
Automatic Aspectization of SystemC ∗

Deian Tabakov

Schlumberger Information Solutions
5599 San Felipe Str.
Houston, TX, USA

dtabakov@slb.com

Moshe Y. Vardi

Rice University
6100 Main Str. MS-132

Houston, TX, USA

vardi@cs.rice.edu

Abstract
A successful monitoring framework for SystemC requires
access to internal variables of modules and channels, and the
ability to trace the execution of threads and methods. We pro-
pose a framework for automatically instrumenting user code
and exposing its state and syntax via automatically gener-
ated Aspect-Oriented Programming code and direct instru-
mentation. This allows monitoring the execution with a fine-
grained temporal resolution. Our tool, CHIMP, allows the
users to declare specification primitives referring to the val-
ues of internal variables, the values of parameters passed to
function calls, and function return values. Tracing execution
of processes is enabled by allowing statements’ execution or
function calls to be used as atomic propositions. The correct
behavior of the model can then be specified by forming tem-
poral formulas and clock expressions using these primitives,
without requiring manual instrumentation of the user code.

Categories and Subject Descriptors B.6.2 [Logic De-
sign]: Reliability and Testing; D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Performance, Verification

1. Introduction
SystemC (IEEE Standard 1666-2005) has emerged as a
de facto standard for modeling of hardware/software sys-
tems [4], in part because it allows modeling at high levels
of abstraction, gradual refinement of the model, and exe-
cution of the model during each design stage. SystemC is
a library of classes and macros extending C++. Hardware
components like modules, channels, signals, ports and in-
terfaces, have corresponding SystemC objects. Each module

∗ A full version of this paper is available as technical report at
www.cs.rice.edu/∼vardi/papers/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MISS’12, March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1217-2/12/03. . . $10.00

can have any number of internal variables, representing local
memory; threads and methods, defining the functionality of
the module; and other sub-modules, allowing for complex
hierarchical models. SystemC events trigger the execution
(or resumption) of processes, and their effect can be imme-
diate or delayed, depending on the event’s notification type.
SystemC channels and signals carry out communication be-
tween modules, and can have their own internal variables,
processes, and sub-modules [3]. All modules, channels, and
ports are implemented internally as C++ classes. This pro-
vides natural object-oriented encapsulation, data hiding, and
well-defined inheritance mechanisms.

In addition to being a modeling language, SystemC is also
a simulation framework, allowing efficient execution of the
model to be simulated. The SystemC kernel keeps track of
event notifications, maintains a set of triggered processes that
are eligible to run, and schedules the order of their execution.
The kernel also keeps track of, and advances, the execution
time, and triggers events that are set to be notified after some
delay. For a detailed discussion of the SystemC kernel we
direct the reader to [3, 8].

Tabakov et al. [8] proposed a precise definition of Sys-
temC traces, which captures the alternation between the
user code and the kernel. They also define a systematic
way for enriching existing specification languages with a set
of Boolean properties, which, together with existing clock-
sampling mechanisms in Property Specification Language
(IEEE Standard 1850-2007) and SystemVerilog Assertions
(IEEE Standard 1800-2005), allow the sampling of the ex-
ecution trace with flexible temporal and transactional res-
olution. The user-code primitives that have to be exposed
according to Tabakov et al. are meant to enable white-box
validation, which means that the C++ code of all processes
in the model, the values of user-define variables, location
counter, and the call stack are first-class members of the
property specification language [1]. This allows a very flexi-
ble temporal resolution of the execution trace. In particular, it
enables specification of properties across a wide spectrum of
temporal granularities, from cycle level to transaction level.
The framework of Tabakov and Vardi [7] enables full white-
box validation, but the user code has to be instrumented

9

extensively. References to user-defined variables, location
counter, and the call stack require adding function calls at
the appropriate locations, which would invoke the monitor-
ing processes at the appropriate points in the execution [7].

Aspect-oriented programming (AOP) [5], which aims to
increase modularity by allowing the separation of cross-
cutting concerns, is a natural solution to the instrumentation
problem, since monitoring is an obvious example of a cross-
cutting concern. Instead of instrumenting the user code di-
rectly, verification engineers could be asked to add an ap-
propriate set of AOP directive, and then use AspectC++ [6]
to instrument the model. This approach has two difficulties.
First, it requires verification engineers to develop expertise
in aspect-oriented programming and assume responsibility
to maintaining a set of AOP directive. Second, some of the
exposures required to enable full-scale white-box validation
seems to require instrumentation that is beyond the current
power of AspectC++.

