Designing with Inheritance and Composition

Omar Alam

School of Computer Science, McGill University,
Montreal, QC H3A 2A7, Canada

Omar.Alam@mail.mcgill.ca

Abstract

Inheritance and composition are two different techniques
that allow a modeller to extend the properties of a class. In
this paper we highlight the differences of these two closely-
related concepts when used in aspect-oriented designs. In
particular, we explain that when an aspect wants to extend
a base class of a source model, the designer should choose
to use composition if she intends the extension to replace
the base class. If she intends to define an alternative to the
base class with extended functionality, inheritance should be
used. We demonstrate the power of the combined use of both
techniques by showing an aspect-oriented design of parts of
a workflow middleware product line.

Categories and Subject Descriptors D.2.10 [Software
Engineering]: Design; 1.6.5 [Simulation and Modeling]:
Model Development

Keywords aspect-orientation, inheritance, composition

1.

Inheritance, or generalization-specialization as defined by
the UML [6], is a well-known concept of object-orientation
(O0) that makes it possible to share structural and be-
havioural properties among objects. Concretely, common
structure and behaviour is defined in what is called a super-
class. Any subclasses that inherit from it also have the same
structural properties. The behavioural properties can also
be shared by subclasses, if the subclasses are behavioural
subtypes of the superclass [4]. Inheritance as defined by
OO does, however, not guarantee that. The discussion in
this paper therefore focusses mainly on the shared structural
properties.

Aspect-orientation (AO) is a new modularization paradigm
that focusses on identification, separation and composition
of crosscutting structural and behavioural concerns. AO

Introduction and Motivation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VariComp’12, March 26, 2012, Potsdam, Germany.

Copyright © 2012 ACM 978-1-4503-1101-4/12/03. .. $10.00

19

Jorg Kienzle

School of Computer Science, McGill University,
Montreal, QC H3A 2A7, Canada

Joerg.Kienzle@mcgill.ca

techniques also make it possible to define within a module,
usually called an aspect, structural and behavioural proper-
ties shared among objects: when the aspect is woven with
the rest of the application, the structure and behaviour de-
fined in the aspect appears in all the places where the as-
pect is applied. Structural weaving is usually performed
by composing/merging classes (or partial classes). For in-
stance, in the aspect-oriented programming language As-
pect] [2], inter type declarations can be used to define fields
and methods in an aspect that are then merged into a base
class when the aspect is applied. At the modelling level,
France et al’s class composition technique [7] or UML’s
package merge [5] make it possible to take two classes de-
fined in separate source models and combine them into one
class in the target model, retaining the fields and methods
from both source classes. From now on, we refer to the AO
way of extending structural properties as composition.

At first glance it might seem that having two ways of
sharing structural properties, inheritance and composition,
is redundant. On the other hand, inheritance and composi-
tion are two different mechanisms that make it possible to
extend structural elements with additional properties. To the
best of our knowledge, the subtle differences between the
two techniques have not been discussed in the AO literature.
The contributors of UML that defined UML package merge
are also vague when talking about the merge operation and
how it compares to generalization:

UML infrastructure, v. 2.4.1, page 163 [5]: “It (i.e. the
Merge operation) is very similar to Generalization in the
sense that the source element conceptually adds the char-
acteristics of the target element to its own characteristics
resulting in an element that combines the characteristics of
both. ... Most often it is used to provide different definitions
of a given concept for different purposes, starting from a
common base definition. A given base concept is extended
in increments, with each increment defined in a separate
merged package.”

In the past years we have worked on several AO case stud-
ies in which we created structural models of significant size
that used both inheritance and composition. Some case stud-

ies involved more than 30 aspects. In this paper we describe
the semantic differences between the two techniques, and
why we need both mechanisms for structural modelling. In
particular, we will give guidelines that allow a designer of an
aspect to decide whether to use inheritance or composition.

