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Abstract

Managing variability is hard. This applies both to feature mod-
eling itself as well as the maintenance of the corresponding
feature implementations which poses additional challenges.
Especially in embedded systems and system software that are
developed using the tools CPP, GCC and MAKE, feature real-
izations happen on different levels of abstractions, concepts
and implementation languages.

This particularly applies to Linux, which exposes over
11,000 features on over two dozen different architectures.
While features are modeled centrally with the KCONFIG
tool, feature-code is realized in various source-files and
managed by the KBUILD build-system. In this article, we
identify and relate levels of variability on which feature-
code is implemented. The quantification of variability on
the different levels in Linux disproves two common beliefs
about the amount of implemented variability.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design; D.2.9 [Management]: Soft-
ware configuration management

General Terms Design, Experimentation, Management

Keywords Configurability, Maintenance, Linux, Kbuild,
Static Analysis, VAMOS

1. Introduction

System software typically employs compile-time configu-
ration to tailor the system with respect to a broad range of
supported hardware architectures and application domains. A
prominent example is the Linux kernel, which provides more
than 11,000 configurable features [18].

Technically, static configurability is generally perceived as
implemented by means of the C Preprocessor (CPP) [10, 16];
the prospective disadvantages of this approach (“#ifdef
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hell”) have often been criticized [15]. In the case of Linux
(2.6.35) they seems to be true: more than 84,000 #ifdef-
blocks, spread over 28,000+ source code artifacts, account
for this — and these numbers are subject to constant growth;
they have practically doubled over the last five years and have
already caused hundreds of bugs [18].

Problem Statement

In order to provide a practical means to control more than
11,000 features, the Linux KCONFIG tools allows the user to
configure his selection with various front-ends. While this
provides a central interface for the user for configuring the
kernel (the configuration space), the feature implementations
for the selected features are scattered over the whole codebase
(implementation space).

Due to its sheer size, importance, and source-code avail-
ability, Linux has been a first-class evaluation subject for
approaches and tools for static analyses in the systems as
well as the software engineering communities. The general
believe is that “if they got Linux through it, it scales”. How-
ever, in fact researchers almost never evaluate their tools and
approaches with the whole Linux tree. For technical and prac-
tical feasibility, they often restrict the scope to a subset of
it (such as: #ifdef-induced variability on arch-x86 or arch-
x86 with allyesconfig). There is a common belief that they
have chosen the most significant part.

In this paper we quantitatively analyze some properties
of the implementation of variability in Linux with respect to
common beliefs:

1. Most variability is expressed by boolean (or tristate)
switches. The common assumption is that it is sufficient
to concentrate on them and to not consider value-type
features.

2. arch-x86 is the largest and allyesconfig selects most
features. Here, the conclusion is often that arch-
x86/allyesconfig covers most of the Linux code base.

3. Variability is mostly implemented with the CPP. The
conclusion is that metrics and analyses regarding Linux
variability can be considered as sound even if they focus
only on CPP-induced variability.

The remainder of the paper is structured as follows: Section 2
describes how variability is technically implemented in Linux,



that is, how a feature selection in KCONFIG eventually results
in a compiled kernel image. Section 3 describes and discusses
our analysis results regarding the mentioned common beliefs.
Section 4 gives an overview on the related work. Section 5
summarizes our work and concludes the paper.

2. Implementation of Static Variability in

Linux

This work analyzes the different characteristics of feature
selections and implementations that are used for compiling
the Linux kernel. While variation points for the same feature
may occur in different source files and languages, they remain
interlinked because they derive from a common source: the
user selection. Therefore, this user selection influences both
the fine-grained variability within the source files using
the CPP, as well as the coarse-grained variability in the
build system. A sound analysis of feature implementations
therefore requires the correlation of variations points in
different languages, which is non-trivial.