In this work we describe the tool CHIMP (CHIMP Han-
dles Instrumentation and Monitoring of Properties) that al-
lows the users to specify instrumentation sites using a high-
level description language, and then instruments the code
by automatically generating AOP advice and then execut-
ing AspectC++. CHIMP adds a layer of abstraction above
manually writing AOP advice, so that users can use a simple
declarative language to describe the desired primitives to be
exposed, and assign them to variables that hold if and only if
the execution pointer is at that location.

Detecting violations of a property being tested requires
constructing a deterministic monitor that uses the exposed
values and locations. The user can generate the monitor by
hand or using an automated tool. The monitor is integrated
with the instrumented code via simple function callbacks im-
plemented in the monitor. In this work we used the auto-
mated monitor construction techniques proposed by Tabakov
and Vardi [9], but the framework presented here is applicable
also to hand-written monitors.

2. Preliminaries
2.1 Assertion-based verification (ABV)

Monitors (also called “functional checkers” or just “check-
ers”) are used as aids for run-time verification. Typically, a
monitor observes the execution of the model under verifi-
cation (MUV) and issues a warning or terminates execution
if the observed behavior deviates from the expected behav-
ior. In cases when deviation is observed, the problem and its
source are easier to identify and debug. Furthermore, using
monitors automates the analysis of the tests results and al-
lows a large number of random test vectors to be executed
without the need for immediate attention by a verification
engineer.

Among the several advantages of using ABV is the mod-
ular nature of assertions: each one is a partial specification of
the system, and those specifications can be added incremen-

tally, as time permits. A further benefit of using ABV in the
initial specification of the design is that the assertions allow
the verification and the design teams to base their work on
a common set of formal properties. This usage of assertions
supplements the natural language description of the design,
and is an important part of the documentation of the design.

2.2 ABV framework for SystemC

The first requirement for an assertion-based verification
framework for SystemC is a formal specification language
that can describe the expected behavior of the model’s ex-
ecution. In the past, design specifications have been given
in natural language documents [10], but natural language is
inherently ambiguous and it is easy to miscommunicate or
misinterpret the intended functionality of the design. The
language proposed by Tabakov et al. [8] proposes a set of
primitives that allow existing specification languages to be
extended and applied to SystemC models.

Tabakov and Vardi [7] define a framework for handling
all monitors and for activating them at appropriate sam-
ple points. They add an abstract class, mon prototype, to
the SystemC kernel; all concrete monitors extend this class.
Each monitor that we construct in this work defines callbacks
that are called from the instrumented code to communicate
with the monitor.

In order to keep track of all monitors we need a cen-
tralized list. The framework of [7] adds a new object,
mon observer, to the SystemC kernel. At instantiation,
each monitor registers with the mon observer, which builds
a list of all monitors. mon observer provides a func-
tion, get monitor by index(), that returns a (generic)
mon prototype* pointer to any of the monitors. Our im-
plementation takes advantage of this mechanisms to obtain
pointers to monitors from the instrumented code and to call
the appropriate callback from the instrumented code.

Due to space limitations, we invite the reader to consult
the full version of this paper online for discussion of related
work and additional examples.

3. User-code primitives
Our approach provides a mechanism for referring to a rich
set of user code primitives in property specifications, without
requiring the user to instrument the code manually or to write
AOP advices. Primitives are declared by the user via a high-
level language, and after that they can be used in any of the
properties.

