
Configuration of Mechatronic Multi Product Lines

Christopher Brink
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn, Germany

Christopher.Brink@uni-paderborn.de

Martin Peters Sabine Sachweh
University of Applied Sciences and Arts

Dortmund, Germany
{Martin.Peters ∥

Sabine.Sachweh}@fh-dortmund.de

Abstract
For the development of variable systems, software product
lines (SPL) are an established way to handle the variabil-
ity by using feature models. Nevertheless, the configuration
of an SPL can be complex, especially if a product line con-
sists of a large number of features. The problem of handling
the complexity becomes even more sophisticated if not only
software, but also mechatronic systems containing software
and hardware components are configured. Besides modeling
the software, within a mechatronic system dependencies and
associations between software and hardware features need
to be considered which further increases the complexity.
To handle this complexity in product lines for mechatronic
systems, we propose a multi product line (MPL) approach
which allows to distinguish between software and hardware
by using different feature models for each. In addition we in-
troduce a level of abstraction to complex product lines con-
sisting of multiple feature models by establishing a feature
model mapping. In this paper we present details to the map-
ping to provide an abstract configuration view as well as the
introduced associations for our MPL approach.

Categories and Subject Descriptors D.2.9 [Software En-
gineering]: Management—Software configuration manage-
ment, Productivity; D.2.10 [Software Engineering]: Design—
Methodologies

General Terms Design, Management

Keywords Mechatronic Multi Product Lines, Feature Mod-
els, Mapping

1. Introduction
The development of mechatronic systems combines the en-
gineering disciplines of mechanical engineering, electrical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VariComp’12, March 26, 2012, Potsdam, Germany.
Copyright c⃝ 2012 ACM 978-1-4503-1101-4/12/03. . . $10.00

engineering and software engineering. Accordingly the de-
velopment of mechatronic systems, composed of among
other things, controllers for continues behavior and real time
protocols for the coordination of connected systems [15], is
a complex task. Due to the increasing complexity of these
systems and the variety of products, resulting both from
the combination of hardware and software components, the
development time and costs of mechatronic systems are in-
creasing, too.
One opportunity to handle the complexity is the use of fea-
ture models introduced by [11] to describe the variable and
common parts of software product lines [5]. A feature model
consists of a hierarchically arranged set of features con-
nected through different types of associations. In different
approaches [1, 8] feature models are used for product con-
figuration. Therefore features are connected to software de-
velopment artefacts. Figure 1 depicts an example of a feature
model describing a navigation system in a car. While the ap-

navigation system

TMC map radio di!erent
routes

one route

tra"c jam view key pad touch display

mandatory
optional

alternative
or

require

constraint

Figure 1. Example of a feature model

plication of feature models for describing product lines is
well known and integrated in different approaches [3, 7, 9]
most of the applications take place in the field of software
product line engineering. Hardware engineering in contrast
is usually performed by the use of large spreadsheets and
configuration files.
For a better integration of different disciplines of engineer-
ing and easier handling of the complexity of variable mecha-
tronic systems, we propose a multi product line approach
which allows us to use different feature models for software
and hardware features by introducing dependencies between
multiple feature models. Each feature may contain develop-
ment artefacts derived by one of the aforementioned engi-
neering discipline. We also establish a mapping of different

7

feature models to one abstract model to ease the handling of
the complexity and to provide an user specific view with a
restricted choice of features.This abstract model and the cor-
responding mapping allows a simple product configuration
by the user without knowledge of the different development
artefacts.
In the following we first indicate the use of product lines
for mechatronic systems before we focus on the abstrac-
tion of product lines and the underlying mapping for ease
of complexity in section 4. Section 5 will give an overview
of related work and the delimitation to the presented work.
The last section will conclude the paper and point out future
activities in our research.