2.1 The Hierarchy of Variability

‘We observe variability in software projects in several forms,
locations and granularity. In fact, it can be described as a hi-
erarchy like in Figure 1. At the top-most layer [, features are
described and their constraints are modeled. This can happen
either programmatically (like in GNU/autoconf [3]), or in
a declarative way using domain specific languages (DSLs).
For instance, the operating-systems eCos [12] and Linux pro-
vide sophisticated languages, the configuration description
language (CDL) and KCONFIG [5], and configurators, which
expose all user-configurable features with various front-ends.

The realization of features and their selection happen for
systems written in C and MAKE heterogeneously at differ-
ent levels. In Linux, a sophisticated build system KBUILD
integrates KCONFIG seamlessly with the compilation process.
This represents level /1. Here, the decision what source files
to include and what compilation and linker flags to use is
heavily influenced by the feature selection from level /.

For each file that the build system selects for compilation,
the compiler uses the CPP to compose header and imple-
mentation source files and to select what parts to include
in a compilation unit. This fine-grained selection of feature
implementations on level /5 is dominated by the decisions
on level [1: Only features in source files that are actually
compiled will end up in the resulting kernel.

This dominance hierarchy continues on the language
level I3 and below: In the resulting compilation unit,
if() statements decide what feature implementations
to use both at compilation-time (by constructs such as
if (HAVE_FEATURE), with HAVE_FEATURE being a config-
uration generated CPP macro' on level ly) and at run-time. On
the linking level [4, further variation points can be realized in

! This example doesn’t work in Linux for purely technical reasons, but is not
uncommon at all in other systems such as busybox.
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Figure 1. Abstract overview over the dominance hierarchy of
variability implementations

linker scripts; again only for actually compiled compilation
units. This hierarchy can even be extended to run-time vari-
ability with loadable kernel modules (LKMs) (level I5). The
levels [4 and [5 are not (directly) KCONFIG-driven, because
the respective tools (e.g., linker, INSMOD) and languages (e.g.,
linker-scripts) cannot (directly) reference KCONFIG-derived
configuration variables (i.e., the CONFIG_ variables).

In this article, we compare the variability declaration on
level [y with the implementation levels /; and [5. Higher
levels will be covered in future work.

2.2 Fine- and Coarse-Grained Variability

Figure 2 shows how coarse-grained and fine-grained vari-
ability points relate to each other and how they are con-
trolled by the used toolchain. In step @, the feature selection
which is created by the user with KCONFIG, is saved to a
file (. config) that serves several purposes. First, it is used
for storing, loading and interchanging feature selections. Sec-
ond, the Linux build system KBUILD converts this feature
selection into two representations: In Step @ the selection is
stored in MAKE syntax to the file auto.conf. And in Step ©
it is stored in CPP syntax to the file autoconf.h. These gen-
erated artifacts control the compilation process on different
levels.

The representations for feature selections in the KCON-
FIG definitions lack the CONFIG_ prefix; it is added to all
other representations which creates a (more or less strictly
enforced) namespace for KCONFIG controlled symbols. For
the CPP representation ® an additional normalization step is
applied for tristate features: In order to represent the ternary
logic compiled into kernel, compiled as loadable kernel mod-
ule and disabled, KCONFIG creates an additional CPP variable
with an _MODULE suffix in autoconf.h for each tristate fea-
ture. In earlier work, we have analyzed the logical constraints
between the code and the KCONFIG definitions for logical
and referential defects [18].

The MAKE representation manages the coarse-grained
variability on a per-file basis. It selects a subset of all source
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Figure 2. In Linux coarse-grained varibility dominates fine-
grained varibility

files as compilation units in Step @. In Step @ compiler op-
tions and binding units are defined by this representation and
used during the compilation and linking process. The exact
mechanisms are fairly technical and have already been dis-
cussed elsewhere, (e.g. [13]). The fine-grained variability
is implemented in CPP blocks (#1fdef) and their conditional
expressions. These are controlled by the representation of the
feature selection in autoconf. h. The file is forced included
(with the -include CPP option) during the preprocessing
Step ©.

3. Feature Distribution in Linux

As part of the VAMOS? project we have been developing
tool support 3 to quantify and analyze the specified (o) and
implemented variability (currently /; and l) in Linux, that is,
features, their constraints and the mapping between specified
variability and implemented variability. In the following, we
provide some results from our analyses with Linux v3.1,
which defines a total of 11,691 feature symbols on the feature
modeling level (Ig).

