On the Modularity Impact of Architectural Assumptions

Dimitri Van Landuyt, Eddy Truyen and Wouter Joosen

IBBT-DistriNet
Celestijnenlaan 200A
B-3001, Belgium

{dimitri.vanlanduyt,eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract

In software architecture design, the end product is the com-
bined result of a wide variety of inputs, most of which are
provided by the non-technical stakeholders. These include
the analysis of the problem domain, the functional and non-
functional requirements, the architectural or technical con-
straints. However, a software architecture is typically also
influenced by different, less visible factors such as the archi-
tect’s prior experience and his creativity. In this paper, we
focus on so-called architectural assumptions, which are key
premises made by technical stakeholders in the early phases
of the software development life-cycle.

Often these assumptions are made silently and not doc-
umented explicitly in the description of the architecture. As
a result, they introduce a certain degree of rigor in the soft-
ware product that hinders the evolvability, variability, and
reusability of the architectural solution as a whole and its
individual building blocks.

Additionally, architectural assumptions in many cases ex-
ert a crosscutting influence on the software architecture and
its description. This makes it hard to discover them, assess
their individual architectural impact, and treat them as first-
class architectural elements.

In this position paper, we explore and discuss these modu-
larity problems in specific examples from a patient monitor-
ing system (e-health). Furthermore, we introduce the distinc-
tion between problem-space and solution-space architectural
assumptions, and we discuss their intrinsic differences.

Categories and Subject Descriptors D2.1 [Require-
ments/Specifications]: Methodologies; D2.11 [Software
Architectures]: Requirements/Specifications

General Terms Design, Documentation, Management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

NEMARA’12, March 27,2012, Potsdam, Germany.

Copyright © 2012 ACM 978-1-4503-1127-4/12/03... $10.00

13

Constramts

Arch|tectural
Q Assumptmns

¢>j<$

Domain =
Analysis

=

ﬂ Software

Stakeholder Arch|tect
Re uirements SOftware
Architecture

Creatmty

Figure 1. Schematic overview of a top-down architecture
creation process.

1. Introduction

Top-down software architecture design starts with the sys-
tematic collection, analysis and documentation of the stake-
holder requirements (functional and non-functional). Al-
though these stakeholder requirements are the main inputs
for the design of a software architecture, many additional
factors come into play in the creative process to come up
with a full-fledged architectural solution. Fig. 1 represents
this graphically. These additional factors include project
constraints, the architect’s prior experience, and even his
creativity. Architectural assumptions [16] are key premises
made in the early phases of development life-cycle. They
are similar to regular requirements, but differ in the sense
that they are imposed not by the direct stakeholders of the
end-product (e.g. the customer), but by technical stakehold-
ers such as the requirements engineer, the domain analyst,
and the software architect.

Not unlike other stakeholder concerns, architectural
assumptions manifest themselves in many different
forms: some will directly constrain the architecture, others
will introduce direct requirements. However, they are
typically made silently and motivated only in the heads of
the technical stakeholders involved. Although there has been
some work focusing on retro-actively discovering architec-
tural assumptions as part of architecture recovery activities
(deriving the architecture from existing systems) [16], there
is not much work about how to deal with such assumptions

early in the development process (requirements and archi-
tecture). Nonetheless, it has been pointed out that they can
be a significant contributor to the failures or successes of
software-intensive systems [6, 7].

In this paper, we introduce the specific distinction be-
tween problem-space and solution-space architectural as-
sumptions, which depends on the development phase in
which they are made. Additionally, we discuss the impact of
architectural assumptions on software modularity, and how
this potentially introduces modularity problems already at
the early stages of the software development life-cycle (re-
quirements engineering and software architecture design).

We illustrate these concepts and problems in a e-
health case study that is inspired on a number of research
projects [3, 4, 17]. Specifically, we looked at a patient mon-
itoring system for continually and remotely monitoring the
health of cardiovascular disease (CVD) patients. Patients en-
rolled in the patient monitoring system are given a wearable
device (e.g. printed on a t-shirt), which holds sensors that
continually measure a number of medical parameters such
as the patients’ heart rate. Next, these sensor data readings
(measurements) are packaged and sent to the back-end sys-
tem. There, advanced risk assessment algorithms (clinical
models) are executed to evaluate whether or not the patients’
health status is deteriorating and the responsible health pro-
fessional should be notified.