The remainder of the paper is structured as follows: Sec-
tion 2 presents the semantic difference between structural
inheritance and structural composition, and the design con-
sequences that result from choosing one over the other. Sec-
tion 3 illustrates the power of combining the two mecha-
nisms by showing parts of the structural design of a prod-
uct line of workflow execution engines, and the last section
draws some conclusions.

2.

In this paper we are going to illustrate our ideas using the
Reusable Aspect Models (RAM) approach [3]. RAM al-
lows a modeller to describe the structure and behaviour of
a design concern using class diagrams, state diagrams and
sequence diagrams. Since this paper focusses on structural
modelling, all example models presented in the paper just
show the structural view of RAM models.

Inheritance and Composition

2.1 Composition in RAM

In RAM, when an aspect B needs properties defined by
some other aspect A, then B can compose with A (or in AO
terms, A can be woven into B). This creates a dependency
between the two aspects: B depends on A. In a sense, A
is a “low-level” aspect, since it provides general structure
and behaviour, useful on its own and also in the context
of B. B is a “higher-level” aspect, since it provides more
specific structure and behaviour based on A. Of course, the
functionality of B can itself be used within another aspect C
to provide even more specialized functionality.

RAM supports the creation of such aspect hierarchies.
Every aspect has a well-defined aspect interface that com-
prises the public model elements, i.e., the structural and be-
havioural properties that the aspect exposes to the rest of the
model, as well as the mandatory instantiation parameters.
The mandatory instantiation parameters designate the model
elements that are only partially defined, i.e., the elements
that need to be composed with other model elements when
an aspect is applied.

The class diagrams in the structural views of RAM as-
pects are composed based on France et al.’s composition
technique [7]. The composition directives, or instantiations
as they are called in RAM, tell the weaver which model el-
ements (i.e., classes, associations, methods and parameters)
are to be composed. In RAM, the instantiation directives are
located in the higher level aspect. In our example, A speci-
fies which model elements of B are to be merged with which
elements of A. Using the directives, the weaver generates an
independent aspect model of A that contains all model ele-
ments of B. In addition to performing the composition ac-

20

aspect BCompose depends on A | aspect Blnheritance depends on A |
ClassSuperB
L]
+02() N
Instantiations: Instantiations:
A: ClassA — ClassB A: ClassA — ClassSuperB
aspect A

+01()

Figure 1. Composition vs. Inheritance

cording to the instantiation directives, the RAM weaver also
applies automated information hiding: all public elements
of B are switched to intra-aspect visibility, unless A explic-
itly re-exposes them in its interface. As a result, none of the
model elements of B are visible to the outside anymore, un-
less otherwise specified.

2.2 Deciding between Composition or Inheritance

Often, a RAM designer wants to extend the properties of a
class defined in a low level aspect within the design of a
higher level aspect. There are two design options that can
achieve this: using composition with inheritance, or using
composition only. Although at first glance both techniques
achieve the same result, this design choice has considerable
consequences later on, i.e., for aspects that are higher up in
the hierarchy.

Fig. 1 illustrates the two choices by showing two ways
of designing an aspect B that depends on a lower-level as-
pect A. The higher level aspects, BCompose (on the left) and
Binheritance (on the right), both define a class ClassB that
extend the properties of ClassA in aspect A. In BCompose,
the instantiation directives directly merge ClassA defined in
A with ClassB. Aspect Blnheritance on the other hand de-
fines a super class ClassSuperB, and merges that class with
ClassA. ClassB in Bilnheritance is modelled as a subclass
of ClassSuperB. In both cases, the resulting class ClassB
has the properties of ClassaA, i.e., operation 01(), and is ex-
tended with an additional operation 02().

There is, however, a significant difference between the
two designs. In BCompose, the entity ClassA does no longer
exist. Its properties were absorbed into ClassB. By using
composition only, the designer decides that in the context of
B, only ClassB, i.e., a specific extension of ClassA, is of
value. Users of BCompose should not be able to create in-
stances of an entity that only has the properties defined by
ClassA. Actually, once the weaver has generated an inde-
pendent aspect model for BCompose, the fact that some of
the properties of ClassB were once modularized within a
separate entity is not visible anymore. In essence, the de-
signer of BCompose declares ClassB to be a (more specific)
replacement of ClassA. If one thinks in terms of extension,

this means that all instances of ClassA are extended to have
the additional properties specified in ClassB.

