On the Extensibility Requirements of Business Applications

Mohamed Aly Anis Charfi

SAP Research Darmstadt, Germany
{mohamed.aly, anis.charfi}@sap.com

Abstract

Business applications play a crucial role for the day-to-day running
of a business. These applications typically support a wide range of
standard business processes like opportunity-to-order and order-to-
cash. Customers using these solutions often demand extensions that
will complement the existing functionalities offered by the standard
application. The requirements for extensibility can be different for
each customer which makes the enablement of business software
for extensibility very challenging. In this paper we demonstrate
some of these challenges and requirements through an example
application and evaluate them against some state-of-the-art works
on extensibility.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—Methodologies

General Terms Design, Languages

Keywords Business, Requirements, Extensibility, Extensions

1. Introduction

Software systems designed and built for specific purposes are often
required to accommodate new functionalities to enhance, compli-
ment, or change existing features. This trend in software flexibility
is becoming a necessary part of modern software as it becomes
more oriented towards end user customizations and requirements.
As an observation, most software is currently delivered with a set
of core functionalities and is left open for expansions through dif-
ferent extensibility means. Terms like plug-ins, add-ons, apps, and
extensions are emerging as popular means for extending the func-
tionalities of a core software. For example, Eclipse !, the famous
platform for building IDEs, is based on the idea of having differ-
ent tools that contribute to the development process as independan-
tely developed pluggable components (plug-ins). The Eclipse core
platform however is responsible for handling the integration and
runtime to ensure that plug-ins seamlessly work together (this is
similar to a microkernel). Another example of an extensible appli-
cation is Firefox 2, a popular web browser. Firefox offers two means
for extensions namely add-ons and plugins. Add-ons bring in new
functionalities (i.e. a new toolbar, a new button, etc.) whereas a

Thttp://wuw.eclipse.org
Zhttp://www.firefox.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

NEMARA’12, March 27, 2012, Potsdam, Germany.

Copyright © 2012 ACM 978-1-4503-1127-4/12/03. .. $10.00

Mira Mezini

Software Technology Group, TU Darmstadt, Germany
mezini@informatik.tu-darmstadt.de

plug-in is used to display content Firefox cannot natively render
(like special audio, video, and text formats).

Software extensions has also been adopted in the context of
cloud based business software. SAP Business ByDesign °, Net-
suite 4, and SalesForce ° are examples of cloud based business
software products. In this context, business applications, like en-
terprise resource planning (ERP) and customer relationship man-
agement (CRM), are delivered in the software as a service (SaaS)
form where all software and data associated are stored centrally
and accessed using a thin client over the web. Different tenants can
choose relevant core business software modules and further cus-
tomize their selections with extensions. The software provider has
to have a convenient model to enable the core software for extensi-
bility and to facilitate the development of extensions.

Business applications are typically built according to these lay-
ers: business process, graphical user interface (GUI), and business
objects (BO). The business process layer depicts the underlying
business process which this application supports, the GUI layer
contains the interaction elements that will be used, and business
objects hold the data model and business logic needed for the pro-
cess execution. Extensions can take place at one or many layers of
the software. Several challenges arise to declare extensible artifacts
at each layer. Some of these challenges address issues like how to
enable different views (white, grey, and black box) on each layer,
how define cross-layer extension points, constraints associated with
extension points, and how to simplify the understanding and con-
sumption of the underlying extensibility model of an application.

In this paper we outline some of these extensibility requirements
through an example business application and analyze them against
state-of-the-art approaches to demonstrate the need for better so-
lutions to support the cross-layer extensibility of business applica-
tions.

2. Business Software

Enabling business software for extensibility is very challenging.
There are several stakeholders involved. The business software
provider is responsible for providing a core business software
that typically supports a set of standard business processes for a
wide range of customers. The software can be installed locally on
premises or offered in a cloud setup in the form of a Software as
a Service (SaaS). Each customer can then choose to further extend
the core functionalities by integrating more add-ons to the appli-
cation. These add-ons are developed by extension developers and
can be made available through an online add-on store where they
can be downloaded and activated by end users. The extensions can
also be tailored and developed offline and integrated manually.

