

Architecture Composition for Concurrent Systems

Thomas Cottenier

UniqueSoft, LLC

thomas.cottenier@uniquesoft.com

Aswin van den Berg

UniqueSoft, LLC

aswin.vandenberg@uniquesoft.com

Thomas Weigert

Missouri University of S&T

weigert@mst.edu

Abstract

We present a framework to assemble concurrent applica-
tions from modules that capture reusable architectural pat-
terns. The framework focuses on concurrent systems where
computational processes communicate through asynchron-
ous messages. The language provides support to modular-
ize architectural patterns at different levels of granularity,
using agents, regions, aspects and morphing. We present
sample implementations of the architectural patterns and
show how they are composed using a real-world example.
Finally discuss how the deployment and composition of
patterns can be further automated.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features –
classes and objects, modules, packages.

General Terms Design, Languages

Keywords Architecture, Concurrent Systems, Aspects

1. Introduction

Concurrent systems are systems where multiple computa-
tional processes or agents can execute independently of
each other. Many applications have a high level of inherent
concurrency. Components that provide services to clients
might need to service thousands of concurrent requests.
Another source of concurrency comes from applications
that are built by integrating different types of components,
which may be distributed over the network or using differ-
ent technologies [1]. Other applications use concurrency to
take advantage of parallelism provided by the underlying
platform.

In this paper, we consider concurrent systems where
computational processes called agents communicate
through asynchronous messages. Messaging provides a
simpler concurrency model than the shared-memory inte-
raction model used in general-purpose languages.

The architecture of a message-based concurrent system
has a determining effect on the performance characteristics
of the system such as response time and throughput or ro-
bustness features such as availability or connectivity. It is
therefore important to be able to fine tune or adapt the ar-
chitecture of the system when the operating conditions or
the platform used to execute the system change. Ideally,
changes to the architecture should not require important
modifications to the implementation of the functional mod-
ules of the system.

In this paper we present a set of concurrent architectural
patterns that are expressed in a textual design language
called TDL [2]. TDL has two aims. First, it provides first
class support for concurrency and messaging. Second, it
aims at maintaining a clear separation between the imple-
mentation of architectural features and the implementation
of functional features. The language therefore supports 3
top level modules: agents, regions and aspects and a gener-
ative language construct called morphing.

The paper is organized as follows. First we present the
language constructs supported by the language. Second, we
introduce a list of architectural patterns and the categories
used to classify the patterns. Third, we detail the implemen-
tation of selected patterns and show how they are com-
posed to construct a system. Finally, we discuss how the
deployment and composition of the patterns can be further
automated.

2. Language Support

2.1 Agents

Agents are a conceptual unit of concurrency independently
of the underlying technology used to interleave their execu-
tion. An agent has its own thread of control and executes a
state machine that reacts to messages and timer expiration
events. Agents communicate using messages that are sent
or received through ports. The ports of different agents are
connected by connectors which define the communication
paths between agents. Agents cannot directly access each
other’s data and do not share global variables. There is
therefore no need for explicit locking mechanisms such as
mutexes or monitors.

We represent instances of agents using boxes with bold
edges. Instances are annotated with multiplicities. Instances

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

NEMARA’12, March 27, 2012, Potsdam, Germany.
Copyright 2012 ACM 978-1-4503-1127-4/12/03...$10.00.

17

communicate with each other through connectors between
ports, which are represented as squares.

Figure 1. Agent Representation

2.2 Regions

A statemachine is composed of a set of regions that mod-
ularize different features of an agent [3]. Each region en-
capsulates a set of states, transitions, attributes, and opera-
tions that are specific to the feature implemented by the
region. Regions interact through:
1. Common inputs: multiple regions respond to the same

event, thereby weaving there transitions within a step.
2. Internal signals: an event generated by one region can

be consumed by another region, in the next step.
3. Guards: transitions of one region can be guarded by

states of another region. If the transition is not enabled,
the corresponding event is not consumed by the region.