The situation is different in Blnheritance. As specified in
the instantiation directives, the entity ClassA provided by A
still exists in the context of B and is called ClassSuperB.
Additionally, the entity ClassB is defined. ClassB is more
specific, because it inherits the properties of ClassSuperB
(and therefore ClassA) and defines additional properties. By
specifying two classes that are related through inheritance
the designer decides that in the context of B two kinds of ob-
jects are useful: instances of the general ClassSuperB and
instances of ClassB. In essence, ClassB provides an alter-
native functionality to ClassSuperB. If one thinks in terms
of extension, both ClassA (now named ClassSuperB) and
its extension ClassB are available. Whenever an instance of
an entity needs to be created, a user of Blnheritance has the
choice to either instantiate ClassSuperB or ClassB.

To summarize: to make the right design decision when
extending a lower-level entity, the designer needs to deter-
mine if the newly designed entity provides an alternative to
the lower-level one, or if it is a replacement of it. In the for-
mer case, the lower-level entity should be exposed as a super
class and inheritance should be used to extend the new en-
tity from it. In the latter case, only the new entity should be
part of the new aspect, and composition should be used to
add the properties of the low-level entity to it. As a result, all
instances of the lower-level entity now have the additional
properties of the entity in the higher-level aspect.

2.3 Consequences for Higher Levels

The immediate consequence for a higher level aspect is
obviously that in the case of BCompose only the extended
entity is available, whereas Blnheritance offers the general
entity and the extended entity.

Let us assume that only BCompose has been designed,
and that a higher-level aspect C needs the functionality of-
fered by ClassB. If C also needs the more general function-
ality provided by ClassA, it can simply depend on A and as
a result declare instances of ClassA. However, in C ClassA
and ClassB are not related in any way. The “ClassA’ness” of
ClassB was lost as a result of the replacement design choice
made by the designer of BCompose.

This situation is illustrated in aspect CI on the left
side of Fig. 2: ClassB from aspect BCompose is merged
with ClassC1, and ClassA from aspect A is merged with
ClassC2. Although after the weaving the classes ClassC1
and ClassC2 both have the variable varl and the opera-
tions 01 () and o03(), they can not be treated in a uniform
way. It is not possible, for instance, to use one reference
type to refer to both ClassC1 and ClassC2 instances, or to
use polymorphism.

The situation is different for aspect C2 on the right side
of Fig. 2 that depends on aspect Blnheritance. In aspect C2,
ClassC and ClassB both have the properties var1 and o1 ()

21

aspect C1 d ds on BComp. A t C2 on Blnheritance |
ClassC1 ClassC2
vari +03()
+ 03() + 03()
Instantiations: Instantiations:
B: ClassB — ClassC1 B: ClassSuperB — ClassC
A: ClassA — ClassC2

aspect BCompose depends on A aspect Blnheritance depends on A |

ClassSuperB

ClassB
vari JAN
+ 020
Instantiations: Instantiations:
A: ClassA — ClassB A: ClassA — ClassSuperB
aspect A

[ClassA |

+01()

Figure 2. Design Choice Consequences

and 03(), and can both be referenced by a ClassC reference,
since ClassB is a subclass of ClassC.

