Towards Modular Resource-Aware Applications

Somayeh Malakuti, Steven te Brinke, Lodewijk Bergmans, and Christoph Bockisch

University of Twente — Software Engineering group — Enschede, The Netherlands

{malakutis, brinkes, bergmans, c.m.bockisch}@ewi.utwente.nl

Abstract

Resource optimization is an increasingly important require-
ment in the design and implementation of software systems.
It is applied to improve both environmental sustainability
and usability of resource-constrained devices. This paper
claims that to achieve more modular resource-aware appli-
cations, the resource utilization of components must explic-
itly be modeled. Due to shortcomings of existing modeling
languages, we propose a notation for the resource consump-
tion of components and we illustrate the suitability of this
notation by means of two real-world examples. We observe
that explicitly modeling resource consumption has as result
that resource consumption information is scattered across
and tangled with the functional services of components.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques—Modules and in-
terfaces

General Terms Design, Performance

Keywords resource-utilization model, resource-consump-
tion optimization, software composition, aspect-oriented
programming

1. Introduction

The rise of resource-constrained devices like cell phones, but
also the increasing awareness of the need for environmental
sustainability, makes optimization of resource consumption
an evermore important requirement [4f]. Software systems
are composed of various different kinds of components or-
ganized in different layers. Typical examples are hardware-
related software components, middleware components and
application components. It has been demonstrated repeat-
edly that optimization techniques, implemented in software,
can lead to substantial reduction of resource usage [3| [7],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VariComp’12, March 26, 2012, Potsdam, Germany.

Copyright © 2012 ACM 978-1-4503-1101-4/12/03. .. $10.00

13

within both the computer system and the system being con-
trolled. Optimization can take place for components residing
at each layer [3}[8,110] and it can be performed across layers.

Resource optimization can be carried out statically be-
fore the actual execution of software; this is usually achieved
by modeling the resource consumption at the architectural
level and performing analyses on the models. However, due
to the complexity of today’s software and its execution en-
vironment, inevitably optimization must also be carried out
during the actual execution of the software. This leads to
self-adaptive software that adjusts its behavior based on the
changes in resource availability [2]].

Our research focuses on industrial embedded software
and we are interested in addressing resource-optimization
during runtime. As the first step in designing resource-aware
self-adaptive applications, we claim that the resource utiliza-
tion of components must explicitly be modeled to support
the following tasks:

e Components utilizing a resource of interest must be iden-
tified. As a consequence, they must be target to resource
optimization at runtime.

e Relations between the functional services of components
and their resource consumption must be specified. This
pinpoints the services that must be target to resource
optimization at runtime.

e Components that are jointly utilizing a resource and their
interaction among each other must be specified.

The resource utilization of a component also affects other
components that directly or indirectly use the same resource,
e.g., through the component’s services. Thus, to enable mod-
ular resource optimization, the resource utilization of a com-
ponent and the effect of a component’s service on resource
consumption must be explicit in the component interface.

Existing modeling languages such as UML do not offer
generic support for modeling the resource utilization of com-
ponents. However, dedicated UML Profiles [3S]] describe spe-
cific sets of common software and hardware resources.

Research on explicitly modeling resource utilization ex-
ists [IL} 9], but these approaches do not take software mod-
ularity into consideration. Also, some middleware is aware
of quality of service (QoS) [6]] and resource consumption
can also be considered a QoS. However, the optimization of

provided resources provided services

L G G Q99

Resource-aware component

Resource-Utilization
Model (RUM)

Component
implementation

| alate

I I
I I
required resources required services

Figure 1. Notation for Resource-Aware Components

QoS in middleware assumes that all optimizations are han-
dled through a single middleware layer.
The contributions of this paper are as follows:

e We propose a notation for resource-aware applications.

e We illustrate the suitability of this notation for a modular
design of resource-aware applications and resource opti-
mization by means of two real-world case studies.

e We outline generic realization guidelines for resource-
aware applications.