Regions are represented using boxes within agents. Regions
can be associated with ports using arrows which indicate
that the signals flowing through the port are handled or
generated by the region. Interactions between regions are
also represented using arrows. A solid arrow indicates that
internal events are generated by one region and consumed
by another. Dashed arrows indicate that one region affects
the control flow of another region through guards. In Figure
2, both Region1 and Region3 consume signals flowing
through Port1. Region2 observes Region1 and Region3
regulates Region2.

Figure 2. Region representation

2.3 Aspects

Aspects modularize concerns that cut across multiple
agents or regions, or that interact with one or more features
in an invasive way. TDL aspects support pointcut
expressions to intercept the output of messages and the
execution of transitions within regions. Output pointcuts
have the form:

pointcut outpct (p_t p1, p_t p2) :

 output (s(p1_t, p2_t))

 && args (p1, p2) && within (Region1);

Transition pointcuts have the form:

pointcut trpct (p_t p1, p_t p2) :

 transition (for S1 input s(p1_t, p2_t) nextstate S1)

 && args (p1, p2) && within (Region1);

Intertype declarations can also add states and transitions to
specific regions. Within a region, we represent aspects
using dashed boxes. Aspects interact through 3 types of
interactions: we use an arrow between aspects to indicate
that one aspect modifies the state of another. A dashed
arrow is used to indicate that one aspect affects the control
flow of another. Finally we use a dotted arrow to indicate
that an aspect observes the state of another aspect.

Figure 3. Aspect Representation

2.4 Morphing

Morphing is a generative technique to generate entities
such as attributes, operations or transitions by iterating over
the structure of other entities [4]. Morphing transformations
follow the structure:

'foreach' entity-pattern 'in' entity '.' metafeature

 { morphism-body }

The morphism body is expanded for each entity that
matches the entity-pattern and that matches the metafeature
query. For example, morphing can be used to generate a
transition from state A to state B for all the signals that flow
in port p, using the form:

 foreach signal $s in port p . in {

 forstate A { input $s { nextstate B; } }

In this example, the entity pattern signal $s matches any
signal that is declared to be accepted by port p and binds
the name of the signal to the variable $s. The morphing will
expand the transition based on the name of the signal and
add it to the region.

3. Architectural Patterns

The following architectural patterns are inspired from the
patterns presented in [1], but are expressed using the TDL
concurrency and modularity constructs. Some new patterns
have been introduced to handle interactions between agents
and regions. We distinguish between inter-agent patterns,
inter-region patterns and endpoint patterns.

3.1 Inter-Agent Patterns

Inter-agent patterns define how different agents interact. In
particular, it defines how they control each other’s life-
cycles and how sets of agents of different multiplicities are
coordinated. We identified the following inter-agent pat-
terns:
1. Controller: The controller agent controls the life-cycle

of a set of agents.
2. Scheduler: The scheduler agent assigns a request to

one agent among a set of agents, based on the agent
availability.

 Region1

Aspect1 Aspect2 Aspect3

Region1

Region2 Region3

Agent1 [1]

Agent2

[0..3]

Agent1

[1]

Port1 Port2

Port1

18

3. Dispatcher: The dispatcher agent forwards a set of re-
quests to one agent among a set of agents, based on the
value of a parameter of the request.

4. Correlator: The correlator agent directs responses to
one agent among a set of agents by correlating the id of
the response with the sender of the corresponding re-
quest.

5. Multiplexer: The multiplexer agent mediates between
two set of agents by dispatching each other’s re-
quests/responses based on messages ids.

6. Orchestrator: The orchestrator agent defines communi-
cation paths between different agents among a set of
agent, based on a specification.

