super.md_hierarchyCheck means: If md_hierarchyCheck
does not exist in super, the call is left out.) After Liskov
substitution has passed for the preconditions, we can make
a proceed call to execute the method that we are checking.
Once this is done, all that is left is to check the postcondi-
tions, analogous to the preconditions.

The [advaround] rule specifies the contract-advice that
checks around user-advice. Even though the rule looks more
complex than the [advm] rule, it is more of a special case
of [advm], because the functionality needed from [hierpre]
has been inlined in [advaround]. This was done because
advice substitution is simpler than Liskov substitution: We
only need to comply with the static type’s contracts. We
do not need to comply with any advice, because advice
cannot be called explicitly and therefore the corresponding
aspects will not appear as static types. When examining
the [advaround] rule, the similarity with [advm] becomes
clear: The advice’s precondition is first checked; we then
check whether the precondition is equal or weaker than
the static type’s (t′′) precondition. If these checks pass, we
can proceed with executing the user-advice and check the
postconditions analogous to the preconditions.

Little changes in case of before and after user-advice: For
before advice, we remove the postcondition substitutability
check. In case the before advice interferes with the next ele-
ment in the composition, this will be detected in its precon-
dition check, as it will blame getStackTrace[1]. The after
advice is treated similarly, we remove the precondition sub-
stitutability check. If the normal precondition check fails,
the precondition itself is to be blamed. Because this is an af-
ter advice, the proceed was already called implicitly and the
postcondition of that call must have succeeded to be able to
reach this point.

5. Related work
Most work in the area of DbC, related to aspects, is about the
use of aspects to implement contract enforcement in object-
oriented languages (DbC by aspects). However, there are few
papers that apply DbC to an aspect-oriented language (DbC
for aspects): In Zhao et al. [7], Pipa is presented, an aspect-
oriented extension to the JML behavioral interface specifi-
cation language. The language’s semantics is only discussed
informally and does not mention a notion of advice substi-
tutability. In Lorenz et al. [4], aspects are classified as agnos-
tic, obedient or rebellious. Developers can indicate which of
the three types an aspect belongs to, and a prototype imple-
mentation called CONA will then perform contract enforce-
ment using this information. Our enforcement of advice sub-
stitution is simpler in the sense that it does not involve any

classification; the substitution principle only enforces that,
when calling a method, the developer does not need to be
aware of subtypes nor aspects. The CONA tool uses aspects
to enforce contracts on objects, but uses objects to enforce
contracts on aspects. Our approach purely uses aspects, and
no modifications to the base program are needed. Finally,
Agostinho et al. [1] as well is based on the advice substitu-
tion principle of Wampler [6], but focuses more on applying
the principle to various concrete aspect-oriented languages.
Our approach is to implement the principle only on Contrac-
tAJ, being a minimal, but flexible aspect-oriented language
that leaves some parameters open for extension.

6. Conclusion and future work
This paper has presented a contract enforcement algorithm
for the aspect-oriented ContractAJ language, implemented
by means of aspects. This language was designed such that
it covers a wide range of aspect-oriented languages. The ad-
vice substitutability principle, and how it closely relates to
Liskov substitution, was discussed in detail as well. Future
work includes implementing the algorithm in, for example,
AspectJ and adapting the contract soundness proof of Find-
ler et al. [2], to show that our contract enforcement algo-
rithm always finds contract violations if they occur. Another
interesting direction to take is to be able to statically find vi-
olations of advice substitutability. If no such violations are
found, the base system can effectively be oblivious towards
advice. If violations cannot be avoided, perhaps the base sys-
tem should somehow become aware of the interaction that is
occurring, which is an interesting direction of its own.

References
[1] Sérgio Agostinho, Ana Moreira, and Pedro Guerreiro. Con-

tracts for aspect-oriented design. In Proceedings of the 2008
AOSD workshop on Software engineering properties of lan-
guages and aspect technologies, SPLAT ’08, page 1:1–1:6,
New York, NY, USA, 2008. ACM.

[2] Robert Bruce Findler and Matthias Felleisen. Contract sound-
ness for object-oriented languages. In Proceedings of the
16th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA ’01,
page 1–15, New York, NY, USA, 2001. ACM.

[3] Barbara H Liskov and Jeannette M Wing. A behavioral
notion of subtyping. ACM Trans. Program. Lang. Syst.,
16(6):1811–1841, November 1994.

[4] David H Lorenz and Therapon Skotiniotis. Extending design by
contract for Aspect-Oriented programming. Order - A Journal
On The Theory Of Ordered Sets And Its Applications, 2005.

[5] H. Rajan and K.J. Sullivan. Classpects: unifying aspect- and
object-oriented language design. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference
on, pages 59 – 68, May 2005.

[6] D. Wampler. Aspect-oriented design principles: Lessons from
object-oriented design. In Sixth International Conference on
Aspect-Oriented Software Development (AOSD’07), Vancou-
ver, British Columbia, 2007.

[7] Jianjun Zhao and Martin Rinard. Pipa: A behavioral interface
specification language for aspect. In Mauro Pezzè, editor,
Fundamental Approaches to Software Engineering. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

13

	Introduction
	ContractAJ
	Syntax
	Semantics
	Execution pointcuts and subtyping
	Lookup semantics

	The advice substitution principle
	Around advice
	Before and after advice
	Shared join points
	Aspects that intercept advice execution
	Relation to quantification and obliviousness

	Contract enforcement in ContractAJ
	Related work
	Conclusion and future work

