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Abstract 

We present a framework to assemble concurrent applica-
tions from modules that capture reusable architectural pat-
terns. The framework focuses on concurrent systems where 
computational processes communicate through asynchron-
ous messages. The language provides support to modular-
ize architectural patterns at different levels of granularity, 
using agents, regions, aspects and morphing.  We present 
sample implementations of the architectural patterns and 
show how they are composed using a real-world example. 
Finally discuss how the deployment and composition of 
patterns can be further automated. 

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features – 
classes and objects, modules, packages. 

General Terms Design, Languages 

Keywords Architecture, Concurrent Systems, Aspects 

1.  Introduction 

Concurrent systems are systems where multiple computa-
tional processes or agents can execute independently of 
each other. Many applications have a high level of inherent 
concurrency. Components that provide services to clients 
might need to service thousands of concurrent requests. 
Another source of concurrency comes from applications 
that are built by integrating different types of components, 
which may be distributed over the network or using differ-
ent technologies [1]. Other applications use concurrency to 
take advantage of parallelism provided by the underlying 
platform.  

In this paper, we consider concurrent systems where 
computational processes called agents communicate 
through asynchronous messages. Messaging provides a 
simpler concurrency model than the shared-memory inte-
raction model used in general-purpose languages.  

The architecture of a message-based concurrent system 
has a determining effect on the performance characteristics 
of the system such as response time and throughput or ro-
bustness features such as availability or connectivity. It is 
therefore important to be able to fine tune or adapt the ar-
chitecture of the system when the operating conditions or 
the platform used to execute the system change. Ideally, 
changes to the architecture should not require important 
modifications to the implementation of the functional mod-
ules of the system. 

In this paper we present a set of concurrent architectural 
patterns that are expressed in a textual design language 
called TDL [2]. TDL has two aims. First, it provides first 
class support for concurrency and messaging. Second, it 
aims at maintaining a clear separation between the imple-
mentation of architectural features and the implementation 
of functional features. The language therefore supports 3 
top level modules: agents, regions and aspects and a gener-
ative language construct called morphing. 

The paper is organized as follows. First we present the 
language constructs supported by the language. Second, we 
introduce a list of architectural patterns and the categories 
used to classify the patterns. Third, we detail the implemen-
tation of selected patterns and show how they are com-
posed to construct a system. Finally, we discuss how the 
deployment and composition of the patterns can be further 
automated. 

2.  Language Support 

2.1  Agents 

Agents are a conceptual unit of concurrency independently 
of the underlying technology used to interleave their execu-
tion. An agent has its own thread of control and executes a 
state machine that reacts to messages and timer expiration 
events. Agents communicate using messages that are sent 
or received through ports. The ports of different agents are 
connected by connectors which define the communication 
paths between agents. Agents cannot directly access each 
other’s data and do not share global variables. There is 
therefore no need for explicit locking mechanisms such as 
mutexes or monitors.   

We represent instances of agents using boxes with bold 
edges. Instances are annotated with multiplicities. Instances 
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communicate with each other through connectors between 
ports, which are represented as squares. 

 

 

Figure 1. Agent Representation 

2.2  Regions 

A statemachine is composed of a set of regions that mod-
ularize different features of an agent [3]. Each region en-
capsulates a set of states, transitions, attributes, and opera-
tions that are specific to the feature implemented by the 
region. Regions interact through: 
1. Common inputs: multiple regions respond to the same 

event, thereby weaving there transitions within a step. 
2. Internal signals: an event generated by one region can 

be consumed by another region, in the next step. 
3. Guards: transitions of one region can be guarded by 

states of another region. If the transition is not enabled, 
the corresponding event is not consumed by the region. 

Regions are represented using boxes within agents. Regions 
can be associated with ports using arrows which indicate 
that the signals flowing through the port are handled or 
generated by the region. Interactions between regions are 
also represented using arrows. A solid arrow indicates that 
internal events are generated by one region and consumed 
by another. Dashed arrows indicate that one region affects 
the control flow of another region through guards. In Figure 
2, both Region1 and Region3 consume signals flowing 
through Port1. Region2 observes Region1 and Region3 
regulates Region2. 

