AspectVHDL Stage 1: The Prototype of an
Aspect-Oriented Hardware Description Language

Matthias Meier

Technische Universitit Dortmund
matthias2.meier@tu-dortmund.de

Abstract

Hardware description languages are a promising field for the
application of aspect technology. In a case study with the
MB-Lite soft core CPU, which is an open, cycle accurate re-
implementation of Xilinx’ Microblaze processor, we show
that crosscutting concerns in hardware structures actually
exist. After discussing the semantic differences between pro-
gramming languages and hardware description languages,
we introduce our first version of AspectVHDL, an aspect-
oriented extension of the popular hardware description lan-
guage VHDL. The evaluation of an aspect-oriented vari-
ant of the MB-Lite CPU gives first evidence that using As-
pectVHDL for the implementation of crosscutting hardware
concerns does not induce any costs in terms of chip space.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords AspectVHDL, Aspect-Oriented Programming,
Hardware Description Language

1. Introduction

This is a follow up on an earlier ACP4IS/MISS paper that
described our motivation and first ideas regarding an aspect-
oriented extension of VHDL [3]]. Based on experience with
empirical studies on Aspect-Oriented Programming [4]], our
goal is now to develop AspectVHDL in a process that is
driven by studies with users. We regard this as crucial as
the educational background of hardware developers differs
significantly from the background of the typical users of
aspect technology. Besides this, the development of such
process is interesting research in itself.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MISS’12, March 27, 2012, Potsdam, Germany.

Copyright © 2012 ACM 978-1-4503-1217-2/12/03. .. $10.00

Stefan Hanenberg

University of Duisburg-Essen
stefan.hanenberg@icb.uni-due.de

Olaf Spinczyk

Technische Universitidt Dortmund
olaf.spinczyk@tu-dortmund.de

In order to “drive” the language development process by
empirical studies, AspectVHDL has to be designed incre-
mentally in several stages. This paper describes stage I.
It is a very simple language extension, because the num-
ber of early design decisions has been kept low intention-
ally. We only added well-known AOP concepts, namely be-
fore/after/around advice and introductions, to VHDL. Based
on a small case study that we conducted ourselves, we will
show in this paper that even this simple language exten-
sion is already beneficial and that an implementation will
not cause overhead in terms of wasted chip space. There-
fore, it is well suited for initial empirical studies. At the end
of the paper we will also give a brief overview on ideas for
the next two stages. Stage 2 is planned to address compo-
nent and aspect instantiation, which are special in hardware
descriptions, while stage 3 will introduce further kinds of
VHDL-specific join points into the language.

2. Motivating Example

The aforementioned case study with the MB-Lite CPU now
also serves as a motivating example. The MB-Lite VHDL
source code consists mainly of the four components that
represent pipeline stages and three packages that contain
type declarations and helper functions.

One of the typical use cases for aspects in software is the
implementation of optional features. In our other projects
with the AspectC++ language we frequently model “min-
imal extensions” with “extension aspects” as they often
crosscut the system’s core abstractions [6]]. We observed that
optional extensions of the MB-Lite processor also tend to
crosscut the code base. Figure |1|illustrates the code scatter-
ing of three optional hardware accelerator features, namely
hardware support for multiplication, shifting, and floating
point operations The code fragments that deal with these
extensions can be found in three of five components and in
all of the three packages of the MB-Lite processor.

A more detailed look at the VHDL source code (in to-
tal 5294 lines) shows that the three optional extensions can
be configured with a special VHDL language feature called

U'An FPU is normally not part of the MB-Lite. We have integrated this
feature during an earlier project.

cfg_
Pkg
mblite
std_
Pk
SHIFT
core H FPU
r —
decode Pkg

Figure 1. Code scattering of optional MB-Lite extensions

Generics. A generic is a configuration parameter, which can
be used by “if ... generate” statements. This is similar to
what most system software developers know as conditional
compilation with “#ifdef” in C — a mechanism that is of-
ten criticized for causing misconfiguration bugs and mainte-
nance problems if used in larger project settings [7]. We thus
regard a modular and easily pluggable implementation of the
extensions with aspects as desirable and as a good example
to study stage 1 of AspectVHDL.

