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Abstract
In this paper, we propose role-oriented programming, which
is realized in the language Object Teams/Java, as an alterna-
tive approach toward modularizing context-dependent con-
cerns. We aim to integrate the benefits of quantification with-
out introducing issues related to encapsulation and robust-
ness. A language extension to Object Teams is presented by
combining quantification with role-playing. It is achieved by
querying the static program structure and transforming the
code by using logic meta programming in Prolog. We dis-
cuss the query mechanism in detail in the text.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.2.13
[Software Engineering]: Reusable Software

General Terms Languages, Design

Keywords Role-Oriented Programming, Object Teams,
Logic Meta-Programming, Prolog

1. Introduction
Separation of concerns and code reuse are primary goals
of the object-oriented programming (OOP) paradigm. In-
heritance, including overriding and dynamic dispatching of
methods, is one of its major concepts. It follows the Open-
Closed principle [13], given that a module is open for ex-
tensions but closed for modifications of the interface. Inheri-
tance is suitable for use in many applications for the decom-
position of core concerns and it contributes to modularity
by enabling well-structured hierarchies of objects. However,
inheritance is too rigid to handle crosscutting concerns effec-
tively. This is due to undesired code scattering and tangling
caused by the need to dispatch to the same functionality in
multiple locations.
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Aspect-oriented programming (AOP), presented in [9],
addresses this need by introducing a module aspect, in which
pointcuts add a new mechanism for dispatching. Pointcuts
declaratively describe a set of join points in a base program,
where the aspect code applies. The base program may re-
main oblivious of the adaption and the required code can be
incorporated in a separate module. The possibility to define
a piece of code in a single module and to specify the con-
ditions under which the code is going to be applied to other
parts of the program is called quantification. This is a de-
sirable feature when dealing with crosscutting concerns [1].
Although the obliviousness and the loose coupling of aspects
contribute well to modularity, they are in conflict with the
principles of encapsulation [16]. The ability of prominent
AOP languages, such as AspectJ, to access and adapt the
base code at (almost) any time and location without the re-
strictions of encapsulation increases the risk of violating pre-
/postconditions or the invariants of modules, which remain
secure until that point. Another potential problem, so called
pointcut fragility [11], results from changes to the base code
that can cause join points to incorrectly match or mismatch a
pointcut. Pointcut fragility poses a threat to the evolution ro-
bustness of a program. Among the multiple reasons for this
threat [2], one is the use of wildcards in pointcut expressions.
Several wildcards rely on the lexical matching of identifiers,
although their name is not inherently connected to the code
they represent (except by coding conventions). For example,
a pointcut expression, set*(..), intended to match all set-
ter methods, may inadvertently encompass a method named
setup, as well. This may result in the giving up of obliv-
iousness and arranging the base code in order to fit to the
pointcut [3].

In this paper, we propose a different approach toward
the Open-Closed principle, referred to as contextual method
overriding, which is realized in role-oriented programming.
We aim to enhance the role-oriented language Object Teams
to support quantification without the degradation of encap-
sulation or robustness. We present a combination of quantifi-
cation and role-playing in Object Teams, achieved by query-
ing the static program structure and transforming the code
by using logic meta-programming.
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1.1 Role-playing in Object Teams

Role-oriented programming (ROP) aims to provide better
support for mapping real-world entities to program module
hierarchies. This is accomplished by emphasizing the fact
that the same entity may play different roles according to the
context, in which it is interacting. ROP allows the context-
based dispatching of object behavior. Roles may improve the
separation of concerns, particularly in complex programs,
because context-related code can be encapsulated in sepa-
rate modules, even though it affects the same objects. Roles
enable objects to dynamically change interfaces and behav-
ior.

An object-oriented language with an explicit support of
roles is Object Teams/Java (OT/J), which is in the scope of
this paper. Object Teams aims to support the collaboration
of objects, and therefore, introduces two new types of class
modules: Roles and Teams.

Roles feature two special relationships. In the first rela-
tionship, a role is played by a base. A role class defines an-
other class to be its base (via playedBy binding). For exam-
ple, for a role class, Student, we may choose a class, Per-
son, as its base. Every runtime instance of the role class is
associated with a corresponding instance of the base class.
Base classes do not require any changes and are unaware
of the adaption performed by a role. The relationship be-
tween the role and the base has many similarities with in-
heritance. First, the role may share properties of the base
class (via callout bindings); second, the role may intercept
method execution of the base and dispatch it to other code
(via callin bindings, featuring before, after and replace the
base method), and third a role is a legal substitute in every
location, where an instance of the base is required (transla-
tion polymorphism). Callins can be viewed as the contextual
overriding of methods, meaning that the dynamic dispatch
depends on the current context, which is defined by roles
and teams. Together, callins and callouts achieve true dele-
gation between role and base objects. Role-playing relation-
ships offer some flexibility, which is not offered by inheri-
tance. A base object may dynamically add and remove role
instances during runtime. The base object may also be as-
sociated with multiple independent role instances belonging
to different role classes or even the same role class. Object
Teams supports gradual encapsulation, which offers a flexi-
ble balance between encapsulation and decapsulation [5].