3.2 Inter-Agent Patterns

Inter-region patterns define how the regions of one agent
are composed with each other. They define how external
requests are propagated to the regions and how the
correspond responses are assembled.
1. Monitor: The monitor region observes the execution of

another region
2. Regulator: The regulator regions controls the execution

another region
3. Abstractor: The abstractor region provides a mapping

between a set of concrete external requests and a set of
more abstract internal requests.

4. Composer: The composer agent assembles different
types of agents from different regions and aspects,
based on the type of service provided.

5. Distributor: The distributor region distributes a set of
requests to other regions.

6. Collector: The collector region collects responses from
a set of regions.

7. Transaction: The transaction allows a set of region to
agree on the outcome of a request and produce consis-
tent responses and resulting configurations.

3.3 Endpoint Patterns

Endpoint patterns define how an agent handles a set of
external signals and are associated with a port of that agent.
1. Timeout-Retry: The timeout-retry pattern retries send-

ing requests a specific number of times when a re-
sponse is not received within a time interval.

2. Filter: The signal filter modifies or eliminates a set of
requests before they are processed by the main state
machine.

3. Buffering : The buffering pattern buffers requests when
the number of outstanding requests exceeds a specific
threshold.

4. Throttling: Throttling limits the rate of requests by
buffering messages.

5. Splitter: The splitter segments requests into multiple
requests when the payload exceeds a certain size. The
corresponding responses are reassembled into a single
response.

4. Implementation

In this section we detail how a selected subset of these
patterns are implemented using the modularity constructs
of TDL.

4.1 Controller

The Controller pattern allows one agent to control the
lifecycle of a set of agents. Typically, the controller creates
a session to handle a specific request, and terminates the
session when the request has been processed. Listing 1
presents an example implementation of the Controller
pattern in TDL.

The controller agent contains a set of Session agents and
a map that correlates an index to a Session agent. The
Controller accepts the external signals createSession and
deleteSession, and can send the shutdown signal to Session
agents through the session_out port. The session_out port is
connected to the ctrl_in port of the Session agent by a
connector.

1. agent Controller {

2. Session [0..MAX] sessions;

3. Map <Index, Session> sessionMap;

4. Session session;

5. port env in with createSession, deleteSession;

6. port dispatch out with shutdown;

7. connector from dispatch to sessions.ctlr_in;

8. region controller {

9. start {

10. nextstate Active; }

11. forstate Active {

12. input createSession (index) {

14. sessions.append (new Session());

15. session := offspring;

16. sessionMap.add(index, session);

17. nextstate Active; }

18. input deleteSession (index) {

20. output session.shutdown();

21. sessionMap. remove(index, session);

22. nextstate Active; } } } }

23. agent Session {

24. port ctrl_in in with shutdown;

25. region session { ... } }

Listing 1. Controller Pattern implementation

4.2 Dispatcher

The dispatcher pattern is used when a signal needs to be
sent to a specific agent among a set of agents. The
dispatching is performed based on a mapping between the
values of a key or index and the agents managed by the
dispatcher. In most cases, the index is passed as a parameter
of the signal or computed from these parameters.
The pattern uses morphing to iterate over all the signals that
flow through a specific port. In the example of Listing 2,
the dispatcher is implemented using morphing to iterate
over all the signals that flow in the env port and that have
two parameters, the first parameter being of type Header_t.
For each match, a transition using the values of the
identifiers variables $Request and $Request_t is generated.

19

1. region dispatcher {

2. Header_t h;

3. foreach signal $Request (Header_t, $Request_t)

4. in port env. in {

5. $Request_t req;

6. forstate Active {

7. input $Request (h, req) {

8. if (sessionMap.find(h.index , session)) {

9. output session.$Request(h, req) via dispatch;

10. } else {

11. sendResponse (SessionNotFound); }

12. nextstate Active; } } } }

Listing 2. Dispatcher pattern implementation

4.3 Buffering

The buffered pattern is an endpoint pattern used to control
the number of outstanding requests on an external port.
This is typically used to mediate between two sets of agents
that have different multiplicities, or when two sets of agents
support different levels of concurrency, as is the case when
TDL models need to interface with Java or C code where
concurrency is implemented using threads.
Listing 3 shows an Interface region that forwards requests
through a port, and sends back responses to an agent.
Listing 4 shows how the buffering pattern is implemented
as an aspect that applies to the Interface region. The
Buffering aspect keeps track of the number of outstanding
requests sent through a port. If the number of outstanding
requests exceeds a threshold, new requests are stored in a
buffer until a response is received.