3. Aspectsin VHDL

Hardware structures that are described in VHDL follow a
strictly hierarchical organization: The fop-level design en-
tity can contain and connect other entities, which in turn can
also contain and connect further sub-entities. Each entity
can have multiple implementation variants called architec-
tures. In the MB-Lite project there is only one architecture
per entity. In software terms, we can regard these entity/ar-
chitecture pairs as the interface and the implementation of
components. Packages mainly contain reusable definitions
of types, functions, and procedures to be used by the entities.
For example, types are needed to describe the interface con-
nections of entities or allowed values of internal component
states (signals). Functions and procedures contain sequences
of VHDL statements. They encapsulate reusable logic deci-
sions, calculations, or signal assignments.

It is worth to note here that if a procedure is “called” from
within an architecture description, this leads to the instantia-
tion of the hardware structure that implements the procedure.
There is no such thing as a function call stack or binary code
reuse in VHDL. Nevertheless, on the source code level, there
are procedures, which look familiar to software developers.
Another interesting property of VHDL is that statement se-
quences are not necessarily executed one after the other. In
the concurrent part of an architecture description all state-
ments are executed in parallel. This is because each state-
ment produces hardware structures. There is no processor
that is interpreting instructions — we are building processors
here. If a design shall perform actions in a sequential order,
this has to be described explicitly as a process. Each archi-
tecture can define multiple processes.

B =

3.1 Join Points

The definition of an aspect-oriented language extension has
to start with the join-point model. It determines the events
or structures that can be affected by aspect code. In As-
pectVHDL stage 1 we support the following four kinds of
join points:

Procedures/functions: All statements in procedures or func-
tions are executed sequentially, regardless whether they
are used from within a process or from within the con-
current part of an architecture. This makes them ideal
candidates for classic before/after/around advice, which
changes the dynamic control flow. In contrast to func-
tions, procedures don’t have a type and result value.
However, they can have in, out, and inout parameters.

Types: By modifying types it is possible to introduce struc-
tural extensions into various components, because a type
is usually used at various points in the code. In stage 1,
AspectVHDL supports introductions into record types as
well as into enumeration types.

Architectures: As the architecture describes the structure
and behavior of the design entities, it has to be possible to
introduce additional elements, such as concurrent state-
ment, processes, signals, etc. In AspectVHDL these ex-
tensions can be grouped in architecture fragments called
slices (inspired by AspectC++).

Process triggers: A process of an architecture is not started
by a call. It has a list of signals, the sensitivity list, which
can trigger its execution. A process trigger join point is a
sensitivity list. Aspects have to be able to extend it.

Even though we can imagine more join-point types (see sec-
tion [5), this set is sufficient for basic structural and behav-
ioral extensions.

3.2 Pointcut Expressions

AOP languages typically contain special syntactic elements
to describe pointcut, i.e. sets of join points to be affected by
aspects. The pointcut expressions, which are used for this
purpose directly reflect the join-point model. The following
listing gives some examples of pointcut expressions that we
used in our case study:

within(core_Pkg) and type(ctrl_execution)
within(arch of execute) and process(execute_comb)
within(* of core) and call(enable (%))
architecture (* of x*)

The pointcut functions type, process, call, and architec-
ture are used to identify join points of a particular kind and
name. The process function is used to identify a process ex-
ecute_comb (line 2). However, at the moment it can only be
used to extend the processes’ sensitivity list. The call point-
cut function identifies a procedure or function. In VHDL it
makes no sense to distinguish between call and execution —
functions and procedures are instantiated for each call any-
way. Therefore, we decided that a single call pointcut func-

tion is sufficient. As in other AOP languages wildcards can
be used for argument or result types (functions only). The
within pointcut function can be used to select a join point
unambiguously. It can be used in combination with types,
processes, and functions/procedures as shown in lines 1 to
3. The argument either describes a package (line 1) or an
architecture (lines 2 and 3). As architecture names are only
unique per design entity, the syntax “<architecture-name>
of <entity-name>" is used. In order to support more com-
plex pointcut expressions we also added algebraic operators
and, or, and not. The last pointcut function args will be ex-
plained in the next section.