The remainder of this paper is structured as follows: first,
Section 2 introduces and discusses the key distinction be-
tween problem-space and solution-space architectural as-
sumptions. Then, Section 3 presents examples of both and
presents the problem statement. Section 4 summarizes the
findings and concludes the paper.

2. Problem-space versus Solution-space
Architectural Assumptions

Roeller et al. [16] have defined the term architectural as-
sumption as a “general denominator for the forces that drive
architectural design decisions”. Paraphrased, architectural
assumptions lead to and influence the key decisions made
during architectural design.

In this paper, we distinguish between problem-space and
solution-space' architectural assumptions. Problem-space
architectural assumptions are assumptions made during re-
quirements engineering or domain analysis?>. On the other
hand, solution-space architectural assumptions are assump-
tions made during architectural design3. Roeller et al. [16]
describe: “Just like it is difficult to distinguish between the
‘what’ and ‘how’ in software development, so that one per-
son’s requirements is another person’s design, it is also dif-
ficult to distinguish between assumptions and decisions.”.

!In literature, these are typically called ‘architectural assumptions’ [11, 16].
21n the left peak of the Twin Peaks model [13].
3 In the right peak of the Twin Peaks model.

14

However, the key difference is the fact that solution-space
architectural assumptions represent or lead to key decisions
(invariabilities) that shape the architecture, while problem-
space architectural assumptions are preliminary: they may
still be altered, invalidated, decomposed or merged together
later on. The set of problem-space architectural assumptions
is the minimal yet necessary set of assumptions that the
requirements engineer is forced to make in order to write
meaningful requirements.

Architectural assumptions differ fundamentally from the
other influences on software architecture sketched earlier in
Fig. 1 because they are imposed by technical stakeholders
such as the requirements engineer or the software archi-
tect. They are commonly used as a technique to converge
as quickly as possible to an architectural solution: by mak-
ing reasonable architectural assumptions, the search space
(problem or solution space) is reduced early on.

3. Illustration of Architectural Assumptions

in an E-Health System

Below, we illustrate both types of architectural assumptions
in the patient monitoring system discussed in Section 1.

Architectural Assumptions in Scenario-based Require-
ments. The strength but also the weakness of scenario-
based requirement elicitation techniques such as quality at-
tribute scenario elicitation [2, 10] and use case engineer-
ing [9] is that they force the requirements engineer to be very
specific. As a result, he is is often forced to make some im-
plicit early architectural assumptions in order to capture the
specifics of the requirement scenario in mind.

For the patient monitoring system, we have relied exten-
sively on quality attribute scenario and use case elicitation
to analyze and document the system requirements. In these
types of requirements, early architectural assumption com-
monly represent initial elements of architectural building
blocks of the envisaged system. The Performance scenario
below provides an example.

® Source: new information (update of sensor data readings or question-
naires), by patient, caretaker, GP, trustee, or specialist

® Stimulus: patient risk estimation by applying clinical models

® Artifact: the (sub-)system responsible for performing risk estimation
and issuing notifications

® Environment: Normal execution modus

® Response: If the system does not meet the deadlines specified below:

= in normal modus, the subsystem processes the incoming information
updates in a first-in, first-out order
= in overload modus,
— the subsystem changes the processing order by prioritization
according to the patient’s risk level (red over yellow over green)
® Response Measure:

= In normal modus, the system goes into overload modus when the
throughput > 20 risk level estimations/minute;

= In overload modus, there is no starvation of risk estimation jobs for
patients with a green risk level.

This example describes the situation in which too many
concurrent requests to process incoming sensor data read-
ings (scheduled for risk estimation) leads to a situation of
overload, and prescribes how the system should react in this
case. The strength of quality attribute scenario elicitation is
the high level of detail and fine granularity in which they
are documented. A downside however, is that the require-
ments engineer authoring such scenarios is forced to make
some initial assumptions about the system’s architecture. In
this example, by referring to “the subsystem processing the
incoming information updates”, the requirements engineer
has made the tacit assumption that there will be in fact one
separate subsystem for this, and that it will use a priority
queue for the incoming data packages. However reasonable
this may seem, such assumption acts as an early reduction
of the solution space, and may drive the architect away from
alternative solutions.

In this case study (and others), we observed the following
modularity problems:

¢ In these requirements, problem-space architectural as-
sumptions made tacitly and implicit. They are not easy to
derive from the requirement specifications, as there is no
explicit difference between what is an essential part of the
stakeholder requirement and what was assumed in order
to result with a good characterization of those stakeholder
requirements.