2. A Notation for Modeling Resource-Aware
Applications

Traditionally, a component is considered as a unit of devel-
opment and deployment, with explicit interfaces specifying
the services that it provides to and the services that it re-
quires from its environment [11} chapter 5]. We extend com-
ponents with explicit interfaces specifying the resources that
it provides to and requires from its environment. Besides its
implementation, each component encapsulates a so-called
resource-utilization model which expresses the relation be-
tween the component services and resources.

Figure [I] represents our notation of components. In the
following, we explain each part in more detail (starting at
the top-left and continuing clock-wise):
provided resources This is a separate description for all

resources a component provides, including which type of

resources, and—as appropriate—static constraints on the
availability of these resources.

provided services The functional behavior of a component
is specified as separately described services. The key
issue here is that typically, each service will consume
resources, and the component specification describes
which resources these are, with—as appropriate—static
constraints on the consumption of these resources. The
resource consumption of an individual service invocation
may be influenced by its parameter values.

required services Similarly, a component may require cer-
tain services from other components, to fulfill its duties.

The required services may also specify constraints with

respect to resource usage that provided services must ad-

here to (such as a maximum amount of consumed power).

14

required resources A component may specify that it re-
quires a certain amount of resources; for example, be-
cause the component encapsulates (hardware) behavior
that requires certain resources, or because the compo-
nent will provide these resources—often with some re-
strictions or policy—to other components.

resource-utilization model (RUM) Finally, resource-aware
components may declare their resource behavior, i.e., the
dynamic relation between resources and services. For ex-
ample, they may specify that using a certain service of

a component increases the availability of a provided re-

source or puts a component in a state where it consumes

more of a required resource. The RUM specifies the im-

pact on resources in detail, e.g.: the degree to which the

availability or consumption of the resource changes, the
end-condition for staying at this level, the availability of
resources and services in different situations, and so on.

Choosing a suitable notation for representing resource-
utilization models is a challenge. As shown in section 3] we
consider state machines a suitable notation, because (a) they
are declarative, (b) they can model the internal behavior of a
component and its relation with the services that the compo-
nent provides to and requires from its environment, and (c)
they can conveniently be extended with resource-utilization
annotations on states as well as state transitions. Such infor-
mation can be used by resource optimizers to make more ad-
equate decisions, based on how various components provide
and consume resources.

With respect to optimizing the resource consumption of a
system, components can have one or more of the respon-
sibilities: providing, consuming, or controlling resources.
Pure providers are, for example, drivers that encapsulate
hardware resources such as power, memory, or bandwidth.
Pure consumers are, for example, application components
that consume one or more resources. Controller components
can be optimizers that require resources from the resource
providers and provide them to consumers after applying cer-
tain resource-optimization algorithms. We claim that the no-
tation represented in figure[T|can express these three kinds of
components. For example, a resource provider does not have
any resource consumption interface, an application compo-
nent does not have any resource provision interface, and a
controller component has both kinds of interfaces.

3. Case Studies

In this section we use the notation presented in section [2|for
modeling two real-world resource-aware applications.

3.1 The Hiker’s Buddy Application

The Hiker’s Buddy application [3]] receives information sent
by a Global Positioning System (GPS) receiver and plots
the hiker’s current location on a topographical map that is
retrieved by searching a database of map segments. This
application is necessarily mobile and battery-powered.

view location on map

Hiker'sI Buddy

GPSSLBG) i (GpssL
power = 60 mW : switch power = 90 mW
o -
I
timeout | cancel reqest
| or|fix locdtion
I
I .
BG I 4 main eventloop
power = 40 mW | switch power = 40 mW
Run / Idle N N
—————————————— Y NN S B N
Sleep [1V]] ke 1V} gréen

erkey

sleep

Background

power = 1 mW
Foreground

2.

| Database | | LCD |

po}ier power

poyer

| Power Supply

Figure 2. A component diagram for Hiker’s Buddy

Architecture The main components of Hiker’s Buddy are
depicted in figure [2] The application Hiker’s Buddy uses an
LCD to show maps to the user. These maps are loaded from a
Database. In order to know the current position of the user, a
GPS is used. The GPS component encapsulates both acquir-
ing satellite information and providing this information to
the system—which is done over a serial line. The Optimizer
can be used to optimize the GPS utilization, which will be
explained in the next paragraphs. The Power Supply delivers
battery power to the different components.