Exposing function calls Certain assertions need to be
checked immediately before a particular function call is
made, or immediately after a particular function call returns.
The declaration

location loc1 ‘‘% bar::foo()’’:call

declares a Boolean atomic proposition loc1 that holds
immediately before the execution of the model reaches a call
site of a function foo() of class bar. Similarly, a Boolean

10

loc2 that holds immediately after the return of the function
is declared using

location loc2 ‘‘% bar::foo()’’:return

Exposing function execution Exposing the start and end
of execution of user-defined functions allows the specifica-
tion of pre- and post-conditions and is done by the declara-
tions

location loc3 ‘‘% bar::foo()’’:entry

location loc4 ‘‘% bar::foo()’’:exit

Both the call primitive and the entry primitive signal
that the function foo() is about to execute, but they hold
in different locations in the user code. The call primitive
holds at the call site of foo(), while the entry primitive
holds immediately before the execution of the first statement
of foo(). Similar is the distinction between return and
exit. Another key distinction is that entry and exit can
only be used with user-defined functions. This restriction is
motivated by the property language of [8]. To attain gener-
ality, library code is treated as a black box, and the state of
library objects is allowed to be exposed only through pub-
licly declared interfaces.

Exposing function parameters and return values Expos-
ing the return values of functions allows the specification of
post-conditions for functions. The variable ret in the fol-
lowing declaration is assigned the return value of foo():

value ret ‘‘float bar::foo(...)’’:0

This primitive is available for both user-defined and
library-defined functions.

Exposing the values of function parameters according to
their location in the parameter list allows the specification
of pre-conditions without requiring the user to know the
name of the actual parameters used in the function body
declaration. The primitive declaration

value int var1 ‘‘float bar::foo(...)’’:2

declares an (integer) variable var1 whose value is equal
to the 2-nd parameter of function foo() at the time when
the function starts executing. Notice that the function may
be defined in a library, but the function call is a part of
the user code. Following the framework of [8], we would
like to expose the function parameters for both user-defined
and library-defined functions. However, due to a limitation
of AspectC++, this primitive is currently available only for
user-defined functions.

Exposing syntax Sometimes it may be desirable to assert
that a particular C++ statement (or a set of C++ statements)
is reached during the execution of the model. In other cases,
assertions may need to be checked immediately before or
immediately after some statements. This requires exposing
the syntax of the user code to the monitoring framework.
CHIMP allows the use of regular expressions to specify arbi-
trary locations in the source code. For example, the primitive
declaration

plocation loc5 ‘‘/ *a’’:before

declares a Boolean atomic proposition loc5 that holds
immediately before the execution of all statements that con-
tain the division operator ”/” followed by zero or more
spaces, followed by the variable ”a”, i.e., the locations where
we divide by the variable a. The dual,

plocation loc6 ‘‘balance *= *.*;’’:after

holds immediately after all statements matching the regu-
lar expression ‘‘balance *= *.*;’’ .

Exposing private variables Referring to values of private
or protected class variables (i.e., local storage) of modules is
critical for white-box validation of models. The declaration

makevisible my_class

declares a SystemC module or a C++ class my class fully
visible to the monitoring framework and enables references
to its class variables in all monitors.

4. Implementation
Our implementation uses the monitoring framework de-
scribed in [7] to obtain references to the monitors from the
instrumented user code. The monitors are agnostic about the
semantics of the primitive Booleans used in the property:
these primitives are treated as Boolean expressions that de-
termine state change in the monitors. The monitors expect
these Boolean primitives to be assigned correct values prior
to the execution of monitor steps. In this section we show
how the primitives described in Section 3 are assigned val-
ues.

Exposing function calls Exposing location primitives,
e.g.,

location loc1 ‘‘% bar::foo()’’:call

is done by creating a communication interface between
the user code and the monitor, and then instrumenting the
user code to communicate with the monitor. The monitor
defines a callback function callback loc1() and a local
Boolean variable loc1. The monitor expects that the call-
back function callback loc1() will be called from the
user code as soon as the execution of the user code reaches
the function call bar::foo().

The instrumentation of the user code must call the mon-
itor’s callback loc1() function immediately before the
function call to bar::foo(). Our implementation creates
an AOP advice that carries out the communication with the
monitor from the user code:

advice call("% bar::foo()"): before() {

// Start new inner scope

{ extern sc_core::mon_observer* observer;

mon_prototype* mp = observer->get_monitor_by_index(42);

my_monitor42* mon42 = (my_monitor42*) mp;

// This callback implemented only by my_monitor42

mon42->callback_loc1();}

} // advice

Figure 1. Advice to expose calls of bar::foo().