3.1 By Type

The KCONFIG configuration tool supports features of differ-
ent types. Their distribution is depicted in Figure 3. Most
of the features (> 90%) are declared as option-like features
(either boolean or tristate). Their selection decides on

2 VAriability Management in Operating Systems

3 Our tools will be made freely available at http://wwwé4.cs. fau.de/
Research/VAMOS/tools.shtml
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Figure 3. Distribution of features by type

the presence of a feature and how it is compiled (either linked
statically or as a LKM). Additionally, we see that the 784
value-like (string, integer or hex) declared features are
clearly dominated by option-like features. Value-like features
are used for statically parametrising aspects of the Linux
kernel (e.g. the fequency of the timer interrupt).

A sound and complete analysis of the variability in Linux
requires both option- and value-like feature types as well
as their constraints. However, we observe that value-like
features generally don’t enable feature code in practice,
but (at least in Linux) are used to configure non-functional
features such as timer frequencies, page sizes or the kernel
version. We therefore conclude that tools for extraction of
feature implementations that extract variability based on
option-like features, (potentially) catch a reasonable subset
of all available variation points.

3.2 By Architecture

Linux version v3.1 supports a total of 26 architectures, plus a
number of additional sub-architectures. For each architecture
Linux essentially defines a distinct feature model which share
a large number of features. In total we count 7,226 (61.8%)
different features that are shared by all main* architectures.
The high number of distinct tristate features (4,657 or
64.4%) which are shared across all architectures, goes along
with the fact that most drivers are modeled this way.

Many great papers (e.g., [4, 7-9, 13, 18]) have been pub-
lished about applying static bug-finding approaches to Linux
and other pieces of system software. In all cases the authors
could find (and eventually fix) a significant number of bugs.
It is, however, remarkable, that most papers do not even
state the configuration(s?) they have analyzed, which, as [14]
shows, can be a serious issue for reconstructing published
experiments. We assume that they have used a single configu-
ration that selects fewer features than the configuration preset
allyesconfig, which raises the question how many feature
implementations are actually analyzed.

4excluding h8300, cris and um
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Figure 4 depicts the feature distribution between the most
often analyzed architecture x86 and all others. In the first
level, we see that restricting an analysis on arch-x86 already
results in 3,915 unselected (and unselectable!) features. Ad-
ditionally, the configuration preset allyesconfig selects
only roughly half of all available features. These numbers
show that more than 50% of the implemented features, and
therefore a large amount of source-code, remain unconsidered
when restricting an analysis to arch-x86/allyesconfig.

3.3 Coarse- Versus Fine-Grained Variability

Figure 5 shows the distribution of features by implementation
granularity: Despite the fact that existing studies (including
our own) have mostly focussed on the CPP as a means to
implement features in Linux [10, 17, 18] only a third (33.5%)
of all features do actualy affect the work of the CPP. These
features have an effect on the sub-file level. On the other
hand, two third (66.3%) of all features are referenced in the
build system. These features have an effect on the selection
of whole files into the build process as well as on general
build options.

But the features that influence KBUILD and CPP aren’t dis-
junct. Only 17.3% influence just the variability points within
the source files. Half of all features (50%) are exclusivly used
within the makefiles. Moreover, only 16.2% of all features
influence both coarse-grained as well as fine-grained variabil-
ity. The remaining 16.5% features are used only internally
in KCONFIG as meta-variables for interconnecting features.
They are exported in the different representations, but are not
used outside of KCONFIG.