Resource optimization Polling the GPS for location infor-
mation is a costly power state. Its total energy expenditure
depends on both power consumption of the state and the
time spent in this state. These are influenced by the polling
frequency of GPS data: The faster polling occurs, the faster
Hiker’s Buddy can discover the availability of a good GPS
fix, thus reducing the time spent in a costly power state; but
polling less frequently allows the processor to spend more
time in idle mode, thus lowering the overall power cost of
this loop. If that does not significantly affect the total time
for the loop, energy use is reduced. An adaptive polling fre-
quency is usually a better policy for energy use than any

15

fixed polling interval, e.g., by increasing the polling fre-
quency when a GPS fix is getting close.

Resource-utilization models A high-level model of the
power states for Hiker’s Buddy—which is adopted from ElI-
lis [3]—is shown inside the Hiker’s Buddy component in
figure [2] The states are divided in two parts by the vertical
dashed line: (a) The states to the left of the line capture the
device requirements remaining when another application is
in the foreground; (b) the states to the right of the line rep-
resent Hiker’s Buddy as the foreground application. Every
state is annotated with the approximate power consumed by
the device while it is in this state. The state GPS SL is ac-
tively reading data from the GPS while Hiker’s Buddy is in
the foreground; it is the most power consuming state. The
main eventloop polls the GPS for the current location by
switching to the GPS SL state at regular intervals.

The GPS component does not only offer the current loca-
tion, but also information about the acquired satellites. Using
this information, Optimizer can estimate how close a GPS fix
is and—together with the information provided by the RUM
of Hiker’s Buddy—optimize the polling interval.

The power utilization shown in this example was acquired
by Ellis, measuring the power consumption of the device as
a whole. Thus, we can only present a RUM for the Hiker’s
Buddy component. While this is sufficient to perform the
desired optimization, it hinders separate maintainability of
the different components. If, for example, we want to replace
the Database or GPS component, we cannot see how this
would influence the resource-utilization model. In order to
do so, the whole RUM must be updated. Therefore, we claim
that every component should have its own RUM.

3.2 Smart Phone Network Traffic Reduction

Mobile devices consume power while transmitting data over
the 3G radio network. In this section, we use our notation to
model the solution proposed by Qian et al. [7] for optimizing
the power usage of these devices.

Architecture The high-level architecture of the smart phone
device shown in figure [3] contains four components. The
component Application represents mobile applications that
require services from the 3G network. In our example, we
focus on one application only, i.e., a media-player applica-
tion, but in practice multiple applications could be executing
simultaneously. The media-player mobile application pro-
vides three services: play, pause, and stop. The component
requires the services connect, disconnect, download, and the
resource connection. The component Optimizer improves
the usage of connections by the applications, which conse-
quently leads to the optimization of radio power usage.

The component Network Manager—offered by the 3G
network—provides the actual data transfer over the network,
for which it requires the resource radio power provided by
the component Power Supply.

oo sie o
pﬂiy

playing |

Application

connection
[until first m seconds are buffered
or
when n seconds of the buffer is
consumed]

dowhload discg'n)nect co%*n)ect
Optimizer |
reggive sce_[r?d discg'n)nect co%*n)ect

Network Manager

COHI ect

CELL DCH

radio power = 800 mW
bandwidth = 100 Mbps,

st

(paused

connection
[until next m seconds
are buffered]

conlrition

banliidth

eceive send |

CELL FACH
radio power =~ 460 mW
bandwidth = 20 Mbps

radio [power

[inactivity timer = y]
| disconnect

radio power ~ 0 mW
bandwidth = 0 Mbps

| Power Supply |

Figure 3. A component diagram for smart phone network
performance

Resource optimization In cellular networks, the connec-
tion of phones to the 3G network consumes radio power.
To efficiently utilize this limited power, the component Net-
work Manager introduces a so-called inactivity timer for
each phone and degrades or releases connections if a phone
is inactive for the specified amount of time. Although this
reduces the radio-power consumption and bandwidth usage,
during the inactivity time, radio power is still being con-
sumed to some extent. Therefore, power consumption is fur-
ther improved by introducing the component Optimizer as
mediator between Application and Network Manager. It ex-
plicitly commands Network Manager to release connections
when they are no longer needed by Application.