2. MPLs for mechatronic systems
The modeling of software and hardware features of a mecha-
tronic system within one feature model may not only lead
to a high complexity, but also has some disadvantages and
limitations in further processing, resulting from the combi-
nation of software and hardware features and the respective
deployment. On the one hand it is not possible to distinguish
between software and hardware features during processing
of a configuration. On the other hand a feature model does
not allow to describe the distribution of a software on dif-
ferent hardware components. Contrariwise a feature model
does not provide an opportunity to model the deployment
of multiple software artefacts on one hardware component.
For example, a car manufacturer may use a feature model
to handle the configuration of a car navigation system in-
cluding the electronic control unit (ECU) and the software
for different types of navigation systems. In this scenario
it would not be possible to deploy another piece of soft-
ware, for example to control the electric windows, on the
same ECU. Also further dependencies between the differ-
ent system parts and their properties can not be modeled
adequate in a combined feature model. Therefore we pro-
pose an approach where different system parts can be man-
aged within different feature models and additionally associ-
ations between those feature models exist to specify depen-
dencies and further information for a product configuration.
A fragmentation of a mechatronic system into different fea-

navigation system navigation system

CPU memory TMC

Interface

memory memory

radio

TMC map

di!erent routes

one route

tra"c jam view
key pad

touch display

Figure 2. Fragmentation into multi feature models

ture models by differentiating between software and hard-
ware parts is depicted in figure 2, while the dependencies of
the multiple feature models are introduced in section 3. With

the breakdown into multiple feature models it is possible to
treat software and hardware features in a different way and
connect them with different artefacts. For example a soft-
ware feature may be associated with a software artefact of
the Mechatronic UML [2], which allows modeling of con-
tinuous and discrete behavior of mechatronic systems, while
a hardware feature is associated with a parts list and a cir-
cuit diagram. In addition it is possible to not only generate
software from a product configuration, but also to produce a
hardware list and a deployment diagram. The hardware list
may also include further information about the technical de-
tails or the ordering of specific parts, while the deployment
diagram connects the software and hardware parts and may
be used as a blueprint for the configured product. The de-
ployment diagram may also include different software plat-
forms which are needed.

3. Multi product line constraints
To connect software and hardware artefacts distributed over
multiple feature models in an adequate way, a set of asso-
ciations is necessary. Therefore the well known require and
exclude dependencies for features within one feature model
described amongst others in [6] are not adequate. Hence we
extend this concept and apply it to features in different fea-
ture models as well as to feature models itself. For exam-
ple the selection of the Traffic Message Channel (TMC) fea-
ture in the software feature diagram in figure 2 is only valid,
if the hardware for the TMC Interface is selected, too. Ac-
cordingly there must be a require dependency between the
software feature TMC and the hardware feature TMC Inter-
face. In addition we introduce one more type of dependency
which can be applied to one feature and a feature model.
The deploy dependency describes deployment information
of an artefact and specifies the execution environment. For
example the software of an navigation system, which may
be variable due to different maps offered by the manufac-
turer, may have dependencies to different kinds of hardware
for the navigation system which differ in the available mem-
ory.
The resulting dependencies are summarized in table 1. For

Table 1. Different types of dependencies
Dependency Description
require Requires the target feature to be selected

in a configuration, too.
exclude Excludes the selection of the target fea-

ture in the current configuration.
deploy Describes the hardware or software plat-

form used for deployment.

each type of dependency, we additionally differentiate be-
tween constraints (CT, applied between features within one
feature model), cross feature constrains (FCT, applied be-
tween features of multiple feature models) and feature model

8

constrains (MFCT, applied to multiple feature models and so
to root-features) so that we finally have the following set of
contraints:

• CT = {require, exclude}
• FCT = {require, exclude, deploy}
• MFCT = {require, exclude, deploy}

The aforementioned dependencies allow us to describe dif-
ferent system parts, tailored into software and hardware fea-
tures, within multiple feature models and so to handle com-
plex mechatronic systems. Another advance is the possibil-
ity to specify deployment information and requirements be-
tween features. Figure 3 represents the scenario described
in figure 2 completed with the introduced dependencies.
Nevertheless we found out, that the use of simple dependen-

navigation system navigation system

CPU memory TMC

Interface

memory memory

radio

TMC

di!erent routes

one route

deploy

require

require

CT constraint FCT constraint MFCT constraint

map

tra"c jam view key pad

touch display

Figure 3. Dependencies between feature models

cies is not always satisfying. That is the case, if one feature
has multiple features as precondition and otherwise would
not lead to a valid configuration. To be able to handle such
conditions we plan do develop a notation to map complex
dependencies in the future, too.