These numbers show that the amount of coarse-grained
variability implemented in KBUILD is much larger than the
fine-grained variability implemented with the CPP within the
source files. Keeping in mind that variability points from
KBUILD (level /; in Figure 1) dominates the CPP induced
variability (level l2), we find it surprising that only 16.2%
of all features in KCONFIG get referenced by both the CPP
and KBUILD. We therefore conclude that in order to get
a holistic view on feature implementations in Linux, both
coarse-grained and the fine-grained variation points have to
be taken into account.
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Figure 5. Distribution of features by granularity

4. Related Work

In [5] Berger et al. investigate the configuration languages
and tools KCONFIG and CDL. While the work shows that
variability management tools are employed successfully in
open-source operating-systems, it covers only the feature
specification and modeling, that is, Step @ or level [y in
Figure 2.

Adams demonstrates that analysis, visualization and in
essence, re-engineering of the Linux build-system [2] is fea-
sible, which corresponds to level [; (Step ). The frame-
work Makao [1] infers modularity in KBUILD by analyzing
build traces. However, the amount of variation points that we
identify in KBUILD with this article indicates that the full re-
engineering of build-system variability remains an unsolved
problem.

Liebig et al. present a wide-ranged analysis of feature im-
plementations in system software [11]. This work focuses on
how the CPP is employed to implement (fine-grained) vari-
ability, which corresponds to level [ (Step ©). Focusing on
Linux, our analysis [18] of feature implementations in CPP-
blocks reveals a number of configuration defects. Nadi et al.
extend this work by including constraints from KBUILD [13],
revealing additional configuration defects (Step @ in Fig-
ure 2). Because their approach uses parsing to extract vari-
ability from KBUILD, it exhibits similar problems as the
appraoch in [4].

Kistner et al. propose a technique coined variability aware
parsing [8], which basically integrates the CPP variability
into tools for static analysis. This allows variability aware
type-checking. Mainly because of implementation challenges,
TypeChef focuses on arch-x86 and requires assistance in
form of additional constraints by tools like [4] or [18]. Even
with this, the approach covers only variability from level I3
— the build-system derived variability from level [ remains
out-of-scope.

In contrast, [17] proposes to employ existing tools more
effectively by running them multiple times. The idea is to
calculate (partial) configurations that combined maximize the
so called configuration coverage, which indicates the covered



amount of code. The results of Section 3 suggest promising
benefits from better integration of build-system variability.

In [14], Palix et al. analyze the evolution of faults in Linux
over the last decade. Already the setup of the experiment and
reconstruction of the original analysis from [6] turned out
as a challenge, because a considerable amount of work for
finding the correct configuration, and therefore the exact set
of files to analyze, had to be done.

5. Summary and Conclusion

This article continues our line-of-argument from earlier ar-
ticles that variability has to be seen as source of bugs on its
own respect. We identify a hierarchy of variability that shows
how variability points, which are managed by different tools,
concepts and languages related to and dominate each other.

In order to scope and relate the amount of induced vari-
ability by different tools, we use this hierarchy to quantify
variability points in Linux v3.1 on the levels [y to [5. By this,
we provide numbers that support the relevance of option-like
configuration. Moreover, we disprove the common belief that
most variability was induced by the CPP. Quite the contrary,
the presented numbers show that build system variability is
much larger than generally expected. We see this as a call
for further research on (proper) extraction of build-system
induced variability to improve tools that analyze variability
and feature implementations in software systems.

References

[1] ADAMS, B., DE SCHUTTER, K., TROMP, H., AND MEUTER,
W. D. Design recovery and maintenance of build systems.
In 23st IEEE Int. Conf. on Software Maintainance (ICSM’07)
(October 2007), IEEE, pp. 114-123.

[2] ADAMS, B., SCHUTTER, K. D., TROMP, H., AND MEUTER,
W. D. The evolution of the Linux build system. Electronic
Communications of the EASST (2007).

[3] Autoconf — GNU project — Free Software Foundation
(FSF). http://www.gnu.org/software/autoconf, vis-
ited 2011-11-12.

[4] BERGER, T., SHE, S., CZARNECKI, K., AND WASOWSKI,
A. Feature-to-code mapping in two large product lines. Tech.
rep., University of Leipzig (Germany), University of Waterloo
(Canada), IT University of Copenhagen (Denmark), 2010.