¢ Problem-space architectural assumptions are tangled and
scattered throughout the requirements body, both over re-
quirements of the same type (e.g. use case) and across dif-
ferent requirement types (between quality attribute sce-
narios and use cases): they are crosscutting. As a con-
sequence, they might differ slightly per instance which
causes vagueness and again, implicitness. Assessing the
impact of a single problem-space architectural assump-
tion requires a great amount of mental effort (i.e. iterating
over all requirements and manually assessing whether or
not it was affected by the silent assumption).

Risk assessment as a cloud service. Fig. 2 presents an ex-
cerpt of the patient monitoring system architecture, which
is designed with the Attribute-Driven Design (ADD) pro-
cess [2]. Specifically, Fig. 2 zooms in on the Decision
Support System (DSS). This is the component (mentioned
earlier) responsible for processing the incoming data and as-
sessing whether or not the risk level of the patient should
change. When this is the case, it issues a warning to the med-
ical supervisor (e.g. the patients’ GP).

Early on in architectural development, the architecture
team recognized the potential of moving this risk assessment
component (the DSS) to the cloud. Indeed, by doing so, the
scalability, performance and availability requirements can be
mitigated more easily, but more importantly, this would cre-
ate the additional business opportunity to offer risk assess-
ment as a separate service and sell it not only as an enabling
service for monitoring patients with cardiovascular disease,

15

<<component>> g
Decision Support System

<<component>> El send notification
Clinical Model e
Execution Environment N\

process

é\ risk models

<<component>> gl
Medical N
Knowledge Base

patient record

O

risk model

Figure 2. Design of the Decision Support System.

but also for different chronic diseases, such as hypertension,
asthma, etc.

As this was not an explicit requirement or constraint for
the stakeholders of the patient monitoring system, preparing
the DSS component to evolve easily to a cloud context and to
be flexible w.r.t. different risk assessment algorithms has not
played a primary role in its design: it was no explicit driver
in the ADD process. However, it is clear in retrospect that
the awareness of cloud potential has indeed influenced the
architectural design:

¢ Design for change: in order to be able to offer this par-
ticular service in a different context (e.g. to support risk
assessment for a different chronic disease type), one first
decomposition decision of the DSS involved separating
the actual risk model from the application or execution of
such model. This has lead to the definition of the Medical

Knowledge Base, and the Medical Model Execution

Environment respectively. Changing the risk assessment

algorithms (also called ‘risk models’) or updating them is

just a matter of adapting the Medical Knowledge Base,
and this can be done at run-time.

¢ Low coupling and stateless design. This component is
designed in such a way that it depends on as few inputs
as possible, and remains stateless. Specifically, the inputs
are (i) the incoming data readings package, (ii) the patient
record (for patient history), and (iii) the means to send out
notifications.

We can foresee the following problems with not explicitly
modularizing such assumptions in the architectural descrip-
tions:

e As this is no explicit architectural driver, it is not recorded
as part of the architectural documentation (the ADD log).
Subsequently, there is a risk of diverging later on from
the selected architectural solution, for example when re-
quirements change in a later stage.

e Furthermore, the effects of this design solution are not
limited to a single subsystem (the DSS), but the assump-
tion affected many elements of the architecture. For ex-
ample, the modules and techniques for representing, shar-
ing and managing medical knowledge are affected by this
decision to separate medical knowledge in the Medical
Knowledge Base. Furthermore, these effects are not lim-

ited to one architectural view, but the influences of the as-
sumption are visible in many of the architectural views.
In summary, this particular assumption has had a cross-
cutting impact on the software architecture of the patient
monitoring system.

4. Conclusion

This paper has discussed the modularity of architectural as-
sumptions, i.e. early (preliminary or real) decisions that af-
fect the architectural solution, but are not motivated directly
from requirements, constraints or analysis coming from non-
technical stakeholders. We have introduced the key distinc-
tion between problem-space and solution-space architectural
assumptions, in accordance with the distinction between pre-
liminary, reversible assumptions and actual architectural de-
cisions.