4. Abstraction for the configuration of MPLs
The introduction of the cross model dependencies makes it
easier to handle different system components and to differ-
entiate between hardware and software artefacts. Contrari-
wise it can also make it harder to handle a configuration be-
cause of additional dependencies and references which on
the other hand raise the complexity of a diagram. To sim-
plify the process of configuration in a multi product line we
propose a feature model mapping, which maps multiple fea-
ture models and associated references to one simple feature
model to hide the complexity for a user and to be able to
provide a user specific view.
Before we present the mapping of a multi product line to an
abstract feature model, we first introduce the formal defini-
tion of a feature model as well as of a multi feature model. In
doing so we use the definition made by Trigaux et. al in [18]
and adopt it for our needs. The graph type of a feature model
in this paper is defined as a tree, while NT (Node Type) is
a set of Boolean functions which describe the type of node
NT = {mandatory, optional, alternative, or}. The Constraint

Type (CT) in turn is defined as a binary boolean operator and
is used to describe dependencies (require, exclude) which
may exists between features of one feature model. As de-
scribed in section 3 for a multi feature model we also need
constraint types for constraints between features of different
feature models (FCT) as well as constraints between differ-
ent feature models (MFCT). The aforementioned description
leads to the following definition:

Definition 1. A feature model FM = (N , r, λ, E , C) where:

• N set of nodes (nodes are features)
• r ∈ N is the root feature of the feature model FM
• λ : N → NT labels each node with an operator from
NT

• E ⊆ N ×N set of edges
• C ⊆ N × CT ×N is the set of constraint edges
• NT = {mandatory, optional, alternative, or}
• CT = {require, exclude}

Definition 2. A Multi Feature Model
MFM = (FM,FC,FMC) where:
• FM set of feature models
• FC ⊆ N ′ ×FCT ×N ′′ set of constraint edges between

features of different feature models
• FMC ⊆ FM′×MFCT×FM′′ set of contraint edges

between different feature models
• FCT = {require, exclude, deploy}
• MFCT = {require, exclude, deploy}

The mapping between the multi feature model MFM =
(FM,FC,FMC) and an abstract model, which is also a
feature model, FMa = (Na, ra, λa, Ea, Ca) is defined as
follows:

R ⊆ Na ×NMFM

with :

NMFM =
∪
i

Ni,

FMi = (Ni, ri, λi, Ei, Ci) ∈ FM

(1)

That means that one feature of the abstract model maps mul-
tiple features in an arbitrary number of underlying feature
models and each abstract feature must be mapped to at least
one feature. The introduced mapping can be used to create
a clearly and user defined view of a complex multi product
line of a mechatronic system. In contrast to the direct pre-
sentation of a multi product line including all features, the
abstracted view can be used by a customer to configure a
product without knowledge of technical details or knowl-
edge about dependencies. The abstraction is achieved by
mapping one abstract feature to a variety of features in un-
derlying feature models. Moreover abstract feature models
may be enhanced with additional user information like intro-
duced by Streitferdt in [16], without rising the complexity of
the underlying feature models.
Within this view, all mandatory features may be hidden to

9

choice Bchoice Aalternative A

feature models

abstract models

view

represents mapping

hint

hint

user

domain

developer

feature

developer

Figure 4. feature model abstraction

provide a clearly arranged user interface containing only se-
lectable options while the aforementioned user information
provide additional assistance during the configuration pro-
cess. In addition the abstract model can be used to make a
pre-selection of features or to restrict the available features
for a specific customer, domain or type of product. In the car
industry for example, this might be the case with the config-
uration of a BMW 5 and a BMW 7, which each on its own is
a variable product. Although both cars share some compo-
nents like control gears and other electronic equipment, they
do not allow an arbitrarily combination. With the introduced
abstract model it is possible to provide a single feature model
for each kind of car even if the underlying feature models
may be associated through different kinds of dependencies
and thereby belong to one complex multi product line. These
concepts are depicted in figure 4.