3.3 Adyvice Code

AspectVHDL stage 1 supports two types of advice: The be-
fore/after/around advice can be used to redirect the control
flow in the case of a function or procedure call. Introductions
can be used to insert a slice into a type, architecture, or pro-
cess trigger. The following example shows around advice:

advice around(...) : within(arch of core)
and call (enable (%))
and args(ena_i, mem_i.ena_i, stall) is
ena_i <= mem_i.ena_i and (not stall);
end advice;

This around advice will intercept any call of enable() in
the architecture arch of the entity core. Inside the around ad-
vice the built-in procedure proceed can be used to invoke the
original function or procedure. In the example we don’t use
proceed but only assign a signal instead. The identifiers that
are used in the advice code body are bound to context infor-
mation, namely function arguments, with the args pointcut
function. This is the same mechanism as in Aspect] and As-
pectC++. The types of the identifiers have to be declared in
the argument list of the around advice, which is omitted in
the listing.

With introductions it is possible, for instance, to add new
statements to the declarative part of an architecture, to insert
entire processes into the statement part of an architecture,
or to extend a record by new element declarations. A slice
declaration describes the fragment that is to be introduced:

slice ctrl_slice is record
fpu_op fpu_operation;
end record ctrl_slice;

advice slice : within(core_Pkg)
and type(ctrl_execution) is ctrl_slice;

This code fragment shows the extension of a record. A
record is a compound type as a struct in C. In the example
we extend the record ctrl_execution of the package core_Pkg
by the element fpu_op of type fpu_operation.

3.4 Aspects

As in other AOP languages aspects are used to group advice
and slices. In our case study each CPU extension is imple-
mented by one aspect. Within an aspect it is also possible to

use ordinary VHDL statements to declare functions and pro-
cedures, types, constants, or signals as well as to instantiate
sub-components. The following example shows the skeleton
of our FPU extension:

aspect FPU is
type fpu_states is (idle, running, ready);

advice around() : within(arch of execute)
and call(execution(*)) is
end advice;
end aspect FPU;

As aspects can potentially affect all VHDL translation
units of the project, there has to be a mechanism to locate
aspect definitions automatically and efficiently. We therefore
store aspect code only in files with the extension .avhd.

3.5 Syntax of AspectVHDL

To summarize our language design and to provide a more
precise definition of AspectVHDL stage 1, Figure [2| shows
the grammar in Backus-Naur Form. The extension is seam-
lessly integrated into VHDL. We took over the wordy style
of the language and hope that hardware developers will feel
familiar. The syntax has to be read as an extension to the
grammar presented in IEEE Standard 1076-1993 [§].

4. Case Study: MB-Lite Extensions

In order to show that AspectVHDL stage 1 is already a use-
ful in a real-world VHDL project, we refactored the source
code of the MB-Lite processoﬂ which is a cycle-accurate
re-implementation of Xilinx’ MicroBlaze processor. The
aim was to remove the three aforementioned configurable
extensions, to re-integrate them by means of AspectVHDL,
and to compare the two MB-Lite variants.

Confronted with the real VHDL code, we found that the
implementation lacks the necessary join points for our as-
pects. For example, the decode stage and the execute stage
of the pipeline are implemented in a very long process with
almost no procedure or function calls. This “spaghetti code”
makes it impossible to use aspects for an extension of the
pipeline stages. For now we modularized the code manually
by moving code fragments from the long process descrip-
tions into procedures. In the future we have to rely on the
extensions that are planned for stage 3 in combination with
guidelines for aspect-aware VHDL code.

Based on the well-modularized variant of the MB-Lite
code, we removed the three extensions and added them again
as three well-separated aspects. This new source code com-
pletely avoids the code scattering problem that was shown in
Figure[I} The “aspect weaving” was performed manually as
our weaver implementation is not yet fully finished. For ad-
vice on procedure calls it was mainly necessary to add a few
helper procedures. Introductions were woven in a straight-
forward manner. It was very helpful that in VHDL the order