3. Real-World Example: Workflows

A workflow is a depiction of a set of operations that need
to be completed in a certain order to fulfill a certain goal
or task. For example, workflows have been used in software
development to describe how a system under development
is supposed to interact with its environment. A well-known
example modelling formalism that can be used to describe
workflows in general is UML Activity Diagrams [6]. An-
other example is the User Requirements Notation (URN) [1],
a visual language standardized by the International Telecom-
munications Union intended for modelling interaction sce-
narios between a system under development and its en-
vironment. In order to be able to execute workflows de-
fined in URN, we have worked on the definition of a URN
workflow execution environment. We have elaborated an
aspect-oriented design model of a workflow middleware
that provides the user with the functionality to define URN
workflows, to instantiate them and finally execute them. In
this section we show the structural views of some inter-
esting aspect models of this workflow middleware, namely
the aspects WorkFlow, ParallelExecution, OutPath, Con-
ditionalExecution, InPath, Synchronization and Stub, and
point out for each aspect why they were designed using in-
heritance and composition or composition only.

The top left aspect in Figure 3 shows the WorkFlow as-
pect which defines the minimal model elements found in a
work flow. It states that a work flow is composed of nodes,
which can be sequence or control flow nodes, one of which
is the end node. SequenceNode and ControlFlowNode
are alternatives of WorkFlowNode, clearly shown by the
inheritance relationship, and similarly EndNode is an al-
ternative of ControlFlowNode. Both SequenceNode and
ControlFlowNode do not substitute the need of WorkFlow-

Node. The WorkFlowNode has two abstract methods, depo-
sitToken() and addNextNode (WorkFlowNode n), which
are implemented differently by the two subclasses. This al-
lows other parts of the system to treat workflow nodes in a
uniform way. For example, a potential work flow execution
engine can deposit a token into any kind of node whether it
is a SequenceNode or a ControlFlowNode.

Some nodes in a workflow are not just connected to one
following node. Figure 3 shows a high-level aspect called
OutPath that depends on the WorkFlow aspect. It defines the
structure needed for control flow nodes with more than one
named outgoing path in the class | CFNWithOutPath. Here,
| CFNWithOutPath is an alternative of ControlFlowNode
because the designer does not want all control flow nodes to
have outpaths. Similarly, the designer decides that QutPath-
Node is an extenstion of SequenceNode and hence does
not replace it, but offers OutPathNode as an alfernative to
SequenceNode. Since CFNWithOutPath is not a complete
workflow node, the designer specifies that this alternative
must be completed in a higher level aspect, indicated by the
additional “I” [3]. Finally, the instantiation directives ensure
that ControlFlowNode and SequenceNode are composed
with ControlFlowNode and SequenceNode in the Work-
Flow aspect.

The ParallelExecution aspect shown in Figure 3 defines a
contol flow node that allows a workflow to continue execu-
tion of several following nodes in parallel. It is an example
that shows how the designer can make use of the OutPath as-
pect to define a concrete control flow node that has outpaths.
To define a parallel execution control flow node, the designer
declares a ParallelExecutionNode and composes it with
the partial | CFNWithOutPath class of OutPath. As a result,
ParallelExecutionNode replaces |CFNWithOutPath.
The fact that ParallelExecutionNode is an alternative
ControlFlowNode is already defined in OutPath.

The ConditionalExecution aspect shows how the designer
can make use of the OutPath aspect again to define an-
other alternative control flow node that represents condi-
tional execution. The instantiation directives specify that
| CFNWithOutPath is composed with ConditionalExecu-
tionNode and OutPathNode is composed with OutPath-
NodeWithCondition. ConditionalExecutionNode is
not an alternative to |CFNWithOutPath, but rather it is a
replacement. On the other hand, OutPathWithCondition
is an alternative of OutPathNode. As a result it is now pos-
sible for out path nodes that follow a conditional node to be
associated with a Condition object.

Figure 3 shows the aspect InPath, that, similarly to the
OutPath aspect, extends control flow nodes to be able to
have more than one incoming path. Its structural design is
similar to OutPath. Again, |CFNWithInPath is designed
as an alternative of ControlFlowNode, and made partial
to force higher level aspects to complete it further. What
is new here is that InPath needs to extend the function-

22

ality of all work flow nodes in order to allow them to
be connected to control nodes with inpaths. This is done
by defining the class InPathConnectibleWorkFlowNode
with the method addNextNode, and by composing it with
the WorkFlowNode class of the lower level WorkFlow as-
pect. InPathConnectibleWorkFlowNode therefore re-
places WorkFlowNode in the aspect WorkFlow, because all
work flow nodes, once control flows with inpaths are used,
need to be connectible to inpaths.