1. region Interface {

2. state ACTIVE;

3. state OVERFLOW;

4. start {

5. nextstate ACTIVE; }

6. forstate ACTIVE {

7. input Request (request) {

8. output Request via OUT;

9. nextstate ACTIVE; }

10. input Response (response) {

11. if (sessionMap.find(response.index , session))

12. output session.Response (response); }

13. nextstate ACTIVE; } } }

Listing 3. Interface Region

1. aspect Buffering{

2. intertype Interface {

3. Integer outstandingRequests := 0;

4. before (Request_t req) :

5. output (Request (Request_t)) && args (req) {

6. if (outstandingRequests >= NbrThreads) {

7. if (!buffer.isFull()) {

8. buffer.put(req) {

9. nextstate ACTIVE;

10. } else {

11. nextstate OVERFLOW; } } }

12. after () : output (Request (Request_t)) {

13. outstandingRequests := outstandingRequests + 1;}

14. after () : transition (input Response) {

15. outstandingRequests := outstandingRequests - 1;

16. if (! buffer.isEmpty()) {

17. request := buffer.get();

18. output Request (request);

19. outstandingRequests := outstandingRequests+1;

20. } } } }

Listing 4. Buffering pattern implementation

5. Deployment

Figure 4.a shows an architecture diagram for an application
that performs analysis on network traffic that transits
between the external ports IN and OUT. The application
supports a large number of concurrent sessions, and should
minimize the CPU utilization and memory usage. The
application is composed of 4 functional units, modularized
as regions. The system contains a Dispatcher to forward
client requests to the right session. A Multiplexer is used to
concentrate the client requests into a smaller number of
outgoing connections. Finally, the Correlator correlates
responses from the external component to the sessions.

Figure 4.b shows an alternative architecture that uses
dedicated sessions to perform the analysis. On average,
only 5% of the sessions require analysis. The
AnalysisSession sessions are connected to the ProxySession
sessions by a buffering scheduler, which absorbs peaks of
analysis requests. This architecture has the following
advantages. First, the proxy sessions do not need to load
analysis data when no analysis is being performed for the
session. The architecture therefore consumes less memory.
Second, multiple analysis can be performed concurrently
for the same proxy session, which is not possible with the
first architecture. The evolution from architecture 1 to
architecture 2 can be performed without modifications to
the implementation of the functional modules Proxy,
Monitoring, Analysis1 and Analysis2.

Figure 4. Architectures of the Traffic Monitoring System

Proxy

Monitoring

Multiplexer

Buffering

Scheduler

Correlator

Analysis1

Analysis2

ProxySession

[0..5000]

System [1]

Composer &
Dispatcher

Composer

Dispatcher

AnalysisSession

[0..250]

4.b

Correlator

Proxy

Analysis1

Monitoring

Analysis2

Dispatcher

Composer

Multiplexer

System [1]
ProxySession [0..5000]

Composer &
Dispatcher

4.a.

OUT REPORT

IN

20

6. Automation Challenges

The instantiation of architectural patterns is performed
manually by customizing the pattern to the data types,
signals and protocols of the application. The language
support for regions and aspects make this task easier,
because the implementation of the patterns is more modular.
Generative techniques such as morphing also help by
automatically generating and contextualizing parts of the
pattern implementation. However, most of the
contextualization and deployment of the patterns is still
done by hand. Different approaches can be used to
automate the deployment of architectural patterns.