Resource-utilization models The internal resource con-
sumption of the component Application is depicted in fig-
ure 3] as a state machine. Here, the state playing is the start
state. To buffer media content, in this state the resource con-
nection is consumed by invoking the service connect fol-
lowed by download. When the first m seconds of media
content are buffered, the connection is released by invoking

16

the service disconnect. The connection is again established
after n seconds of the buffered content are played.

The invocation of the service sfop causes a transition to
the state stopped that does not need the resource connection
anymore. Therefore, it invokes the service disconnect. The
invocation of the service pause causes a transition to the state
paused if the state chart is in the state playing. In the state
paused the resource connection is required until m seconds
of media content are buffered.

The component Optimizer uses the algorithm proposed
by Qian et al. to manage the connections for the applica-
tions. In short, when an application invokes the service dis-
connect, it also identifies the next time when it requires a
connection. If all of the applications require the connection
no sooner than x seconds (x is defined by the RUM of Net-
work Manager), Optimizer invokes the service disconnect on
the component Network Manager; otherwise, it keeps con-
suming resources. In this way, it keeps a balance between
download latency and resource consumption.

The component Network Manager keeps a state machine
for each phone to manage its bandwidth consumption. The
available bandwidth and the power consumption are differ-
ent per state. Here, the state IDLE is the default state, indi-
cating that the phone has not established a connection, thus
no bandwidth is allocated and no radio power is consumed.
The state CELL DCH indicates that the phone is allocated
dedicated transport channels in both downlink and uplink.
The state CELL FACH indicates that a connection is estab-
lished but there is no dedicated transport channel allocated
to a phone. Instead, the phone can only transmit user data
through shared low-speed channels. Consequently, this state
consumes less radio power than the state CELL DCH.

To manage the connectivity and, thus, the resource con-
sumption, Network Manager defines inactivity times and
switches between states. For example, as shown in figure [3]
after x seconds of idle time a state transition occurs from
CELL FACH to CELL DCH, and after y seconds of idle time
a transition occurs to IDLE.

4. Modularity Requirements for
Resource-Aware Software

Our goal is to facilitate the structured development and
maintenance of software for resource-aware systems. A key
technique for achieving this is to separate concerns and im-
plement them in separate modules. Our proposed notation
has been designed to support this. We can observe several
modeling requirements when designing resource-aware sys-
tems according to this approach; namely the need to:

1. Perform optimizations in various locations within the sys-
tem: Depending on the particular system and optimiza-
tion techniques, optimizations may involve and affect
multiple software modules. There is no single optimiza-
tion technique that is generally applicable; for example,
in the Hiker’s Buddy, there is a more centralized con-

trol, whereas in the Smart Phone case, the optimization
involves network-layer support, a centralized controller,
and application-level involvement.

2. Separate optimization and functionality: To manage
complexity and evolution, optimization and functionality
should be separated, even though these are—to varying
degrees—inter-dependent. This is also exemplified by
both case studies, where optimization takes place outside
the various modules in the system—but it does require
communication with those modules.

3. Separate functional and resource-usage interfaces: We
must provide explicit interfaces for both functionality
and resource usage—both required and provided re-
sources. This is not very strongly emphasized by the case
studies, but derived from the need to manage and repre-
sent resources explicitly (so they can be optimized), as
well as the need for independent (functional) modules.

4. Know the behavior and/or plans of other modules w.r.t.
resource usage: Advanced optimizations do not only rely
on measuring the state of the system (such as resource us-
age), but need information about the ongoing and planned
activities from the involved modules. For example, in the
Smart Phone case, the optimizing controller must know
when the applications expect to reconnect.