3http://www.sap.com/bydesign
“http://wuw.netsuite.com

Shttp://www.salesforce.com

Business y
Process Not avail
eno|
Layer
Check Check
customer availability of
credit limit product
Graphical |
User : Orders Customer
! Received Credit Check
Interface |
Layer |
Business Order CustomerRating
Object ! +id +id
Layer +create() +create()
+delete() +delete()
+update() +update()
+retrieve() +retrieve()

Update
customer with

expected
delivery date

Customer rejected

able / not
ugh

available

N

Custf
accept

Determine
pricing

date

Create order

Stock Search Price Selector New Order
Product SalesOrder
+id +id
+create() +create()
+delete() +delete()
+update() +update()
+retrieve() +retrieve()

Figure 1. An example application: Simplified order-to-cash

A business software is used to support the execution of a set of
business processes (for example, sales order processing, or human
resources management process). For the purpose of defining our
extensibility requirements, we can abstract a business software to
be composed of the following layers: business process, user inter-
face, and business object layer. Of course this is only a simplified
abstraction of a business software (for exampkle reporting or per-
sistency have not been taken into consideration). The business pro-
cess layer depicts underlying business process activities and tasks
along with their execution sequence. The user interface layer in-
volves all screen forms, and reports that are used throughout the
execution of a certain business process (for example, a Sales Order
form and a Billing form). The business object layer contains data
and business logic that is performed in the background to ensure
the correct execution of the business process as well as to validate
the consistency of the data the software is using. More information
about business objects can be found in [8]. In Section 2.1, we will
give an example of a business application with an emphasis on the
three described layers and an extension scenario.

2.1 Example Application
2.1.1 The core application

In an enterprise resource planning (ERP) application, an important
business process is the order-to-cash [11]. This process involves
activities that aim to receive and process an order initiated by a
customer. In this example, we will consider a simplified version of
an application implementing the order-to-cash process as well as
all artifacts involved (UI and business objects). Figure 1 illustrates
our example.

Business process In this application, the underlying business pro-
cess is as follows. Orders sent by customers are constantly moni-
tored. Once an order arrives, the customer credit limit and the avail-
ability of the products ordered are checked internally. If products
are not available, the customer is informed about a forecasted de-
livery date of his order. If the customer accepts the delivery date,
the orders are processed normally, otherwise the process ends. Fi-
nally, a pricing scheme can be determined and a sales order can
then be created.

User interface The end user is expected to interact with several
forms as depicted in the figure. User interfaces for checking orders,
customer credit, product availability, pricing, and creating a new
order are provided.

Business objects Based on the business objects (BO) provided,
the application is able to encapsulate different functionalities and
access the underlying database to create, retrieve, update, and
delete records. The Order BO holds the records of all orders re-
quested by customers. The CustomerRating BO holds credit
rating information for each customer. The Product BO holds the
information of all products as well as the availability of the prod-
ucts in stock. The SalesOrder BO contains the sales order in-
formation generated for each customer order. Each BO stated also
contains necessary business logic to ensure the proper execution of
the business process and the consistency of the data.

2.1.2 An extension scenario

The core application described provides the necessary basic func-
tionalities for an order-to-cash process. Consider the following ex-
tension scenario of a customer who would like to extend his busi-
ness process to include an additional activity which involves check-
ing a customer credit risk with an external credit reporting agency.
For that purpose, the following is required on each of the layers:

e Business process: a new activity should be added for the exter-
nal check after (or in parallel with) the internal customer credit
local check activity and before the product availability check
activity.

GUI: the existing customer credit check user interface should
be updated with UI elements that are necessary to display the
indicator of the external credit reference agency rating.

Business object: a new Customer Rating BO should be im-
plemented to communicate with the external credit reporting
agency, store queries, and additional business logic to account
for that. The OrderPricing BO price calculation method
should be extended to account for the external rating.

3. Requirements for Extensibility

Given the example described in Section 2.1, we describe the fol-
lowing requirements that are necessary for enabling extensibility:

R1: Controlled Visibility The developers of the base software
would often like to hide their implementation details from exten-
sion developers. Giving the source code under the full disposal
of an extender is undesirable in the context of business software.
There can be parts of the source code that implement functional-
ity which is compliant to certain legal measures. For example, in
our example application, the SalesOrder BO contains methods
that calculate tax. The calculation is done based on tax calculation
law within the country. Another important reason to hide source
code is to avoid problems with upgrades. If an extender has the
full control to modify the source code of the core system, future
upgrades are more likely to fail. The extender, therefore, should
only be allowed to extend parts of the source code which are ac-
counted for. Hiding source code can also be important to hide the
extender from the underlying complexity of the core system or to
protect intellectual property. Three different views on the source
code have been widely used in literature; white-box, gray-box, and
black-box view [23]. A white-box view guarantees that full access
to the extender is provided. However, giving an extension devel-
oper the source code, does not mean that he can change whatever
he can to accommodate a new extension. This leads to the further
distinguishment of two forms of white-box exposure: open-box and
glass-box. In an open-box view, the extension developer can see
the source code and is allowed to modify it and change whatever
he wants to accommodate his new extension. The resulting binaries
might therefore be totally new. A glass-box view is more restrictive.
The extension developer is allowed to see the source code but is not
allowed to modify it. Therefore, an extension is separately devel-
oped and extends the binaries of the base software. The black-box
view is the most restrictive form of views. In this view no imple-
mentation details are provided to the extender. The software can
be abstracted through particular interfaces that can be used by an
extension for integration. The gray-box view provides a compro-
mise between the white-box and the black-box view on the soft-
ware. Grey-box view provides a restricted form of access to a sys-
tem artifact. In this view some aspects are hidden and others are
exposed. The core software developer should be able to define dif-
ferent views on source code as necessary.

R2: Controlled Extensibility Besides defining what is visible and
what is not, a core developer should be able to define which artifacts
in the three mentioned layers are extensible or not i.e. what are the
extension points in each layer. It should also be possible to define
any extensibility constraints that are involved with an extensible
artifact. For example, at the business process layer, the core devel-
oper should have means to declare certain activities within a busi-
ness process as extensible as well as constraints that exist (e.g. on
data or in relevancy of execution order). The developer should also
be able to define which user interface forms and form elements are
extensible (for example, where can an extender add a new field or
anew panel). It should also be possible for the developer to declare
extensible business object artifacts. Furthermore, besides declaring
artifacts as extensible, the core developer should be able to spec-
ify what data is available and how it can be accessed (e.g. read
and write permissions) at each extension point. In our application
example, the activity associated with the internal customer rating
check should be declared as extensible and appropriate customer
data should be made available to be able to use it for the forecasted
extension. The relevant user interfaces should also be declared as
extensible and appropriate data connectors should be made possi-
ble. In conclusion, appropriate constructs are required to define and
control extension points.

R3: Stable Contract The development of extensions and the core
software should be separated. There should be no dependencies
between the base system development and the extension develop-
ment. Parallel development of core and extensions should be possi-
ble without any problems. This implies that a stable contract must
be provided by a core developer for an extender. The core software
should be also able to anticipate and support most extension sce-
narios for each artifact at each layer.

R4: Support for Extensions on Multiple Layers The core soft-
ware should allow for extensions at different layers and granularity
levels ranging from fine grained to coarse grained. Extensions at
the process, Ul, and BO layer should be supported. This implies
that extensions can be as big as an activity within a business pro-
cess or as small as a simple formula that calculates a new field.
Proper abstractions for structural and behavioral aspects within the
software should be provided to the extender at different granularity
levels.

R5: Composition Approach Composition [19] refers to the inte-
gration of the extension with the core software. Business software,
especially when offered as a SaaS, is usually provided with certain
service level agreements that have to be achieved. The uptime of the
software is a very important factor which imposes a constraint on
the composition of the extension with the base software. Composi-
tion should can take place at compile time, load time, or at runtime.
Ideally an extension should be composed and activated within the
least downtime possible (at runtime). The core and the extensions
should be composed and provide a seamless runtime view to the
end user.

R6: Invasiveness Sometimes changes are required in the base
software to accommodate an extension. Ideally, such changes
should not exist. With an increase in number of customers building
extensions, it will be impossible to manage different versions of the
core software. For the business software provider, the software up-
grade cycles can be adversely affected as new releases of the core
might not be compatible with the extensions existing. The effort
and costs required to adapt the software for new core upgrades will
increase. Therefore, non-invasiveness is crucial and the software
should be able to integrate an extension without any modifications
to the core.

R7: Multiple Extensions The core software should be able to
integrate and manage multiple extensions. It should also be able to
reflect the current state of the underlying business process running
with all the extensions in place as well as all artifacts that have been
affected. To support the composition of multiple extensions, means
for resolving conflicts must also exist. For example, there should be
ways to introduce ordering constraints and dependency constraints
(e.g. to indicate which extension should come first).