 

 

Figure 2. Region representation 

2.3  Aspects 

Aspects modularize concerns that cut across multiple 
agents or regions, or that interact with one or more features 
in an invasive way. TDL aspects support pointcut 
expressions to intercept the output of messages and the 
execution of transitions within regions. Output pointcuts 
have the form: 

pointcut outpct (p_t p1, p_t p2) :  

  output (s(p1_t, p2_t))  

     && args (p1, p2) && within (Region1); 

Transition pointcuts have the form: 

pointcut trpct (p_t p1, p_t p2) :  

  transition (for S1 input s(p1_t, p2_t) nextstate S1)    

     && args (p1, p2) && within (Region1); 

Intertype declarations can also add states and transitions to 
specific regions. Within a region, we represent aspects 
using dashed boxes. Aspects interact through 3 types of 
interactions: we use an arrow between aspects to indicate 
that one aspect modifies the state of another. A dashed 
arrow is used to indicate that one aspect affects the control 
flow of another. Finally we use a dotted arrow to indicate 
that an aspect observes the state of another aspect. 
 

 

Figure 3. Aspect Representation 

2.4  Morphing 

Morphing is a generative technique to generate entities 
such as attributes, operations or transitions by iterating over 
the structure of other entities [4]. Morphing transformations 
follow the structure: 

'foreach' entity-pattern 'in' entity '.' metafeature     

   { morphism-body } 

The morphism body is expanded for each entity that 
matches the entity-pattern and that matches the metafeature 
query.  For example, morphing can be used to generate a 
transition from state A to state B for all the signals that flow 
in port p, using the form: 

   foreach signal $s in port p . in { 

      forstate A {  input $s {  nextstate B;  }  } 

In this example, the entity pattern signal $s matches any 
signal that is declared to be accepted by port p and binds 
the name of the signal to the variable $s. The morphing will 
expand the transition based on the name of the signal and 
add it to the region. 

3.  Architectural Patterns 

The following architectural patterns are inspired from the 
patterns presented in [1], but are expressed using the TDL 
concurrency and modularity constructs. Some new patterns 
have been introduced to handle interactions between agents 
and regions. We distinguish between inter-agent patterns, 
inter-region patterns and endpoint patterns. 

3.1  Inter-Agent Patterns 

Inter-agent patterns define how different agents interact. In 
particular, it defines how they control each other’s life-
cycles and how sets of agents of different multiplicities are 
coordinated. We identified the following inter-agent pat-
terns: 
1. Controller: The controller agent controls the life-cycle 

of a set of agents. 
2. Scheduler: The scheduler agent assigns a request to 

one agent among a set of agents, based on the agent 
availability. 

 Region1 

Aspect1 Aspect2 Aspect3 

Region1 

 

Region2 Region3 

Agent1 [1] 

Agent2 

[0..3] 

 

Agent1 

[1] 

Port1 Port2 

Port1 
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3. Dispatcher: The dispatcher agent forwards a set of re-
quests to one agent among a set of agents, based on the 
value of a parameter of the request. 

4. Correlator: The correlator agent directs responses to 
one agent among a set of agents by correlating the id of 
the response with the sender of the corresponding re-
quest. 

5. Multiplexer: The multiplexer agent mediates between 
two set of agents by dispatching each other’s re-
quests/responses based on messages ids. 

6. Orchestrator: The orchestrator agent defines communi-
cation paths between different agents among a set of 
agent, based on a specification. 

3.2  Inter-Agent Patterns 

Inter-region patterns define how the regions of one agent 
are composed with each other. They define how external 
requests are propagated to the regions and how the 
correspond responses are assembled. 
1. Monitor: The monitor region observes the execution of 

another region 
2. Regulator: The regulator regions controls the execution 

another region  
3. Abstractor: The abstractor region provides a mapping 

between a set of concrete external requests and a set of 
more abstract internal requests. 

4. Composer: The composer agent assembles different 
types of agents from different regions and aspects, 
based on the type of service provided. 

5. Distributor: The distributor region distributes a set of 
requests to other regions. 

6. Collector: The collector region collects responses from 
a set of regions. 

7. Transaction: The transaction allows a set of region to 
agree on the outcome of a request and produce consis-
tent responses and resulting configurations. 

3.3 Endpoint Patterns 

Endpoint patterns define how an agent handles a set of 
external signals and are associated with a port of that agent.  
1. Timeout-Retry: The timeout-retry pattern retries send-

ing requests a specific number of times when a re-
sponse is not received within a time interval. 

2. Filter: The signal filter modifies or eliminates a set of 
requests before they are processed by the main state 
machine. 

3. Buffering : The buffering pattern buffers requests when 
the number of outstanding requests exceeds a specific 
threshold.  

4. Throttling: Throttling limits the rate of requests by 
buffering messages. 

5. Splitter: The splitter segments requests into multiple 
requests when the payload exceeds a certain size. The 
corresponding responses are reassembled into a single 
response. 

4.  Implementation 

In this section we detail how a selected subset of these 
patterns are implemented using the modularity constructs 
of TDL. 