2 Freely available from http://opencores.org/project,mblite

http://opencores.org/project,mblite

aspect 1=
aspect identifier is
aspect_declaration
end | aspect | [aspect _name |;

aspect_ declaration ::=
{ aspect _declarative item }
aspect declarative item ::=
advice
| slice
| subprogram __declaration
| subprogram_body
| aspect_type declaration
| constant _declaration
| signal _declaration
| component _declaration
advice 1=
subprogram _advice

| introduction advice

introduction advice ::=
advice slice : pc_expr is slice_name

subprogram advice ::=
advice advice type : pc_expr is
subprogram _statement part

end | advice |;

advice type 1=
before(formal parameter list)
| after(formal parameter list)

| around(formal parameter list)

slice ::=

slice identifier is aspect_slice_def;

pointcut __expr 1=
pointcut _expr and pointcut_ expr
| pointcut_expr or pointcut expr
| not pointcut expr
| (pointcut _expr)

| builtin _pointcut _function

aspect_type_declaration ::=
type identifier is aspect type def;

builtin_pointcut_ function ::=
call(subprogram _pat)
| architecture(name pat of name pat)
| type(name_pat)
| process(name_pat)
| within(name pat | of name pat |)
| args(parameter pat)
aspect_slice def 1=
aspect_architecture_ definition
| aspect type definition
| aspect process definition
aspect _architecture_definition ::=
architecture is
architecture declarative part
begin
architecture statement part
end | architecture |
aspect _type def ::=
enumeration type_definition
| record type definition
aspect_process_ definition ::=
process(sensitivity list)

Figure 2. The AspectVHDL extension to the VHDL grammar

| VHDL | mod. VHDL [AspectVHDL |

Stage 2: Instantiation Model Extensions

The pointcut ex-

max. Freq. (MHz) | 17.366 17.366 17.396
Slices 8,712 8,530 8,479
Look-Up Tables 13,671 13,302 13,277
Flip-Flops 2,883 2,884 2,849

Table 1. Synthesis Results

of declarations or statements is rarely relevant. For example,
statements can be simply inserted at the end of the concur-
rent part of the architecture, because everything runs in par-
allel anyway.

Table [I] shows a comparison of the required resources
for the unmodified VHDL project, the modularized imple-
mentation, and the “woven” AspectVHDL project. The re-
sults were obtained with the Xilinx ISE 10.1.03 using default
settings for a Xilinx Spartan-3E XC3S1200E FPGA (speed
grade -4). All three variants are fully functional. The maxi-
mal possible frequency is quite similar for all three projects
with a small advantage for the AspectVHDL project. The
differences between these frequencies are hard to explain
because of the closed synthesis tool from Xilinx. However,
there is evidence that the use of aspects will not necessarily
have a negative effect on the maximal supported frequency.
The same observation holds for FPGA resources, such as
slices, look-up tables, and flip-flops.

5. Outlook

In this section we introduce our early plans and ideas for the
next stages of AspectVHDL.

pression language of AspectVHDL stage 1 only supports
matching of architectures, but not to distinguish their in-
stances. As a consequence, aspects affect all instances of
an architecture in the same way. In our case study context
this means that if we integrate the MB-Lite processor into a
multiprocessor system, all processors would have the same
extensions. This is clearly a flaw. A similar problem exists in
Aspect] or AspectC++ programs, which also don’t support
advice per object, but it is less dramatic, because the code of
a class, which is affected by aspects, is not copied for each
object.

For AspectVHDL stage2 we therefore have to think about
pointcut expressions that can select instances of hardware
components. This could be done by the use of instantia-
tion labels and the instantiation path, which unambiguously
identify each instantiated component. The following exam-
ple shows a possible syntax:

advice slice : instance(mblitel.executel)
is exec_slice;

Here the pointcut function instance selects the MB-Lite
with the label mblitel and the sub-component executel. For
an implementation of this feature in an aspect weaver it
would be necessary to duplicate the architecture description.

Stage 3: Join Point Model Extensions For stage 3 of
AspectVHDL we want to integrate more fine-grained and
hardware-specific join point types. For example, join points
that could be useful to modify the transitions of finite state
machines. Finite state machines are frequently used in hard-
ware designs. They are typically implemented by a case
statement as shown in the following listing:

type fpu_states is (idle, running, ready);
signal state : fpu_states := idle;
case state is
when idle =>
if (x = ’1’) then
state <= running;
end if;
when running =>

when ready =>

end case;

Here the finite state machine has three states idle, running
and ready. The transition between the two states idle and
running is performed by a signal assignment (“signal <=
value™). If we wanted an aspect to affect a state transition,
e.g. jump to ready instead of running, a fine-grained join
point type would be needed to select the signal assignment.
An Aspect]-style “set join point” would be a solution, but
we also think about higher-level state machine abstractions.