5. Related work
Recently many approaches were proposed to extend the con-
cept of product lines to integrate software development arte-
facts like requirements, classes or components [1, 4, 16].
Apel et. al. introduced a way to connect classes as well es
refinements of classes with features. Depending on the se-
lected configuration of a product line, those classes were
modified based on the previous mentioned refinements. Fi-
nally, the software is provided by the generated artefacts. Al-
though this approach is promising for software product lines
it is not adequate for mechatronic systems because neither
hardware artefacts nor dependencies between software and
hardware artefacts can be considered. Streitferdt extends the
concept of product lines in his PhD-thesis and consideres an
association between features and requirements. Therefore he
identifies different types of dependencies which mainly dif-
fer from the dependencies introduced in this paper that they
only can be applied to features within one feature model.

In addition deployment dependencies are not taken into ac-
count.
Another refinement of the concept of product lines is intro-
duced in [5], where a process for the development of soft-
ware product lines is presented. This concept is used in our
approach and accordingly applied to multi product lines for
mechatronic systems.
In [12] Apel et. al. outlines a process for a combined hard-
ware and software product line which would meet the sce-
nario of a product line for mechatronic systems. Neverthe-
less they do not consider the necessary associations between
features so that dependencies are not taken into account.
One approach where the configuration of software and hard-
ware features is considered within one product line was sug-
gested in [17]. However, only requirements are mapped and
only one single feature model is used, which limits the differ-
entiation between software and hardware features. Further-
more no information about the deployment and execution
environment can be integrated
The handling of multi product lines was focused in [14]
where Rosenmüller et. al. introduced composition models
to associate multiple feature models within one multi prod-
uct line to generate a configurator based on the composi-
tion models. While this approach may be at first sight quite
similar to the introduced abstract feature models, our ap-
proach provides much more flexibility through the mapping
of one abstract feature to many features of different feature
models. In addition our approach enables the generation of
a user specific view with for example hidden options, re-
gardless of whether these are mandatory or just not avail-
able for a specific customer. Reiser et. al. introduced in [13]
an approach for modeling multi level feature trees. In con-
trast to our approach, Reiser et. al. organize feature mod-
els hierarchically and do not consider different development
artifacts. In [10] an approach is presented which allows to
combine different modelling methods for variability by the
use of web services. In contrast to our approach they do not
consider hardware parts, a deployment constraint or an ab-
stract configuration view, which is necessary for modelling
mechatronic systems. To simplify the process of configura-
tion Czarnecki et. al [8] introduced an approach where the
configuration is tiled into different steps based on different
levels of abstraction. A previously selected configuration di-
rectly affects further variation points and limits the available
options. This concept should allow the configuration through
various stakeholders where an expert starts with the config-
uration and finally the customer gets a restricted view with
a highly limited choice. Our approach in contrast provides
a direct configurable view for customers through the use of
abstract feature models. A preselection of features could be
realized by the use of OEM. Furthermore our approach en-
ables the configuration of multiple product lines without any
expertise about underlying models.
Benavides et. al. also describe a progressively approach for

10

the configuration of product lines in [19]. Therefore they use
a formal model and map it to a constraint satisfaction prob-
lem which than can automatically be resolved by a constraint
resolver. While this is an interesting way to handle the com-
plexity of a product line, it is not a satisfying concept for
multi product lines.