4.1  Controller 

The Controller pattern allows one agent to control the 
lifecycle of a set of agents. Typically, the controller creates 
a session to handle a specific request, and terminates the 
session when the request has been processed. Listing 1 
presents an example implementation of the Controller 
pattern in TDL. 

The controller agent contains a set of Session agents and 
a map that correlates an index to a Session agent. The 
Controller accepts the external signals createSession and 
deleteSession, and can send the shutdown signal to Session 
agents through the session_out port. The session_out port is 
connected to the ctrl_in port of the Session agent by a 
connector. 
 

1. agent Controller { 

2.   Session [0..MAX] sessions; 

3.   Map <Index, Session> sessionMap; 

4.   Session session; 

5.   port env in with createSession, deleteSession; 

6.   port dispatch out with shutdown; 

7.   connector from dispatch to sessions.ctlr_in;    

8.   region controller { 

9.     start { 

10.      nextstate Active;  } 

11.    forstate Active { 

12.      input createSession (index) { 

14.        sessions.append (new Session() ); 

15.        session := offspring; 

16.        sessionMap.add(index, session);  

17.        nextstate Active;  } 

18.      input deleteSession (index) { 

20.        output session.shutdown(); 

21.        sessionMap. remove(index, session );  

22.        nextstate Active; } } } } 

23. agent Session { 

24.   port ctrl_in in with shutdown; 

25.   region session { ...  } } 

Listing 1. Controller Pattern implementation 

4.2  Dispatcher 

The dispatcher pattern is used when a signal needs to be 
sent to a specific agent among a set of agents. The 
dispatching is performed based on a mapping between the 
values of a key or index and the agents managed by the 
dispatcher. In most cases, the index is passed as a parameter 
of the signal or computed from these parameters. 
The pattern uses morphing to iterate over all the signals that 
flow through a specific port. In the example of Listing 2, 
the dispatcher is implemented using morphing to iterate 
over all the signals that flow in the env port and that have 
two parameters, the first parameter being of type Header_t. 
For each match, a transition using the values of the 
identifiers variables $Request and $Request_t is generated. 
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1. region dispatcher { 

2.  Header_t h;    

3.  foreach signal $Request (Header_t, $Request_t)  

4.        in port env. in { 

5.   $Request_t req;  

6.   forstate Active { 

7.    input $Request (h, req) { 

8.     if (sessionMap.find(h.index , session)) { 

9.      output session.$Request(h, req) via dispatch;  

10.    } else {      

11.     sendResponse (SessionNotFound); } 

12.     nextstate Active; } } } } 

Listing 2. Dispatcher pattern implementation 

4.3  Buffering 

The buffered pattern is an endpoint pattern used to control 
the number of outstanding requests on an external port. 
This is typically used to mediate between two sets of agents 
that have different multiplicities, or when two sets of agents 
support different levels of concurrency, as is the case when 
TDL models need to interface with Java or C code where 
concurrency is implemented using threads.  
Listing 3 shows an Interface region that forwards requests 
through a port, and sends back responses to an agent. 
Listing 4 shows how the buffering pattern is implemented 
as an aspect that applies to the Interface region. The 
Buffering aspect keeps track of the number of outstanding 
requests sent through a port. If the number of outstanding 
requests exceeds a threshold, new requests are stored in a 
buffer until a response is received.  

1. region Interface { 

2.  state ACTIVE; 

3.  state OVERFLOW; 

4.  start { 

5.   nextstate ACTIVE; } 

6.  forstate ACTIVE { 

7.   input Request (request) { 

8.    output Request via OUT;  

9.    nextstate ACTIVE; } 

10.  input Response (response) { 

11.   if (sessionMap.find(response.index , session) ) 

12.    output session.Response (response); } 

13.    nextstate ACTIVE; } } }  

Listing 3. Interface Region  

1. aspect Buffering{ 

2.  intertype Interface { 

3.   Integer outstandingRequests := 0; 

4.   before (Request_t req) :  

5.     output (Request (Request_t) ) && args (req) { 

6.    if (outstandingRequests >= NbrThreads ) { 

7.     if (!buffer.isFull()) { 

8.      buffer.put(req) { 

9.      nextstate ACTIVE; 

10.    } else { 

11.     nextstate OVERFLOW; }  } } 

12.  after () : output (Request (Request_t)) { 

13.   outstandingRequests := outstandingRequests + 1;} 

14.  after () : transition ( input Response ) { 

15.   outstandingRequests := outstandingRequests - 1;  

16.   if (! buffer.isEmpty()) {  

17.    request := buffer.get(); 

18.    output Request (request); 

19.    outstandingRequests := outstandingRequests+1; 

20.    } } } } 

Listing 4. Buffering pattern implementation 

5.  Deployment 

Figure 4.a shows an architecture diagram for an application 
that performs analysis on network traffic that transits 
between the external ports IN and OUT. The application 
supports a large number of concurrent sessions, and should 
minimize the CPU utilization and memory usage. The 
application is composed of 4 functional units, modularized 
as regions.  The system contains a Dispatcher to forward 
client requests to the right session. A Multiplexer is used to 
concentrate the client requests into a smaller number of 
outgoing connections. Finally, the Correlator correlates 
responses from the external component to the sessions.  

