
Heart of Technology:
DCI

Jim Coplien
Gertrud & Cope

Scrum Training Institute
cope@gertrudandcope.com

G&C

Outline

Credits

Your grandfather’s OO and the testing myth

Implementing the Swarm vision

It’s about individuals and interactions

Serious cross-cutting

The form of function

Details

G&C G&C

The Original Object
Vision

As long as every object does its job well,
the system will do its job well

Shades of emergent system behavior

G&C

Classes?

What is a large class?

To *understand* or *test* a class, you must
flatten the inheritance hierarchy.

Most deep derived classes are therefore
thousands of lines long

Don’t sweat class size: it’s irrelevant

G&C

A very scary thought...

"We could imagine taking the internet as a
model for doing software modules. Why don't
people do it?"

G&C

How many classes?

roundRectPrototype
! ^ self authoringPrototype useRoundedCorners
! ! color: ((Color
! ! ! ! r: 1.0
! ! ! ! g: 0.3
! ! ! ! b: 0.6)
! ! ! ! alpha: 0.5);
! ! borderWidth: 1;
! ! setNameTo: 'RoundRect'

G&C

Object Behavior cuts
across classes

Object (30)

Morph(47)

Bordered
Morph

Rectangle (8)

roundRectPrototype
! ^ self authoringPrototype useRoundedCorners
! ! color: ((Color
! ! ! ! r: 1.0
! ! ! ! g: 0.3
! ! ! ! b: 0.6)
! ! ! ! alpha: 0.5);
! ! borderWidth: 1;
! ! setNameTo: 'RoundRect'

G&C

More on the Agile myths

“[T]he results didn't support claims for lower coupling and
increased cohesion with TDD”

Janzen & Saledian, “Does TDD Really Improve Software
Design Quality,” IEEE Software 25(2), 2008.

“the effect of TDD on program design was studied... an
unwanted side effect can be that some parts of the code may
deteriorate.”

Siniaalto and Abrahamsson, “Does TDD Improve the Program
Code? Alarming Results from a Case Study.” Cee-Set 2007.

G&C

We don’t test models

If a Model test fails, what is the business
consequence? Impossible to tell

NO — we test use cases

“It’s easy to say what this class really does.”
Who cares?

Software is never a product: it is a service

G&C

The Scatlology of Agile
Architecture - Uncle Bob

One of the more insidious and persistent myths
of agile development is that up-front
architecture and design are bad; that you
should never spend time up front making
architectural decisions. That instead you should
evolve your architecture and design from
nothing, one test-case at a time.

Pardon me, but that’s Horse Shit.

G&C

OOP is about objects

We sell running software (software is a service)
It is objects that run
Classes are the scaffolding to build objects
We design classes
We test methods (or, if lucky, maybe systems)
There are no objects in the thoughts of a
modern object-oriented programmer

G&C

OO Architecture
Coupling and cohesion? Polymorphism? Inheritance?

No:
In computer terms, Smalltalk is a recursion on the
notion of computer itself. Instead of dividing “computer
stuff” into things each less strong than the whole—like
data structures, procedures, and functions which are
the usual paraphernalia of programming languages—
each Smalltalk object is a recursion on the entire
possibilities of the computer. Thus its semantics are a
bit like having thousands and thousands of computer
all hooked together by a very fast network.

G&C

OO Architecture
Coupling and cohesion? Polymorphism? Inheritance?

No:
In computer terms, Smalltalk is a recursion on the
notion of computer itself. Instead of dividing “computer
stuff” into things each less strong than the whole—like
data structures, procedures, and functions which are
the usual paraphernalia of programming languages—
each Smalltalk object is a recursion on the entire
possibilities of the computer. Thus its semantics are a
bit like having thousands and thousands of computers
all hooked together by a very fast network.

G&C

What is an object?

State

Identity

Behavior

Represents a stakeholder mental model

Wrappers destroy this!

Tools and MVC-U

Tool: Presents and
Edits Business Data

Model:
Business Logic

and State

Controller:
Creates and
Coordinates

Views

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

View:
Gives user access
to remote data

View
0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

G&C

Listen to the tests?

There are two ways of constructing a software
design. One is to make it so simple that there
are obviously no deficiencies, and the other is
to make it so complicated that there are no
obvious deficiencies.

— Tony Hoare

(Feel the pain)

G&C

Where am I?

Objects cut across classes

TextBuffer
topLinenChars

nLines

print delChar • We divide up
spellCheck: there
is no locus of
understanding it

• The dividing up
of spellCheck into
methods must
follow domain
boundaries

• Domain
boundaries are
arbitrary with
respect to how
we conceptualize
algorithm steps

• It is therefore
difficult to
understand even
the fragments!