RS: Simplified Consumption of the Extensibility Model 1t is
very important to attract developers to build extensions for business
applications. The more developers that exist for a certain business
software, the more likely customers will be willing to invest in it.
If the underlying extensibility model is complicated, it would be
less likely that many developers would contribute to develop ex-
tensions. Given the large number of artifacts at each layer of the
software, the possibility for extensibility can be overwhelming for
an extender. The developer will have to go through a lot of docu-
mentation and understand how different artifacts are related. The
relationships between extension points, constraints, and extension
methods has to be presented in a simplified way for an extender.
For example, in our scenario, the developer might find it helpful
to understand the relationship between the business activity associ-
ated with the customer credit limit check and the user interface and
business object associated with it.

4. Related Work

In the following we summarize a part of our survey on the related
work on extensibility of software briefly evaluate them with respect
to our requirements. We categorize our findings to code level,
programming paradigms, and frameworks / other approaches.

Table 1. Evaluation of the related work: + satisfies, - does not
satisty, P partially satisfies

R1|R2[R3|R4|R5(R6|R7|RS8
Mixins - -1 -1-T-1T-1-71-
Traits TP | - N _ N I S
Virtual Classes - P[P -T1T-1T-71-7-
Design Patterns | + | + | - | - [+ |+ | P | -
FOP +-1T-1-1T-1T-1P7] -
AOP - - -T-1-TP7]-
CBSE + |+ |+ -|P|+|+]|P
Plug-ins + | P+ -[P[+]|+]-

4.1 Code Level Approaches

Mixins A mixin [5, 15] is an abstract subclass that defines a par-
ticular functionality without specifying the intention of usage. A
parent class can be composed of multiple mixins and thus inherits
all functionalities specified by the mixins. Mixins use single inheri-
tance as means of composition (R5). The order at which mixins are
inherited can influence the structural and behavioral properties of
the target class. It might also be required to introduce complimen-
tary code to ensure the correct integration of multiple mixins (R6).
Given the resulting inheritance chains with glue code, the introduc-
tion of new mixins to an existing parent class can be very tedious
(R7). Furthermore, the modification of a mixin that is being used
can as well be difficult as dependencies can exist.

Traits A trait [12, 13] is a set of methods and act as a composable
unit of behavior. A trait provides a collection of methods that
implement behavior and requires a set of methods that parameterize
the provided behavior (R2). Each trait has a state which is only
accessible via its methods. The resulting class is made up of a state,
a set of traits, and complimentary code (glue code) that connects the
traits and implements the class logic and interface (R6). There are
rules and operators defined for the composition of traits. Operators
include sum, exclusion, and aliasing. There are several rules that
are used for composition (R7). The order of composition does not
matter as the resulting class is flattened. Methods defined within a
class takes precedence over those defined within traits. Conflicting
methods are excluded from the composition and an overriding
method is placed in the parent class.

Virtual Classes Virtual classes [14, 21] offer language mecha-
nisms to specify a certain class pattern which can then be inherited
and specified. Virtual classes are defined as inner classes. The con-
cept is similar to virtual functions, however in contrast to virtual
functions, the whole class with its methods and attributes can be
specified (R2,R3). During runtime, the type of the object of the
outer class decides which virtual class implementation should be
used. With this approach, extension points have to be preplanned
ahead and type safety problems can exist.

Design Patterns Design patterns [16] are patterns in software de-
sign that aim to solve reoccurring problems. Each pattern can ei-
ther have a creational, structural, or behavioral purposes. Patterns
are usually documented and described in terms of purpose, moti-
vation, structure, and relations to other patterns. An example of a
structural pattern is the decorator pattern can be used to add prop-
erties to object dynamically. An example of a behavioral pattern
is the visitor pattern. This pattern provides a way for separating an

algorithm from an object structure on which it operates. As a conse-
quence, this allows the introduction of new behavioral aspects with-
out modifying an existing object structure. Design patterns provide
a good solution for software design challenges, however there are
a lot of issues and concerns regarding traceability (R8), reusabil-
ity, writability, and maintainability (R7) that have been pointed
out [1, 4].