6.1 Domain-Specific Languages

Frameworks such as Spring Integration [6] and Apache
Camel [7] use domain specific languages to capture
architectural patterns. Such languages allow a pattern to be
configured and contextualized using entities of a base
model passed as parameters. A graphical representation,
such as the one presented in the paper, allows architectural
patterns to be deployed using a drag and drop approach.

Such approaches support architecture evolution because
the DSL abstract from many details about the
implementation of the architectural patterns. Architectures
can therefore quickly be deployed and modified by
composing the patterns at the level of the DSL.

However, architectural patterns have a large number of
context parameters that need to be defined before they can
be deployed. If the language constructs provided by a DSL
abstract too much of the details of the pattern, the construct
becomes less usable: it cannot be deployed in certain
contexts because the pattern needs to be adapted in a way
that the language does not support. On the other hand,
DSL’s that expose too many details of the pattern
implementation are more complex and have a steep
learning curve. The abstraction benefits provided by the
DSL are reduced.

6.2 Round-Trip Engineering

Architecture specifications can co-exist with code written
in a general purpose language using round-trip engineering
environments such as Rational Software Architect [7].
Round-trip engineering approaches maintain two separate
levels of specification of the system, and resolve
inconsistencies between these descriptions by propagating
modifications from one level to the other. Round-trip
engineering can be applied to domain-specific languages by
synchronizing a representation of the system defined in a
domain-specific language with a representation of the
system defined in a general-purpose language, or a
language such as TDL presented above.
The advantage of the round-trip approach is that the
domain-specific language can be more abstract. The details

of the pattern contextualization are implemented at the code
level. In such environments, it is especially important to
keep the representations of the patterns modular. If the
implementation of the patterns become tangled at the code
level, it will become more difficult to modify the definition
of the system at the level of the DSL. The language
constructs of TDL support this objective.

7. Conclusions

We build application by assembling contextualized instan-
tiations of architectural patterns with modules that imple-
ment functional features of the system. Architectural deci-
sions have tremendous impact on the performance, scalabil-
ity and quality attributes of a system. It is therefore impor-
tant to be able to modify or fine tune architectural elements
of a system, without requiring important changes to the
implementation of the functional features of the system.
We present a language for the development of asynchron-
ous systems called TDL. We show that TDL language fea-
tures such as agents, regions, aspects and morphing can
support the modular implementation of architectural fea-
tures. We discuss different type of architectural patterns
and detail the implementation of selected patterns in TDL.
We show how these patterns are deployed and composed to
build systems, and how the TDL language construct sup-
port architecture evolution. Finally, we discuss how do-
main-specific languages and round-trip engineering can
automate the deployment and composition of architectural
patterns.

References

[1] Hohpe, G. and Woolf, B. 2003. Enterprise Integration
Patterns. Addison Wesley

[2] Cottenier, T., van den Berg, A. and Weigert, T. 2012.
Management of Feature Interactions with Transactional
Regions. In Proceedings of the International Confe-
rence on Aspect-Oriented Software Development,
Postdam, Germany.

[3] Harel, D. 1987. Statecharts: A visual formalism for
complex systems, Science of Computer Programming,
Volume 8, Issue 3. 231-274.

[4] Huang, S.S., Zook, D. and Smaragdakis Y. 2007.
Morphing: Safely shaping a class in the image of oth-
ers, In Proceedings of the 21st European Conference on
Object-Oriented Programming, Berlin, Germany,
LNCS 4609, 399-424.

[5] Fisher, M., Partner, J., Bogoevici, M. and Fuld, I. 2009.
Spring Integration in Action. Manning.

[6] Ibsen, C and Anstey, J. 2010. Camel in Action. Man-
ning.

[7] Liu, C. 2010. Round Trip Engineering Scenario using
Rational Software Architect and ClearCase Remote
Client. IBM developerWorks.

21