[5] BERGER, T., SHE, S., LOTUFO, R., AND UND
KRZYSZTOF CZARNECKI, A. W.  Variability model-
ing in the real: A perspective from the operating systems
domain. In 25th IEEE Int. Conf. on Automated Software
Engineering (ASE °10) (2010), pp. 73-82.

[6] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND EN-
GLER, D. An empirical study of operating systems errors. In
18th ACM Symp. on OS Principles (SOSP °01) (2001), ACM,
pp- 73-88.

[7]1 ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND
CHELF, B. Bugs as deviant behavior: a general approach to
inferring errors in systems code. In 18th ACM Symp. on OS
Principles (SOSP *01) (2001), ACM, pp. 57-72.

19

[8] KASTNER, C., GIARRUSSO, P. G., RENDEL, T., ERDWEG,
S., OSTERMANN, K., AND BERGER, T. Variability-aware
parsing in the presence of lexical macros and conditional
compilation. In 26th ACM Conf. on OOP, Systems, Languages,
and Applications (OOPSLA ’11) (Oct. 2011), ACM.

KREMENEK, T., TWOHEY, P., BACK, G., NG, A., AND EN-
GLER, D. From uncertainty to belief: inferring the specification
within. In 7th Symp. on OS Design and Implementation (OSDI
’06) (2006), USENIX, pp. 161-176.

LIEBIG, J., APEL, S., LENGAUER, C., KASTNER, C.,
AND SCHULZE, M. An analysis of the variability in forty
preprocessor-based software product lines. In 32nd Int. Conf.
on Software Engineering (ICSE "10) (2010), ACM.

LIEBIG, J., KASTNER, C., AND APEL, S. Analyzing the
discipline of preprocessor annotations in 30 million lines
of C code. In 10th Int. Conf. on Aspect-Oriented Software
Development (AOSD ’11) (2011), S. Chiba, Ed., ACM, pp. 191-
202.

[12] MASSA, A. Embedded Software Development with eCos. New
Riders, 2002.

[13] NADI, S., AND HoLT, R. C. Mining Kbuild to detect
variability anomalies in Linux. In 16th Eur. Conf. on Software
Maintenance and Reengineering (CSMR ’12) (2012), T. Mens,
Y. Kanellopoulos, and A. Winter, Eds., IEEE. To appear.

[14] PALIX, N., THOMAS, G., SAHA, S., CALVES, C., LAWALL,
J. L., AND MULLER, G. Faults in Linux: Ten years later. In
16th Int. Conf. on Arch. Support for Programming Languages
and Operating Systems (ASPLOS ’11) (2011), ACM, pp. 305-
318.

[15] SPENCER, H., AND COLLYER, G. #ifdef considered harmful,
or portability experience with C News. In 1992 USENIX ATC
(June 1992), USENIX.

[16] SPINELLIS, D. A tale of four kernels. In 30th Int. Conf. on
Software Engineering (ICSE '08) (May 2008), W. Schifer,
M. B. Dwyer, and V. Gruhn, Eds., ACM, pp. 381-390.

[17] TARTLER, R., LOHMANN, D., DIETRICH, C., EGGER, C.,
AND SINCERO, J. Configuration Coverage in the Analysis of
Large-Scale System Software. In 6th W’shop on Progr. Lang.
and OSes (PLOS ’11) (2011), A. SIGOPS, Ed., ACM.

[18] TARTLER, R., LOHMANN, D., SINCERO, J., AND
SCHRODER-PREIKSCHAT, W. Feature consistency in compile-
time-configurable system software: Facing the Linux 10,000
feature problem. In ACM SIGOPS/EuroSys Eur. Conf. on
Computer Systems 2011 (EuroSys ’11) (Apr. 2011), ACM,
pp- 47-60.

(91

(10]

(11]


http://www.gnu.org/software/autoconf

	Introduction
	Implementation of Static Variability in Linux
	The Hierarchy of Variability
	Fine- and Coarse-Grained Variability

	Feature Distribution in Linux
	By Type
	By Architecture
	Coarse- Versus Fine-Grained Variability

	Related Work
	Summary and Conclusion