The Synchronization aspect uses InPath to define con-
trol flow nodes that synchronize execution by composing
| CFNWithInPath with SynchronizationNode.

A stub is a URN workflow element that allows workflows
to be nested. A stub has several in and out ports, which are
bound to start and end nodes in another workflow. When the
flow of control enters the stub in the outer workflow, the flow
of control continues in the inner workflow according to the
binding.

The aspect Stub, also shown in Figure 3, depends on two
lower level aspects, InPath and OutPath. Both | CFNWithIn-
Path and |CFNWithOutPath are composed with the class
StubNode. The StubNode replaces both CFNWithInPath
and CFNWithQutPath and composes them together into one
class. Notice that by composing these two subclasses of
ControlFlowNode, StubNode also inherits from Control-
FlowNode. As a result, aspects in a higher level that use
StubNode will have access to the properties of control flow
node, and properties provided by |CFNWithInPath and
| CFNWithOutPath.

In some way the aspect-oriented design presented in this
section represents a product line of workflow middlewares,
because the user can simply ask the weaver to generate
a specific workflow middleware by selecting the desired
workflow aspects (i.e. the desired features).

In the bottom left half of Figure 3 (A), the final woven
design model that the weaver generates when all aspects
are selected is shown. Because we used alternatives in the
aspects that designed the individual control flow nodes, a
particular work flow can instantiate the subset of the nodes
it needs. For example, one work flow can be composed of
SequenceNode, EndNode, ConditionalExecutionNode
and OutPathNode only, whereas another work flow can use
a different subset, e.g. SequenceNode, EndNode, Synchro-
nizationNode and InPathNode. However, if all work-
flows that the design needs to support do not use one of
the nodes defined in an aspect, a new design model can be
generated by selecting the desired subset of aspects. Fig-
ure 3 (B) illustrates a design in which only Workflow and
ConditionalExecution (and indirectly also OutPath) were
applied.

4. Conclusion

Inheritance and composition are two different techniques
that allow a modeller to extend the properties of a class.

aspect WorkFlow aspect ParallelExecution depends on OutPath | aspect InPath depends on WorkFlow | T ICENWithinPath !
1
[gtiielend 4
WorkFlowNode [ParallelExecutionNode] InPathConnectible
+ depositToken() + Set<WorkflowNode> chooseNextNodes| WorkFlowNode ControlFlowNode
+ addNextNode(WorkFlowNode n, - — + addNextNode
Instantiations: (ICFNWithinPath ,
. OutPath: ICFNWithOutPath — ParallelExecutionNode; String inPathName! ICFNWithinPath
1
SequenceNode ControlFlowNode * flinnZ?r:rl;':?:l\Tode(Strin inPathName)
+ depositToken() + depositToken() aspect ConditionalExecution depends on OutPath | SequenceNode g
+ addNextNode + addNextNode(WorkFlowNode n)
WorkFlowNode n + Set<WorkflowNode> chooseNextNodes| ConditionalExecutionNode OutPathNode AN
/\ + Set<WorkflowNode> InPathNode
[Sneomiest |
EndNode o - OutPathNodeWith String pathName
yConditon iee —
Condition Instantiations:
" + setCondition(Condition c) Workflow: WorkFlowNode —

aspect OutPath depends on WorkFlow | ; ICFNWithOutPath-: Instantiations:
d

InPathC kF
ode —
de — ControlF

ControlF

| aspect Stub depends on InPath, OutPath |

""""""" OutPath: ICFNWithOutPath — ConditionalExecutionNode
[SequenceNode | [_ControlFlowNode | OutPathNode — OutPathNode
OutPathNode | ICFNWithOutPath aspect Synchronization depends on InPath
String pathName + WorkFlowNode

StubNode

findNextNode(String outPathname)