A second idea for stage 3 is to add the input and output
signals of components to the set of join point types. The
reason is that due to the strict hierarchy in VHDL designs
it is extremely tedious to route signals between arbitrary
components or between a component and the outside world.
It also leads to a lot of redundant code. From the AOP
perspective, this is a homogeneously crosscutting concern
and the new join point type would allow us to implement
this kind of signal routing in a very easy and modular way.

6. Related Work

Among others, Dharbe and Medeiros [2] applied Aspect-
Oriented Programming in combination with SystemC. Sys-
temC is a high-level hardware description language, which
is mainly used for simulation. Tools for hardware synthesis
from SystemC code are still not widely used.

In [5]], the authors applied the concept of Feature-Oriented
Programming to Verilog. Their work has similar objectives,
but we believe that Aspect-Oriented Programming is the
more powerful approach and, thus, better suited to explore
new ways to modularize hardware descriptions.

The Aspect Described Hardware Programming Lan-
guage (ADH) [l1] is a domain-specific language that can
be translated by a compiler to VHDL code. This is powerful
approach, but we think that an aspect-oriented extension of
VHDL has more potential for wide-spread use than a com-
pletely new language.

In [9]], an aspect-oriented approach for the verification of
hardware systems is presented by means of the “e” hardware
verification language. With respect to AOP features “e” is
quite limited. For example, each advice can affect only a
single join point. There is no “quantification”.

7. Conclusions

Even though a hardware description language looks like
an ordinary programming language syntactically, there are

many important semantic differences. Examples are the par-
allel execution of statement sequences in the concurrent part
of an architecture or the lack of a procedure call stack, which
means that all procedures are always expanded inline. A
non-technical difference seems to be the educational back-
ground of the “programmers”: Procedures are well-defined
in the VHDL-standard and supported by the synthesis tools
we tested, but the MB-Lite developer was no exception in
not making use of this modularization feature.

For our aspect-oriented language extension of VHDL we
therefore cannot stop with stage 1, i.e. alanguage which only
copies well-known concepts from the AOP software domain.
It is important to take the human factor into account dur-
ing the language design process. This motivates empirical
studies, which we are currently planning. It is also crucial to
come up with design guidelines that lead to better modular-
ized code and more potential join points at the same time.
In order to convince VHDL developers it will also be nec-
essary to design hardware-specific AOP abstraction such as
the transparent routing of signals mentioned in Section 5]

Acknowledgments

This work was partly supported by the German Research
Council (DFG) under grant no. SP 968/4-1 and within the
Collaborative Research Center SFB 876, project A4.

References

[1] A. Bainbridge-Smith and S.-H. Park. ADH: An aspect de-
scribed hardware programming language. In Proc. of FPT,
2005.

[2] D. Déharbe and S. Medeiros. Aspect-oriented design in Sys-
temC: Implementation and applications. In Proc. of SBCCI,
2006.

[3] M. Engel and O. Spinczyk. Aspects in hardware - what do they
look like? In Proc. of ACP41S, 2008.

[4] S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter. Does
aspect-oriented programming increase the development speed
for crosscutting code? An empirical study. In Proc. of ESEM,
20009.

[5] Y. Jun, T. Qingping, L. Tun, and C. Guorong. FeatureVerilog:
Extending verilog to support feature-oriented programming. In
Proc. of IPDPSW, 2011.

[6] D. Lohmann, W. Hofer, W. Schroder-Preikschat, and

O. Spinczyk. Aspect-aware operating system development. In
Proc. of AOSD, 2011.

[7]1 R. Tartler, D. Lohmann, J. Sincero, and W. Schréder-
Preikschat. Feature consistency in compile-time-configurable
system software: Facing the Linux 10,000 feature problem. In
Proc. of EuroSys, 2011.

[8] The Design Automation Standards Committee of the IEEE.
IEEE Standard 1076-1993: VHDL. 1993.

[9] M. Vax. Conservative aspect-oriented programming with the e
language. In Proc. of AOSD, 2007.

http://sfb876.tu-dortmund.de

	Introduction
	Motivating Example
	Aspects in VHDL
	Join Points
	Pointcut Expressions
	Advice Code
	Aspects
	Syntax of AspectVHDL

	Case Study: MB-Lite Extensions
	Outlook
	Related Work
	Conclusions