Figure 4.b shows an alternative architecture that uses 
dedicated sessions to perform the analysis. On average, 
only 5% of the sessions require analysis. The 
AnalysisSession sessions are connected to the ProxySession 
sessions by a buffering scheduler, which absorbs peaks of 
analysis requests. This architecture has the following 
advantages. First, the proxy sessions do not need to load 
analysis data when no analysis is being performed for the 
session. The architecture therefore consumes less memory. 
Second, multiple analysis can be performed concurrently 
for the same proxy session, which is not possible with the 
first architecture. The evolution from architecture 1 to 
architecture 2 can be performed without modifications to 
the implementation of the functional modules Proxy, 
Monitoring, Analysis1 and Analysis2. 

 

 
Figure 4. Architectures of the Traffic Monitoring System  
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6.  Automation Challenges 

The instantiation of architectural patterns is performed 
manually by customizing the pattern to the data types, 
signals and protocols of the application. The language 
support for regions and aspects make this task easier, 
because the implementation of the patterns is more modular. 
Generative techniques such as morphing also help by 
automatically generating and contextualizing parts of the 
pattern implementation. However, most of the 
contextualization and deployment of the patterns is still 
done by hand. Different approaches can be used to 
automate the deployment of architectural patterns.  

6.1  Domain-Specific Languages 

Frameworks such as Spring Integration [6] and Apache 
Camel [7] use domain specific languages to capture 
architectural patterns. Such languages allow a pattern to be 
configured and contextualized using entities of a base 
model passed as parameters. A graphical representation, 
such as the one presented in the paper, allows architectural 
patterns to be deployed using a drag and drop approach.  

Such approaches support architecture evolution because 
the DSL abstract from many details about the 
implementation of the architectural patterns. Architectures 
can therefore quickly be deployed and modified by 
composing the patterns at the level of the DSL.  

However, architectural patterns have a large number of 
context parameters that need to be defined before they can 
be deployed. If the language constructs provided by a DSL 
abstract too much of the details of the pattern, the construct 
becomes less usable: it cannot be deployed in certain 
contexts because the pattern needs to be adapted in a way 
that the language does not support. On the other hand, 
DSL’s that expose too many details of the pattern 
implementation are more complex and have a steep 
learning curve. The abstraction benefits provided by the 
DSL are reduced. 

6.2  Round-Trip Engineering 

Architecture specifications can co-exist with code written 
in a general purpose language using round-trip engineering 
environments such as Rational Software Architect [7]. 
Round-trip engineering approaches maintain two separate 
levels of specification of the system, and resolve 
inconsistencies between these descriptions by propagating 
modifications from one level to the other. Round-trip 
engineering can be applied to domain-specific languages by 
synchronizing a representation of the system defined in a 
domain-specific language with a representation of the 
system defined in a general-purpose language, or a 
language such as TDL presented above. 
The advantage of the round-trip approach is that the 
domain-specific language can be more abstract. The details 

of the pattern contextualization are implemented at the code 
level. In such environments, it is especially important to 
keep the representations of the patterns modular. If the 
implementation of the patterns become tangled at the code 
level, it will become more difficult to modify the definition 
of the system at the level of the DSL. The language 
constructs of TDL support this objective. 

7.  Conclusions 

We build application by assembling contextualized instan-
tiations of architectural patterns with modules that imple-
ment functional features of the system. Architectural deci-
sions have tremendous impact on the performance, scalabil-
ity and quality attributes of a system. It is therefore impor-
tant to be able to modify or fine tune architectural elements 
of a system, without requiring important changes to the 
implementation of the functional features of the system. 
We present a language for the development of asynchron-
ous systems called TDL. We show that TDL language fea-
tures such as agents, regions, aspects and morphing can 
support the modular implementation of architectural fea-
tures. We discuss different type of architectural patterns 
and detail the implementation of selected patterns in TDL. 
We show how these patterns are deployed and composed to 
build systems, and how the TDL language construct sup-
port architecture evolution. Finally, we discuss how do-
main-specific languages and round-trip engineering can 
automate the deployment and composition of architectural 
patterns. 
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