SynchronizationNode |

+ Set<WorkflowNode> chooseNextNodes|

+ Set<WorkflowNode> chooseNextNodes

OutPathNode | myCondition
WithCondition |0..1

Instantiations: Instantiations:
Workflow: SequenceNode — SequenceNode; Instantiations: InPath: ICENWithInPath — StubNode
ControlFlowNode — ControlFlowNode; InPath: ICF — Sy lode OutPath: ICENWithOutPath — StubNode
"""""""""""""""""""" 6""'""""'""""'"""'"""""-'"""'""""'0 TTTTTTTTTTTTTTTTTTT T AT
WorkFlowNode |— | WorkFlow | 1 WorkFlowNode |— [WorkFlow |
AN ! AN
I
[SequenceNode | [ControlFlowNode | | [Seq Node | [ControlFlowNode |
[\ ! A\
I
@ [I |
InPath |[OutPath |[EndNode |[Stub |[Parallel || Conditional |[Synchronization | ! Conditional
Node Execution || Execution Node ' Execution
Node Node ' Node

1
1
1
1
I
1

OutPathNode | myCondition
WithCondition |0..1

Figure 3. The Workflow Aspects and Two Generated Workflow Middleware Design Models

To the best of our knowledge, the aspect-oriented modelling
community has so far not established well-defined guide-
lines on when to use inheritance, which is an object-oriented
concept, and when to use composition, which is an aspect-
oriented concept.

In this paper we highlighted the differences of these two
closely-related concepts when used in aspect-oriented de-
signs. In particular, we explained that when an aspect wants
to extend a base class of a source model, the designer should
choose to use composition if she intends the extension to re-
place the base class. As aresult, all instances of the class are
always created with the extension. If she intends to define an
alternative to the base class with extended functionality, in-
heritance should be used. That way, the designer that applies
the aspect can choose which class to instantiate, i.e., the base
class or the extended one, depending on the context.

We have demonstrated the power of the combined use
of both techniques by showing an aspect-oriented design of
parts of a workflow middleware product line. A base work-
flow aspect that only allows to define sequential workflows
was optionally extended with aspects that provide more elab-
orate control flow structures, i.e., conditional execution, par-
allel execution, synchronization, and nested workflows. To
generate a design model supporting a specific set of work-
flow features, the weaver simply composes the aspect mod-
els defining the desired workflow elements.

23

References

[1] INTERNATIONAL TELECOMMUNICATION UNION (ITU-T).
Recommendation Z.151 (11/08): User Requirements Notation
(URN) - Language Definition, approved November 2008.

[2] KiczALES, G., HILSDALE, E., HUGUNIN, J., KERSEN, M.,

PALM, J., AND GRISWOLD, W. G. An overview of Aspect]. In

15th European Conference on Object-Oriented Programming

(ECOOP’2001) (2001), no. 2072 in Lecture Notes in Computer

Science, Springer, pp. 327 — 357.

—

3

—

KIENZLE, J., AL ABED, W., AND KLEIN, J. Aspect-Oriented
Multi-View Modeling. In Proceedings of the Sth International
Conference on Aspect-Oriented Software Development - AOSD
2009, March 1 - 6, 2009 (March 2009), ACM Press, pp. 87 —
98.

Liskov, B., AND WING, J. M. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and
Systems 16, 6 (Nov. 1994), 1811-1841.

OBJECT MANAGEMENT GROUP. Unified Modeling Lan-
guage: Infrastructure (v2.4.1), December 2011.

OBJECT MANAGEMENT GROUP. Unified Modeling Lan-
guage: Superstructure (v 2.4.1), December 2011.

REDDY, Y. R., GHOSH, S., FRANCE, R. B., STRAW, G.,
BIEMAN, J. M., MCEACHEN, N., SONG, E., AND GEORG,
G. Directives for composing aspect-oriented design class mod-
els. Transactions on Aspect-Oriented Software Development 1
(2006), 75-105.

[4

—

[5

[t

[6

—

(7]

