
How to Program the Next Generation
of Business Applications
Invited Talk, Extended Abstract

Christian Mathis

SAP AG

christian.mathis@sap.com

Cafer Tosun

SAP Innovation Center

cafer.tosun@sap.com

Vishal Sikka

SAP Labs Palo Alto LLC

vishal.sikka@sap.com

Categories and Subject Descriptors H.2.0 [Database Man-
agement]: General

General Terms Design

Keywords Modularity, In-Memory Data Management

In-memory database management systems, that exploit
the abundance of main memory and available CPU cores
provided by current hardware architectures, allow to push
data-intensive operations into the database server. In the
classical three-tier architecture, which has been implemen-
ted by systems like for example SAP R/3 in the 1990s, the
relational back-end was considered a bottleneck that had to
be protected from compute-intensive operations. The reason
was that scaling the system at the back-end tier was only
considered possible by scaling up (i. e., by buying more
powerful and expensive back-end hardware), and not by
scaling out (i. e., by buying more back-end hardware with
the same capacity). Because of the natural physical and
economical limits of up-scaling, application scalability in
R/3 was achieved by computing data-intensive operations at
the application server layer.

Nowadays, the separation between application code run-
ning on the application server and data being stored on the
relational back-end blurs, and that is a positive development.
Data-intensive operations can be computed in the back-end.
The reason is the ever increasing compute power and main
memory size of back-end systems. Systems with up to 2560
CPU cores and 16 TB of main memory distributed across 16
blades, but appearing as one instance, are available.1

1 See http://www.sgi.com/products/servers/uv/index.html

Copyright is held by the author/owner(s).

MISS’12, March 27, 2012, Potsdam, Germany.
ACM 978-1-4503-1217-2/12/03.

Pushing down application logic has various advantages.
For example, it avoids expensive data transfers from the
back-end system to the application server. It allows code
simplification, because data access executed by the database
system internally and no data buffering has to be imple-
mented at the application server side. Furthermore, data-
specific code and runtime optimizations can be exploited
much more easily, because (at least a part of the) applica-
tion code is now managed and run by the database system.

However, pushing application logic into the database sys-
tem leads to challenges:
1. Which part of the application logic shall be pushed

down? Can we identify design patterns?
2. How to organize the interplay between back-end and

application server code?
3. How to do software life-cycle management?
4. How to analyze, profile and debug back-end coding?
5. How to do exception handling?
6. How to structure our database application logic to allow

software re-use?
7. How to allow application programmers to write scalable

code that makes use of the CPU cores available?
Let us consider the last question: In the past, database re-
search and development has put a large effort into the de-
velopment of scalable SQL engines, e. g., through automatic
SQL optimization and parallel execution. However, SQL is
in some cases not the right choice to express application se-
mantics. If necessary, we would like to switch to procedural
programming. For the procedural part of our application, we
also want to achieve good scalability and resource usage.
How to achieve this? An idea would be to generalize and
modularize existing database-internal algorithms and data
structures for easy re-use and re-combination in application
programs.

When thinking about it, software modularity is entangled
with all of the questions listed above. The solution to these
questions are fundamental to us, because they characterize
our programming model, i. e., the way how we design and
develop efficient business applications running on our in-
memory database system.

1