4.2 Programming Paradigms

Feature Oriented Programming Feature oriented programming
is a programming paradigm that supports the production of large
software systems [3]. The paradigm is most famous for its support
of software product lines [20]. A feature represents a requirement
or a functionality that is expected in the software. In FOP, three key
areas play an important role: feature modeling, feature interaction,
and feature implementation. Feature models [17] provide means
to describe relationships and constraints between different feature.
Feature interaction [7] is important to analyze if features can possi-
bly interfere when combined together. Feature implementation in-
volves the transformation of feature models to concrete programs.
The advatange of FOP is that it supports product families with com-
mon features. A product can be constructed by adding features to
the feature model (if necessary) then selecting relevant features that
are needed from the model. The advantage of this approach is that
it promotes feature reuse. However several problems can arise. A
single feature model is maintained for a certain family of software
products(R3), which makes independent extensibility very difficult
(R7). Also the maintenance of feature models for large product
lines can be very tedious .

Aspect Oriented Programming The main motivation behind As-
pect Oriented Programming [18] is to reduce the scattering and tan-
geling of cross-cutting concerns that interfere with the core con-
cerns of a base system . AOP allows the modularization of cross-
cutting concerns by abstracting them into advices (R7) that get ex-
ecuted at certain join points within the base system. An advice con-
sists of the behavioral and/or structural additions and the join points
define where the advice should run. Several join points can be tar-
geted and refined using pointcuts. The composition of advices with
the base system is known as weaving. A good survey on existing
AOP languages and their models can be found in [6]. AOP assumes
a white-box view on source code. The modification of code aspects
highly depend on the pointcuts specified. The knowledge of the
extension developer of the source code is very important (R8) to
specify the right pointcuts that his advices will extend. It is also
possible that the extension developer will have to modify the base
code to accomodate his new advice (R6).

Component-Based Software Engineering In [22] the authors
define software components as “software components are binary
units of independent production, acquisition, and deployment that
interact to form a functioning system”. Each component encapsu-
lates a particular functionality and the interaction of components is
ensured through well defined interfaces (R3). Component models
specify properties like interface types, languages used, packaging,
deployment methods, and interaction styles. A recent survey on
component models with a good taxonomy can be found in [10].
The idea of components offer a great concept for black-box reuse
and separation of concerns. However, extending a component based
system can be difficult. Building extensions are highly dependent
on interface definitions, which implies that the extension of struc-
tural or behavioral attributes of an existing component might not
always be feasible. Also any changes to an existing interface of a
core component might adversely affect extensions. The composi-
tion of an extension component with existing components require
the understanding of the current composition model (R8)

(for example data driven or event driven compositions) of an ex-
isting software. This might not be explicitly defined by an imple-
mented system, and therefore composing a new component might
lead to undesirable interactions (R5,R7).

4.3 Frameworks and Other Approaches

Plug-in Systems In plug-in systems, a core application is ab-
stracted in terms of data and functionalities through an application
programming interface (API) that act as hooks or extension points.
An extender can then write applications and package them in the
form of plug-ins that conform to the API. The core application con-
tains an integrated plug-ins manager (R5) that registers a plug-in
to the core application and manages its runtime. Popular plug-in
systems include the OSGi [2] based Eclipse [9] and the Microsoft
Managed Extensibility Framework (MEF) °.

A plug-in in Eclipse is the smallest unit of function. Each plug-
in contributes to a set of extension points and can provide a set
of extension points. Each plug-in is described by a manifest file
(plugin.xml) which describes the extension points it contributes
to, dependencies to other plug-ins, and extension points it provides.
The Eclipse Platform Runtime is responsible for handling the dis-
covery, matching of extensions with extension points, and the run-
time of the plug-in (for example activation when required).

In MEEF, parts specify their dependencies (imports) and capa-
bilities (exports) declaratively. The developer then defines a com-
position container with all relevant parts of his application. Based
on these declarations, the MEF composition engine then discovers
these parts (via catalogs) and assembles the application.

In both frameworks, extension points are dependent on the in-
terface definitions declared by the base plug-in developer (R3,R2).
These interface definitions indicate how the contributing plug-in
should be called and what data it can get. The abstraction level
provided by these frameworks is similar to components. The ex-
tension developer is therefore limited by the interface definitions.
Extensions affecting many layers that might exist in a component
are only made on the code level. There are no extensibility con-
structs provided by these frameworks to separately express exten-
sion points that exist on different layers (e.g. user interface).