11

The AOP advice in Fig. 1 uses an inner scope to prevent
variable name conflicts. This also ensures that no variable
declared during the execution of the advice code will remain
in scope after the end of the execution of the advice code. A
pointer to the mon observer object observer is obtained
using its external declaration. This example assumes that the
42-nd property uses the location declaration loc1.

Exposing the locations immediately after the return of
a function call is done in a similar way as in Fig. 1, but
replacing before with after in the generated AOP advice.
The advice is activated upon the function’s return and it
calls the monitor’s callback function corresponding to the
location primitive.

Exposing function execution Primitives associated with
the start and the end of functions are handled by the monitors
in the same way as call and return primitives: the monitor
declares a Boolean variable corresponding to the location
primitive, and this variable is set to true via a callback.
In order to instrument the user code we generate an AOP
advice that is activated when the monitored function starts or
finishes executing.

Exposing function parameters and return values For
each monitored value primitive myval, e.g.,

value int myval ‘‘% bar::foo(...)’’:2

the monitor defines a callback function callback myval(T

v), where T is the type of myval. The monitor also declares
a local variable value of myval of type T . The monitor ex-
pects that callback myval()will be called upon execution
of the function bar::foo().

Instrumenting the user code is done by an automatically
generated AOP advice. The advice for

value int myval ‘‘% bar::foo(...)’’:2

is presented in Fig. 2. The advice uses the built-in AOP
function call tjp->arg(n) that exposes the n-th parameter
of the function (counting up from 0). tjp->arg(n) returns
a void* pointer that needs to be cast to the type of myval
before it is passed to the monitor via the callback.

advice execution("int driver::foo(...)"): before() {

{ extern sc_core::mon_observer* observer;

mon_prototype* mp = observer->get_monitor_by_index(42);

my_monitor42* mon42 = (my_monitor42*) mp;

int value_to_send = (int) *(int *)tjp->arg(1);

mon42->callback_myval(value_to_send); }

}

Figure 2. Exposing the parameters of bar::foo().

Exposing syntax Declarations of plocation primitives,
e.g.,

plocation loc6 ‘‘balance *= *.*;’’:after

are handled by the monitor as location primitives: for
each plocation the monitor declares a callback function
and a local Boolean variable. The value of the variable is set
to true by the callback, the monitor executes a step, and the
variable is set to false before the callback returns. Note that

in addition to matching syntax, this mechanism can also be
used to match code labels (e.g., reset:) and pre-processor
directives (e.g., #ifdef).

Instrumenting the user code to expose statements that
match regular expressions cannot be done using the AOP
framework. Thus, our implementation checks all user-code
files and identifies locations that need to be instrumented,
using pattern matching. At each such location we insert code
that obtains a reference to the correct monitor and makes the
callback.

Exposing private variables All modules and channels in
SystemC extend the pre-defined objects sc module and
sc channel, which are implemented internally as C++

classes. To expose their private and protected data mem-
bers we use C++’s friend mechanism. Intuitively, a moni-
tored module declares the monitor class as a friend class,
which gives the monitor unrestricted access to all internal
data members. We show how to do this automatically via an
aspect introduction.

AOP introductions allows adding new data members and
functions to a class [2]. However, AOP does not restrict the
advice code that can be weaved via an introduction. Since in-
troductions extend the static structure of classes, an introduc-
tion advice can also be used to declare the monitoring class
as a friend class. Our implementation generates a named
pointcut reveal(), in respect to which we define the intro-
duction (Fig. 3).
pointcut reveal() = ‘‘bar’’ || ‘‘bas’’;

advice reveal() : slice class {

friend class monitor0;

friend class monitor1;

...

};

Figure 3. Exposing private and protected members

5. Experimental evaluation
The input to CHIMP1 is a configuration file where the user
defines the locations where properties need to be evaluated,
and the properties themselves. CHIMP generates a monitor
for each property [7] and the corresponding AOP advices
that trigger the execution of the monitor at the requested
locations. We used AspectC++ to instrument a SystemC
model, which was compiled with the generated monitors.