We have discussed and illustrated the main modularity
problems in the current state-of-practice and -art of deal-
ing with such assumptions: (i) they are made silently and
implicitly, and therefore they are difficult to discover or re-
cover [11, 16], and (ii) they have a profound, sometimes sub-
tle, but often crosscutting impact on the development arti-
facts involved. Therefore, it is hard to assess their individual
architectural impact, and treat them as first-class architec-
tural elements.

There is a potential and promising overlap between the
problems targeted in early aspects research and the problem
statement of this paper, which in essence targets the limited
modularity of architectural assumptions on the one hand, and
on the other hand the impact of these assumptions on soft-
ware modularity in general. In the case of problem-space ar-
chitectural assumptions, many existing Aspect-Oriented Re-
quirements Engineering (AORE) techniques already focus
on discovering and documenting the crosscutting influences
across requirements of different types [12, 15, 18]. However,
to our knowledge, none make the key distinction between
reversible assumptions and actual stakeholder requirements,
and provide support for reversing such assumptions. In the
case of solution-space architectural assumptions, Aspect-
Oriented Architecture Description Languages (AO-ADLs)
typically offer advanced composition mechanisms to repre-
sent crosscutting concerns, both within specific architectural
views [5], and across views [1, 8, 14]. However, these all
focus on documenting the final architecture, and not on doc-
umenting and managing the individual decisions, influences
and assumptions that play an important role in the design
process.

References

[1] Colin Atkinson and Thomas Kiihne. Aspect-oriented develop-
ment with stratified frameworks. IEEE Software, 20(1):81-89,
2003.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, second edition, 2003.

16

[3] BraveHealth. Patient centric approach for an in-
tegrated, adaptive, context-aware remote diagno-
sis and management of cardiovascular diseases.
http://distrinet.cs.kuleuven.be/research/

projects/showProject.do?projectID=Bravehealth.

[4] E-hip. E-health information platforms. http:
//distrinet.cs.kuleuven.be/research/projects/
showProject.do?projectID=E-HIP.

[5] L. Fuentes, N. Gamez, M. Pinto, and J. A. Valenzuela. Us-
ing connectors to model crosscutting influences in software
architecture. In Software Architecture, volume 4758 of LNCS.
Springer, 2007.

[6] David Garlan, Robert Allen, and John Ockerbloom. Architec-
tural mismatch: Why reuse is so hard. IEEE Softw., 12:17-26,
November 1995.

[7] David Garlan, Robert Allen, and John Ockerbloom. Archi-
tectural mismatch: Why reuse is still so hard. [EEE Softw.,
26:66-69, July 2009.

[8] John Grundy. Multi-perspective specification, design and
implementation of software components using aspects, 2000.

[9] Ivar Jacobson. Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

[10] Rick Kazman, Gregory Abowd, Len Bass, and Paul Clements.
Scenario-based analysis of software architecture. /IEEE Soft-
ware, 13:47-55, 1996.

[11] Patricia Lago and Hans van Vliet. Explicit assumptions enrich
architectural models. In Proceedings of the 27th international
conference on Software engineering, ICSE °05, pages 206—
214, New York, NY, USA, 2005. ACM.

[12] Ana Moreira, Awais Rashid, and Jodo Aradjo. Multi-
dimensional separation of concerns in requirements engineer-
ing. In RE, pages 285-296, 2005.

[13] Bashar Nuseibeh. Weaving together requirements and archi-
tectures. Computer, 34:115-117, March 2001.

[14] Steven Op de beeck, Marko van Dooren, Bert Lagaisse, and
Wouter Joosen. Multi-view refinement of ao-connectors in
distributed software systems. In AOSD ’12: Proceedings of
the 11th international conference on Aspect-oriented software
development, 2012.

[15] Awais Rashid, Ana Moreira, and Joao Aradjo. Modularisation
and composition of aspectual requirements. In AOSD ’03:
Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 11-20, New York, NY,
USA, 2003. ACM.

[16] Ronny Roeller, Patricia Lago, and Hans van Vliet. Recovering
architectural assumptions. J. Syst. Softw., 79:552-573, April
2006.

[17] Share4Health. Healthcare professional’s collaboration
space. http://distrinet.cs.kuleuven.be/research/
projects/showProject.do?projectID=SharedHealth.

[18] Dimitri Van Landuyt, Steven Op de beeck, Eddy Truyen, and
Wouter Joosen. Domain-driven discovery of stable abstrac-
tions for pointcut interfaces. In LNCS Transactions on Aspect-
Oriented Software Development, volume 9, December 2011.