In the second special relationship, a role is harbored by a
context, which defines the environment and the meaning of
a role. For example, a Student exists only within the context
of a University; otherwise, it is simply a Person. Contexts
in Object Teams are reified as Team classes. Roles are inner
classes of a team and therefore, every instance of a role is an
inner instance of an instance of a team. Each team instance
may be activated and deactivated at runtime, determining if
the context-dependent behavior of the included roles should
apply or not. Only roles of active team instances affect the

behavior of base objects by callins. The effect of callins can
be further restricted by guard predicates, which are boolean
expressions declared using the keyword when.

2. Motivation
We motivate and demonstrate the proposed approach, which
is discussed in the next section, with the example of an OT
team class in listing 1. The team, InitializationChecker,
provides the context for a role, MonitoredCircle, which
adapts a base class, Circle (ln. 3). The role checks, whether
a field radius of the base class was set before it was accessed
for the first time. Therefore, the role defines callin bindings
to intercept the execution of any setter-method that would
modify the field (ln. 11) and any getter-method that would
read its value (ln. 19). In the example, two methods are
involved in each case, because the Circle class has a sec-
ond property, i.e. area, which is derived from, and hence,
dependent on, radius. The first callin binding (ln. 11) ex-
tends both setter methods of the base to be followed by the
setterCalled method of the role. The second callin bind-
ing (ln. 19) extends both getter methods of the base to be
preceded by the checkInit method of the role. After the
execution of a setter-method, the role records the initializa-
tion of the field radius (ln. 8). This information is checked
before the execution of any getter-method, throwing an ex-
ception in case the initialization of the field has not occurred
in advance (ln. 15).

1 public team class InitializationChecker {
2

3 protected class MonitoredCircle
playedBy Circle {

4

5 private boolean isFieldSet = false;
6

7 protected void setterCalled () {
8 isFieldSet = true;
9 }

10

11 setterCalled <- after setRadius ,
setArea;

12

13 protected void checkInit () {
14 if (! isFieldSet) {
15 throw new Exception("Field

radius has not been
initialized");

16 }
17 }
18

19 checkInit <- before getRadius ,
getArea;

20 }
21 }

Listing 1. A policy enforcement context

The code might be applied as a part of policy enforcement
in a dependency injection framework, where it is desirable to
test whether the properties of an object have been initialized
with reasonable defaults before accessing them.
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In the current state, Object Teams requires explicit bind-
ings in the playedBy, callout and callin relationships, as can
be seen in the example in listing 1. The possibilities of quan-
tification are limited to allowing an enumeration of methods
to be bound to a callin method. There is no method to declar-
atively describe bindings as we find in pointcut expressions.
The code should work fine in the specific example. However,
consider the case in which we wish to monitor other classes
(possibly involving multiple properties) and hence wish to
reuse our solution. Thus far, parts of the MonitoredCircle
class may be factored out to an abstract superclass, but only
to a limited extent. This would not include the playedBy
and callin bindings, because they require static bindings,
which we want to keep flexible in this use case. Our new
approach aims to provide possibilities for a declarative ex-
pression and the quantification of such role-playing relation-
ships. To avoid interference with encapsulation, we do not
intend to change the binding mechanism between the role
and the base. In contrast to pointcut mechanisms, our ap-
proach aims to identify the program elements (classes, meth-
ods, fields) that can be used in such bindings, and enable a
generic quantified definition of their values.

3. Approach
Our approach is implemented as a language extension called
Generic Object Teams (GOT), which is realized as a plug-in
in Eclipse 3.7. It was first presented in [12], which outlines
the basic concepts of GOT. In this paper we present a differ-
ent use case and discuss the core mechanisms of querying
the code in detail.

GOT introduces meta-variables as legal representatives of
program elements in role-playing bindings. Meta-variables
are defined and bound by the use of logic meta-programming
in Prolog. In a pre-compilation step, GOT code is trans-
formed to standard OT code through the replacement of all
meta-variables and the corresponding statements. In order to
effectively control evaluation and transformation, GOT adds
the following three language constructs to OT: (1) queries
to identify program elements; (2) match statements to pa-
rameterize and evaluate queries; and (3) per-blocks to apply
meta-variables in code and control the transformation.