Dictionary Controller
s ep ll hC ce k

G&C Coplien — Agile Architecture

The Classical OO Architecture
Pattern

Domain

Domain
Component 1

Domain
Component 2

Domain
Component 3

Domain
Component 4

Domain
Component 5

Domain
Component 6

Business

Common Logic

View

Infrastructure

Business
Object

1

Business
Object

2

G&C

The Lean and Agile side
of Software

Lean is about thoughtful cost reduction (thinking)
Agile is about self-organization and feedback (doing)
User needs are in two dimensions; they should be
supported in harmony:

Thinking: mental and business cost reduction
➞ mental model ➞ data model ➞ objects

Doing — the people part
➞ use case ➞ collaboration ➞ role ➞ query
➞ objects

Programmer needs are similar

What is the form of
function?

Each class method
prints the object ID

0145234427
0142366281
0283346255
0347212938
0324426292
0264274547
0374616737
0164571836
0173646282
0324426292
0145234427
0264274547

What is the form of
function?

Each class method
prints the class name

SavingsAccount
CheckingAccount
Euro
SavingsAccount
SavingsAccount
Krone
InvestAccount
SavingsAccount
Shekel
CheckingAccount
PhoneBill
Euro

What is the form of
function?

Each class method
prints its role name

SourceAccount
DestinationAcct
Amount
SourceAccount
DestinationAcct
Amount
SourceAccount
DestinationAcct
Amount
SourceAccount
DestinationAcct
Amount

G&C

Roles
The essence of OO is that objects interact to achieve a
given goal

A role is the name of an object according to its
contribution to the goal

A role groups objects by purpose

A collaboration describes the structure of roles

An interaction specifies interactions between objects in
terms of their roles

Classes are based on common characteristics; roles, on
common purpose

Contextualized
Polymorphism

foo

foo
foo

foo

foo

?

bar

bar

bar
bar

bar

?

sna

sna

sna
sna

sna

?

Contextualized
Polymorphism

go

Contextualized
Polymorphism

bar sna

go

Da
ta

Co
nt

ex
t

In
te

ra
ct

ion

A Form of Reflection The Ideal Scenario

1. An object is instantiated from a dumb class

2. A use case is requested. A Context is instantiated

3. The Context associates objects with roles

4. The Context kicks off execution on the first role

5. As a role method is called, it is injected into its
associated objet

6. As it returns, it is pulled out

Variants

Inject role methods into objects at Context
instantiation and leave them there (Ruby)

Pre-associate roles with the classes of the objects
that will play those roles; fully type-safe (C++)

Manually inject methods into objects at Context
instantiation time; pull them out at Context
destruction (Python)

. . .

Start with good Domain
Analysis

Basic domain classes (yes, classes) are dumb

Use subtyping if you like, but it has a cost in
code comprehension

Introduce use cases
piecemeal

Program roles and their methods

Contexts become the loci of understanding
behavior

Map onto a programming
language

Most modern languages fake it well enough

Can choose from across the spectrum of
anarchical to tyrannical type systems

Natural expression in Scala, very good in
Ruby, possible in C++

Marvin language allows native DCI
programming

! Use multiple dispatch
– That’s chooses one algorithm based

on multiple types, rather than multiple
algorithms based on multiple types

! Use aspects
– The cutpoints are still dictated by the class structure

! Use mix-ins
– Close, but how do they talk to each other?

! Just use objects (e.g., self)
– A good start, but not enough

! Use multi-paradigm design
– Undesired decoupling and lack of cohesion

The usual retorts...

Dependency Injection,
Multi-Paradigm

Design

DCI

DCI and the Six Wise Men and the Elephant

Visible System
Behavior

Object
Collaborations

Separate Behavior from Data

Multi-
methods,
Flavors AOP

G&C

A Generalization:
Cascaded Contexts

A Bank Account is not an object that
encapsulates the state of the balance

It is, instead, a collection of activities that
compute the balance

It is a collection of potential scenarios
between the end user and the system...

That is a use case: a Context

G&C

Generalizing Contexts

PayBills

Account1 Account2

Account3

G&C

Some Metaphors

AOP is syntax of local expression; DCI is
system-level semantics

AOP tunes an existing behavioural base; DCI
provides such a base

AOP gives syntactic help to one small aspect
of cross-cutting; DCI undoes the cross-
cutting

G&C

Realisation of These Values
in the DCI Architecture
Software has a Lean part and an Agile part

The Agile part is the rapidly changing
revenue generator and should be nourished

DCI is about object thinking

Object thinking supports human mental
models, and DCI supports the behavioral
mental models that complement MVC mental
models of form

G&C

Conclusion

Lean architecture reduces rework and cost

Agile software production meets end user
expectations

MVC brings the human side of Agile beyond the
team to the code

DCI separates the shear layers to ease maintenance

New processes and organizations amplify the
benefits