6. Conclusion and further work
Within this paper we proposed a multi product line approach
for mechatronic systems which allows to model the variabil-
ity of hardware as well as of software in conjunction with
necessary software platforms used for deployment. Single
system parts are tailored into different feature models to be
able to describe software and hardware features differen-
tiated from each other. To model the associations and de-
pendencies between different system parts we extended the
concept of dependencies within one feature model to facili-
tate the employment to features of different feature models.
With the redefined characteristics it is possible to configure
a mechatronic system based on feature models, containing
features associated with development artefacts for the hard-
ware in the same way like software artefacts such as compo-
nents of the Mechatronic UML.
To simplify the process of configuration an abstract model
was introduced which allows the aggregation of multiple
features of different feature models and so to hide the com-
plexity resulting from additional associations and the va-
riety of features. Through the use of this concept a com-
plex multi product line may be configured by a customer
without knowledge of development artefacts associated with
features. The proposed concept was prototypically imple-
mented in FoCuS, a java based tool providing a web inter-
face for configuration.
Further work will include the extension of the proposed
concept towards a language to describe complex dependen-
cies. Furthermore we plan the integration of the Mechatronic
UML to be able to describe the reconfiguration of mecha-
tronic systems. Therefore we are going to investigate which
parts of the model need to be integrated in features and how
these parts need to be considered during configuration.

Acknowledgments
This work was funded partly by the Federal Ministry of Ed-
ucation and Research (BMBF), project number, 17N3909.

References
[1] S. Apel and C. Kästner. An overview of feature-oriented

software development. Journal of Object Technology, 2009.

[2] S. Becker, S. Dziwok, T. Gewering, C. Heinzemann,
U. Pohlmann, C. Priesterjahn, W. Schäfer, O. Sudmann, and
M. Tichy. MechatronicUML - syntax and semantics. Techni-
cal Report tr-ri-11-325, Software Engineering Group, Heinz
Nixdorf Institute, 2011.

[3] D. Benavides and S. Segura. Automated analysis of feature
models 20 years later: A literature review. Information Sys-
tems, 2010.

[4] T. Buchmann. Modelle und Werkzeuge für modellgetriebene
Softwareproduktlinien am Beispiel von verwaltungssystemen
(in German). PhD Thesis, University of Bayreuth, 2010.

[5] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley Professional, 2001.

[6] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, Applications. Addison-Wesley, Boston, 2000.

[7] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker. Gen-
erative Programming for Embedded Software : An Industrial
Experience Report. Technical report, 2002.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configu-
ration Through Specialization and Multi-Level Configuration
of Feature Models. In Third International Software Product
Line Conference, 2004.

[9] K. Czarnecki, C. Hwan, and P. Kim. Cardinality-Based Fea-
ture Modeling and Constraints : A Progress Report. Technical
report, 2005.

[10] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser,
P. Grünbacher, D. Benavides, and J. Galindo. Configuration
of multi product lines by bridging heterogeneous variability
modeling approaches. In 15th International Software Product
Line Conference, 2011.

[11] K. C. Kang. Feature-oriented domain analysis, feasibility
study. Technical Report November, DTIC Document, 1990.

[12] J. Liebig, S. Apel, C. Lengauer, and T. Leich. RobbyDBMS:
a case study on hardware/software product line engineering.
In First International Workshop on Feature-Oriented Software
Development. ACM, 2009.

[13] M.-O. Reiser and M. Weber. Managing Highly Complex
Product Families with Multi-Level Feature Trees. 14th IEEE
International Requirements Engineering Conference, 2006.

[14] M. Rosenmüller and N. Siegmund. Automating the configu-
ration of multi software product lines. In Fourth International
Workshop on Variability Modelling of Software-intensive Sys-
tems, 2010.

[15] W. Schäfer and H. Wehrheim. The challenges of building ad-
vanced mechatronic systems. In Future of Software Engineer-
ing, 2007.

[16] D. Streitferdt. Family-oriented requirements engineering.
PhD - Thesis, Technical University of Ilmenau, 2004.

[17] D. Streitferdt, P. Sochos, and C. Heller. Configuring Embed-
ded System Families Using Feature Models. In Proc. of Net.
ObjectDays, Erfurt, 2005.

[18] J. Trigaux, P. Heymans, P. Schobbens, and A. Classen. Com-
parative semantics of feature diagrams: Ffd vs. vdfd. In
Fourth International Workshop on Comparative Evolution in
Requirements Engineering, 2006.

[19] J. White, B. Dougherty, D. Schmidt, and D. Benavides. Au-
tomated reasoning for multi-step feature model configuration
problems. In 13th International Software Product Line Con-
ference. Carnegie Mellon University, 2009.

11