In listing 2 we present a generic version of our previous
example. The team class is extended with a match expres-
sion (ln. 2), which is similar to a query method. Meta vari-
ables are declared as parameters of the match expression. In
contrast to normal parameters in Java, a meta-parameter may
not only be in but also out, as in Prolog. This allows binding
of a free variable by evaluation of the query statements in the
method body. The in/out-character is indicated by a prefix of
the identifier: the prefix + indicates in, the prefix - indicates
out, and the prefix ? allows both in or out. The notation fol-
lows the standard Prolog notation. Moreover, meta-variables
in GOT are typed with a special set of types to enable static
type checking. The type names also use the prefix, ?, to bet-

ter distinguish them from normal types. The meta-variables
are bound by query expressions in the match body (ln. 4);
queries are discussed in more detail in the next section.

1 public team class GenericChecker
2 match (?Class ?base , ?Field ?f, ?Method

?getter , ?Method ?setter)
3 {
4 findProperties (?base , ?f, ?getter ,

?setter)
5 }
6 {
7 per (?base) {
8 protected class -Monitored playedBy

?base {
9 per (?f) {

10 private boolean -isFieldSet =
false;

11 protected void -setterCalled () {
12 -isFieldSet = true;
13 }
14 per (? setter) {
15 -setterCalled <- after ?setter;
16 }
17 protected void -checkInit () {
18 if (!-isFieldSet) {
19 throw new Exception("Field " +

?f.getName () + " has not
been initialized");

20 }
21 }
22 per (? getter) {
23 -checkInit <- before ?getter;
24 }
25 }
26 }
27 }
28 }

Listing 2. Generic version of InitializationChecker

After evaluation, the match statement must deliver a set
of tuples of matching values for the four meta-variables. For
example, applying it to the Circle class, we want to identify
two tuples: {(Circle, radius, getRadius, setRadius); (Circle,
radius, getArea, setArea)}.

Within the team class, per-blocks build the scope for ap-
plying meta-variables. A per-block declares a non-empty set
of meta variables. The inner parts of a per-block can be
interpreted as a template. During transformation, for each
matching tuple of values of these meta-variables, one in-
stance of the template code within the per-block is copied
into the final output code, with every occurrence of a meta-
variable replaced by the corresponding value. A nested per-
block depends on its enclosing block, and hence, may gen-
erate multiple instances for one instance of the enclosing
block. For example, in listing 2, the role class, -Monitored,
is generated once for each class that was matched to the
meta-variable, ?base (ln. 7 et seq.). Within the role, for
each field of the base class matched to ?f, a boolean field,
-isFieldSet, and a pair of methods, -setterCalled and
-checkInit, appear (ln. 9 et seq.). Furthermore, any getter-
and setter-method related to field ?f, captured in ?getter

and ?setter, is bound to callins (lns. 15 and 23). A pro-
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gram element introduced by per-blocks, such as role class
-Monitored, must have an unbound meta-variable as its
name, which does not need declaration. It cannot be refer-
enced from outside the block; every instance of the program
element generated during transformation receives a name
that is unique in the scope of the surrounding element.

Although our focus is the use of meta-variables in role-
playing relationships, parts of our use case might need ad-
ditional information, which applies at other locations of our
code, e.g. when we want to access meta-information, like
the name of a matched field as in the example (line 19 of
listing 2). In this case, there is a need for a trade-off. On the
one hand, we want to support the programmer in his task; on
the other hand, we want to retain encapsulation. We decided
to grant access to meta-variables outside of specifically de-
fined locations (e.g., playedBy) by using reflection, making
the decision explicit to the programmer. A meta-variable
representing a program element is interpreted as a variable
declared with a corresponding type of java.lang.reflect
package. For example, the ?f meta-variable can be used like
any variable of java.lang.reflect.Field, and there-
fore, grants a method, getName, to access the name of
the element (ln. 19). The transformation replaces the meta-
variable with a normal variable of the appropriate type and
includes a method, which uses the reflect API to initialize
the variable, in the output code. The result of the example in
listing 2 after transformation with the aforementioned query
match looks like the code in listing 1, except for the inclu-
sion and call of an additional method for the reflection based
access to the radius field.

The advantage of the GOT approach is that it is com-
pletely decoupled from any base class, except for the match-
ing query. Furthermore, the team class is now applicable
to host multiple roles for different base classes with mul-
tiple fields without change. The resulting code in listing 1
would change in two ways: first, there would be multiple role
classes in the team, one for each matching base class; sec-
ond, within a role, there would be multiple sets of fields and
methods dedicated to an initialization check, one for each
matching field of the enclosing base class. We are able to
control application of a generic team by simply adjusting the
query. The initial effort required for coding genericity should
reduce coding efforts with regard to quantification and reuse
in different scenarios.