5. Conclusion and Outlook

Business applications typically consists of several layers (busi-
ness process, user interface, and business objects). Customers us-
ing these applications demand extensions to the existing features to
support their business needs. Enabling business applications for ex-
tensibility can be very challenging. In this paper we have presented
several requirements that are essential for the extensibility of busi-
ness applications and evaluated them against some related works.
Table 1 summarizes our findings. We are currently working on an
approach that will support these requirements.

References

[1] E. Agerbo and A. Cornils. How to preserve the benefits of design
patterns. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
OOPSLA 98, pages 134143, New York, NY, USA, 1998. ACM.
ISBN 1-58113-005-8.

[2] O. Alliance. OSGi service platform, release 3. 10S Press, Inc., 2003.
[3] S. Apel and C. Kstner. An overview of feature-oriented software
development. Journal of Object Technology (JOT), 8(5):4984, 2009.

[4] J. Bishop. Language features meet design patterns: raising the
abstraction bar. In Proceedings of the 2nd international workshop
on The role of abstraction in software engineering, ROA ’08, pages
1-7, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-028-9.

Shttp://mef.codeplex.com/

[5] G. Bracha and W. Cook. Mixin-based inheritance. ACM SIGPLAN
Notices, 25(10):303-311, Oct 1990.

[6] J. Brichau and M. Haupt. Survey of aspect-oriented languages and
execution models. European Network of Excellence in AOSD, 2005.

[7] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature
interaction: a critical review and considered forecast. Computer
Networks, 41(1):115141, Jan 2003.

[8] C. Casanave. Business-object architectures and standards. In OOPSLA
Workshop on Business Object Design and Implementation. Springer,
October 1995.

[9] E. Clayberg and D. Rubel. Eclipse Plug-ins. Addison-Wesley
Professional, 2009.

[10] 1. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron. A
classification framework for software component models. Software
Engineering, IEEE Transactions on, 37(5):593 —615, sept.-oct. 2011.
ISSN 0098-5589.

[11] K. Croxton, S. Garcia-Dastugue, D. Lambert, and D. Rogers. The
supply chain management processes. The International Journal of
Logistics Management, 12(2):13-36, 2001.

[12] S. Ducasse and O. Nierstrasz. Traits: Composable units of behaviour.
In ECOOP 2003 — Object-Oriented Programming, pages 327-339,
July 2003.

[13] S. Ducasse, O. Nierstrasz, N. Schérli, R. Wuyts, and A. P. Black.
Traits: A mechanism for fine-grained reuse. ACM Trans. Program.
Lang. Syst., 28:331-388, March 2006. ISSN 0164-0925.

[14] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class calculus.
ACM SIGPLAN Notices, 41(1):270-282, Jan. 2006. ISSN 03621340.

[15] R. B. Findler and M. Flatt. Modular object-oriented programming
with units and mixins. ACM SIGPLAN Notices, 34(1):94-104, Jan.
1999. ISSN 03621340.

[16] E. Gamma. Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995. ISBN 0201634988.

[17] K. Kang. Feature-oriented domain analysis (FODA) feasibility study.
Technical report, DTIC Document, 1990.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 220-242. Springer-Verlag, June 1997.

[19] L-G. Kim, T. Marew, D.-H. Bae, J.-E. Hong, and S.-Y. Min.
Dimensions of composition models for supporting software evolution.
In W. Lowe and M. Siidholt, editors, Software Composition, volume
4089, chapter 14, pages 211-226. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006. ISBN 978-3-540-37657-6.

[20] K. Lee, K. Kang, and J. Lee. Concepts and guidelines of feature
modeling for product line software engineering. In C. Gacek, editor,
Software Reuse: Methods, Techniques, and Tools, volume 2319 of
Lecture Notes in Computer Science, pages 62—77. Springer Berlin /
Heidelberg, 2002. ISBN 978-3-540-43483-2.

[21] O. L. Madsen and B. Mg ller pedersen. Virtual classes: a powerful
mechanism in object-oriented programming. In Object-oriented
programming systems, languages and applications OOPSLA 89,
pages 397-406, October 1989. ISBN 0897913337.

[22] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond
object-oriented programming. Addison-Wesley Professional, 2002.
ISBN 0201745720.

[23] M. Zenger. Programming Language Abstractions for Extensible
Software Components. PhD thesis, Swiss Federal Institute of
Technology, Lausanne, Switzerland, 2004.