The above list emphasizes the engineering requirements for

separation of concerns during modeling. Separate concerns

can then be implemented in independent modules (we delib-
erately disregard technology specifics here). However, these
modules can in some cases be tightly related, and always
need to be composed into a single integrated system. We can
now state the following requirements upon the techniques
for the composition of modules in a resource-aware system.

We must be able to:

1. express modular optimization components that cross-cut
the system, such as:

e the ability to observe the resource usage and availabil-
ity of other modules, so that optimization techniques
can take the correct decisions, or

e the ability to affect or control certain behavior or state
of other modules for optimization purposes.

2. extend the functional interfaces with relevant resource
usage information; e.g. how much resources a certain
service consumes when invoked.

3. compose the RUM with the functional implementation;
these two are tightly intertwined, but need to be imple-
mented modularly.

4. provide information about the resource usage behavior
(such as the RUM) of modules to other modules, for
optimization purposes.

5. Conclusions and Future Work

To achieve resource-aware applications, we need to explic-
itly model: the components utilizing a resource of interest,
the relation between functional services and resource uti-

17

lization of components, and the interaction among compo-
nents jointly utilizing a resource. Due to the lack of a suit-
able notation, this paper proposes one and shows its use-
fulness by means of two real-world examples. Further, to
achieve modularity in resource-aware applications, we must
be able to modularize: the optimization components, the
resource-utilization model of components, and the function-
ality of components. Also, we should be able to compose
application-specific and optimization components by aug-
menting the component interfaces with necessary resource-
utilization information.

As future work, we will investigate the implementation
of resource-aware, self-adaptive applications and evaluate
the suitability of current languages—such as aspect-oriented
languages—for achieving modularity in these implementa-
tions. As another future direction, we will investigate a stan-
dard notation for representing resource-utilization models
such that various kinds of discrete and possibly also con-
tinuous models can be expressed.

References

[1] H. Ammar, V. Cortellessa, and A. Ibrahim. Modeling re-
sources in a UML-based simulative environment. In Proceed-
ings of AICCSA, pages 405—410. IEEE, 2001.

[2] B. Cheng, R. Lemos, P. Inverardi, and J. Magee, editors.
Software Engineering for Self-Adaptive Systems, volume 5525
of LNCS. Springer, 2009.

[3] C. S. Ellis. The case for higher-level power management. In
Proceedings of HOTOS, pages 162—167. IEEE, 1999.

[4] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M. An-
derson. Quantifying the energy consumption of a pocket com-
puter and a java virtual machine. In Proceedings of SIGMET-
RICS, number 1, pages 252-263. ACM, 2000.

[5S] OMG. UML Profile for MARTE: Modeling and Analy-
sis of Real-Time Embedded Systems. Technical Report
formal/2009-11-02, OMG, 2011.

[6] T. Patikirikorala, A. Colman, and J. Han. A multi-model
framework to implement self-managing control systems for
QoS management. In Proceedings of SEAMS, pages 218-227.
ACM, 2011.

[7] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. TOP: Tail optimization protocol for cellular
radio resource allocation. In Proceedings of ICNP, pages 285—
294. IEEE, 2010.

[8] C. Schurgers, V. Raghunathan, and M. B. Srivastava. Modula-
tion scaling for real-time energy aware packet scheduling. In
Proceedings of GLOBECOM, pages 3653-3657. IEEE, 2001.

[9] C. Seceleanu, A. Vulgarakis, and P. Pettersson. REMES: A
resource model for embedded systems. In Proceedings of
ICECCS, pages 84-94. IEEE, 2009.

[10] B. Steigerwald and A. Agrawal. Developing Green Software.
Technical report, Intel Corporation, 2011.

[11] C. Szyperski. Component software: beyond object-oriented
programming. ACM, 1998.

	Introduction
	A Notation for Modeling Resource-Aware Applications
	Case Studies
	The Hiker's Buddy Application
	Smart Phone Network Traffic Reduction

	Modularity Requirements for Resource-Aware Software
	Conclusions and Future Work