3.1 Queries

The purpose of queries is to enable programmers to ac-
curately define program elements that are used in a role-
playing relationship. We decided to use the logic program-
ming language Prolog, to implement queries. Logic pro-
gramming offers a very concise and elegant way of express-
ing queries, including multiple free variables and transitive
closure. Furthermore, it emphasizes expressions addressing
the structure of program elements and helps avoiding pitfalls
of lexical matching that may increase fragility.

To provide maximum (static) information to the program-
mer, the entire abstract syntax tree (AST) of the program is
transformed into Prolog facts. For example, a class is rep-
resented by a fact, classT(#id, ’name’, [#definitions], ...),
which holds a unique ID for the fact, the name of the class, a
list of IDs referencing other facts representing the definitions
of that class, and some more information.

To integrate queries in GOT, we have introduced a new
kind of method marked with the keyword otquery instead
of a return type. These methods can be collected in query
classes, so programmers may build and use query libraries.

One option to construct a query is by directly quoting a
Prolog statement in an annotation, as shown in listing 3. The
query classOfName finds classes and their names by match-
ing classT facts. The query only provides the interface; the
code itself is pure Prolog. Such queries allow access to the
complete factbase at the level of the Prolog language.

1 @Prolog("classOfName(ID , Name) :- classT(
ID, Name , _, _, _, _, _, _, _, _, _)")

2 public otquery classOfName (?Class ?c, ?
String ?name) {}

Listing 3. A query to match a class to a name

If a core of queries is already existent, a more preferable
option to construct a query is by combining other queries,
because expressions are statically type checked. An ex-
ample is given in listing 4. The query, findProperties,
is aligned to match tuples of fields and its corresponding
getter- and setter-methods in a class, as required in the
GenericChecker.

1 otquery findProperties (? Class ?c, ?Field
?f, ?Method ?getter , ?Method ?setter)

2 {
3 readsField (?getter , ?f) &&
4 setsField (?setter , ?f) &&
5 isMemberOfClass (?setter , ?c) &&
6 isMemberOfClass (?getter , ?c) &&
7 isMemberOfClass (?f, ?c)
8 }

Listing 4. A query to match getter- and setter-methods
related to a property

During the transformation process, a query is translated
to and evaluated in Prolog. The GOT transformer bridges
the gap between the two worlds. Queries are extended to
ensure the type conformity of matched values. Furthermore,
GOT program elements are mapped to Prolog IDs and vice
versa. For example, the programmer may pass an argument
Circle.class to a parameter typed with ?Class.

4. Related Work
Several logic-based approaches that provide querying en-
gines based on Prolog or similar exist [4, 7, 10, 14]. The
approaches share the need to declaratively define and match
program elements. A common goal is to offer a more so-
phisticated join point selection. Another aspect-oriented ap-
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proach that addresses genericity by the introduction of meta-
variables is LogicAJ [15]. The research aims to overcome
the limitations of wildcard matching and was a major source
of inspiration for the development of our current approach.
However, all these approaches are based on classic AOP and
do not feature roles or context; breaking encapsulation is still
an issue.

An approach to address context-related concerns is context-
oriented programming (COP) [6, 17]. COP approaches
introduce first-class enhancements for classes that offer
context-dependent method dispatch. Although these ap-
proaches support dynamic dispatching and activation, they
do not involve genericity of program elements.

A structured meta-programming tool for generating As-
pectJ programs using code templates is Meta-AspectJ (MAJ)
[18]. In contrast to our approach, MAJ does not provide ex-
pressions to declaratively define program elements.

The fragility of pointcuts is a well-documented problem
[2]. Several tools were presented, which analyze pointcut
evaluation and provide feedback to the programmer to pre-
vent mismatches [8, 11].

5. Conclusions and Future Work
In this paper, we have discussed the problems of AOP ap-
proaches with regard to encapsulation and robustness. We
have proposed role-oriented programming in Object Teams
as an alternative solution toward context-dependent con-
cerns and introduced the language extension Generic Object
Teams, which adds logic meta-variables and improves de-
coupling and quantification.

Several areas of our design remain to be explored in fur-
ther detail. Specifically, the co-existence of inheritance with
the newly introduced genericity poses a challenge, because
both target modularization and reuse, and hence, need coop-
eration without interference. We plan to address these issues
in a more sophisticated version of our transformation model.
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