We used version 2.2.0 of the OSCI simulator, which
was modified using the framework of [7, 9]. We ran all
experiments on Ada, Rice’s Cray XD1 compute cluster
(rcsg.rice.edu/ada). Each of Ada’s nodes has two dual
core 2.2 GHz AMD Opteron 275 CPUs and 8GB of RAM.
We used a SystemC model with about 3000 LOC implement-
ing a system for reserving and purchasing airplane tickets. It
approximates actual subsystems currently used in hardware
design (see [8] for more details).

1 CHIMP is available for download from http://www.cs.rice.edu/CS/

Verification/Software/software.html

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

2

4

6

8

10

12

14

Number of monitor calls

M
on

ito
rin

g
ov

er
he

ad
 (

pe
rc

en
ta

ge
 o

f b
as

el
in

e)

Figure 4. Instrumentation overhead as a percentage of the
baseline runtime.

We measured performance by simulating for 1 million
clock cycles with focus on the cost of instrumentation. The
average wall-clock execution time of the system over 10 runs
without instrumentation was ∼33 seconds. We call this the
“baseline” execution. We next added a simple assert true

specification that is checked at increasing number of loca-
tions in the source code. For each experiment we wrote a
configuration file containing the specification and declared
the locations at which the specification was to be checked.
Our implementation generated the corresponding AOP ad-
vice and the monitor. The advice was then weaved into the
user source code using AspectC++. The instrumented code
and the monitor code were compiled and executed using the
same input parameters as the baseline execution. At the end
of execution the monitor reported how many times it had
been called, which corresponds to the number of times the in-
strumentation had been exercised. Since we are using a very
simple monitor, any slow-down of the execution is due to the
instrumentation.

Fig. 4 presents the number of times the monitor was called
and the corresponding execution overhead of the user-code
as a percentage of the baseline execution time. We observe a
linear increase in the overhead as we increase the number of
calls.

Fig. 5 shows the cost of the instrumentation per monitor
call, as a percentage of the baseline execution. Our data
suggest that there is a fixed cost of the instrumentation,
which, when amortized over more and more calls, leads to
lower average cost. The average cost per call stabilizes after
300,000 calls, and is less than 0.5× 10−4%.

6. Conclusion
In this work we described a framework and a tool called
CHIMP for exposing a rich set of user-code primitives
via automated source-code instrumentation through tool-
generated AOP advice and direct instrumentation of source
code. The mechanisms presented here are easy to use and
do not require the users to instrument the code manually or
to be experts in AOP. The user-code instrumentation tech-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−4

Number of monitor calls

P
er

ce
nt

ag
e

ov
er

he
ad

 p
er

 c
al

l

Figure 5. Instrumentation overhead per monitor call as a
percentage of the baseline runtime

niques have already been integrated successfully with the
monitoring framework of [7].

One limitation of the instrumentation approach presented
is that arguments of functions calls are not exposed if the
called function is not defined in the user code. This affects
the monitoring of calls of library functions. We expect that
future versions of AspectC++will include this functionality,
thereby removing the limitation from the instrumentation
approach presented here.

Acknowledgments Work partially done while the first au-
thor was at Rice University, supported by a gift from Intel.

References
[1] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and

R. Majumdar. The BLAST query language for software
verification. In SAS’04, pages 2–18, 2004.

[2] A. Gal, W. Schröder-Preikschat, and O. Spinczyk. AspectC++:
Language proposal and prototype implementation. In
OOPSLA’01, 2001.

[3] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer, 2002.

[4] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and
M. Moy. Automatic generation of schedulings for improving
the test coverage of Systems-on-a-Chip. In FMCAD ’06,
pages 171–178.

[5] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. V. Lopes,
C. Maeda, and A. Mendhekar. Aspect-oriented programming.
In ECOOP’97, pages 220–242.

[6] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++:
an aspect-oriented extension to the C++ programming
language. In CRPIT ’02, pages 53–60.

[7] D. Tabakov and M. Vardi. Monitoring temporal SystemC
properties. In MEMOCODE’10, pages 123–132.

[8] D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman. A
temporal language for SystemC. In FMCAD’08, pages 1–9

[9] D. Tabakov and M. Y. Vardi. Optimized temporal monitors
for SystemC. In RV’10, pages 436–451.

[10] M. Y. Vardi. Formal techniques for SystemC verification. In
DAC ’07, pages 188–192.

13

