
A component-based approach to
semantics

Peter Mosses
Swansea University, UK

Modularity’15 • March18, 2015
Fort Collins, Colorado, USA

1

1

Modularity

Good to have!

What might be even better?

reusable components

Software development:

“The Unix Philosophy”

Programming language definitions:

component-based semantics

2

2

Reference manuals, standards documents

‣ syntax:

- always formal

‣ semantics:

- almost always informal
14.12 The while Statement

The while statement executes an Expression and a Statement
repeatedly until thevalue of the Expression is false.
WhileStatement:
 while (Expression) Statement

Programming language definitions

3

3

Reference manuals, standards documents

‣ syntax:

- always formal

‣ semantics:

- almost always informal

Programming language definitions

4

14.12 The while Statement BLOCKS AND STATEMENTS

430

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

A while statement is executed by first evaluating the Expression. If the result is of
type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the while statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

• If the value is true, then the contained Statement is executed. Then there is a
choice:

– If execution of the Statement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

– If execution of the Statement completes abruptly, see §14.12.1.

• If the (possibly unboxed) value of the Expression is false, no further action is
taken and the while statement completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is evaluated,
then the Statement is not executed.

14.12.1 Abrupt Completion of while Statement

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the while statement completes normally.

• If execution of the Statement completes abruptly because of a continue with no
label, then the entire while statement is executed again.

• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

– If the while statement has label L, then the entire while statement is executed
again.

– If the while statement does not have label L, the while statement completes
abruptly because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the while
statement completes abruptly for the same reason.

Java Language Specification version 8, Oracle

4

Formal semantics

Many semantic frameworks:

‣ operational, denotational, algebraic, axiomatic, …

Only a few official language definitions use formal semantics:

‣ ADA, MODULA-2, STANDARD ML, SCHEME

Some other languages have unofficial formal semantics:

‣ ALGOL 60, C, C#, JAVA, PL/I, PROLOG, …

Many major languages have no formal semantics:

‣ C++, HASKELL, OCAML, SCALA, …

5

5

Formal semantic frameworks

Operational

‣ VDL

‣ SOS (small- or big-step)

‣ reduction semantics, K

‣ ASM

Denotational

‣ Scott–Strachey

‣ VDM

‣ monadic

Axiomatic

‣ Hoare logic

‣ algebraic

Hybrid

‣ action semantics

‣ UTP

Static

‣ typing rules

‣ abstract interpretation
6

6

Programming language evolution

7

7

The importance of being formal

Only a formal semantics can be

‣ precise

‣ concise

and allow

‣ validation

‣ reasoning

‣ prototyping

8

8

How to improve?

Reusable components

to reduce the initial effort

High modularity

to reduce the effort of change

Tool support

to reduce the effort of getting it right!

9

9

MODULARITY ’14

Extended version: Trans. AOSD, special issue, 2015, in press.

‣ a component-based semantics of CAML LIGHT

‣ validated (by empirical testing)

‣ detailed introduction to the approach

‣ overview of preliminary tool support

Reusable Components of Semantic Specifications

Martin Churchill1, Peter D. Mosses2, Neil Sculthorpe2, and Paolo Torrini2

1 Google, Inc.
2 PLanCompS project, Swansea University, Swansea, UK

http://www.plancomps.org

Abstract. Semantic specifications of programming languages typically
have poor modularity. This hinders reuse of parts of the semantics of
one language when specifying a different language – even when the two
languages have many constructs in common – and evolution of a lan-
guage may require major reformulation of its semantics. Such drawbacks
have discouraged language developers from using formal semantics to
document their designs.
In the PLanCompS project, we have developed a component-based ap-
proach to semantics. Here, we explain its modularity aspects, and present
an illustrative case study: a component-based semantics for Caml Light.
We have tested the correctness of the semantics by running programs on
an interpreter generated from the semantics, comparing the output with
that produced on the standard implementation of the language.
Our approach provides good modularity, facilitates reuse, and should
support co-evolution of languages and their formal semantics. It could
be particularly useful in connection with domain-specific languages and
language-driven software development.

Keywords: modularity, reusability, component-based semantics, funda-
mental constructs, funcons, modular SOS

1 Introduction

Various programming constructs are common to many languages. For instance,
assignment statements, sequencing, conditional branching, loops and procedure
calls are almost ubiquitous among languages that support imperative program-
ming; expressions usually include references to declared variables and constants,
arithmetic and logical operations on values, and function calls; and blocks are
provided to restrict the scope of local declarations. The details of such constructs
often vary between languages, both regarding their syntax and their intended
behaviour, but sometimes they are identical.

Many constructs are also ‘independent’, in that their contributions to pro-
gram behaviour are unaffected by the presence of other constructs in the same
language. For instance, consider conditional expressions ‘E1 ?E2 :E3’. How they
are evaluated is unaffected by whether expressions involve variable references,
side effects, function calls, process synchronisation, etc. In contrast, the be-
haviour of a loop may depend on whether the language includes break and
continue statements.

10

10

Reusable components

11

11

 Reusable software components

COTS – ‘Components Off The Shelf ’

‣ typically complex software

- example: Windows for driving medical devices

Libraries and packages

‣ greatly enhance productivity

‣ but upgrades to new versions can be problematic…

12

12

The Unix Philosophy

Formulated in the 1980s by Ken Thompson, Dennis Ritchie,
Brian Kernighan, Doug McIlroy, Rob Pike, et al.

The design of cat is typical of most
UNIX programs: it implements one
simple but general function that can
be used in many different applications
(including many not envisioned by the
original author). Other commands are
used for other functions.

[http://en.wikipedia.org/wiki/Unix_philosophy]

13

13

http://en.wikipedia.org/wiki/Unix_philosophy%5D
http://en.wikipedia.org/wiki/Unix_philosophy%5D

Reusable components of language definitions

‣ language constructs?

‣ kernel language constructs?

‣ fundamental programming constructs!

Language₁ Language₂ Language₃

Component-based semantics

…
Translation

14

14

Reusable components

Fundamental constructs (funcons)

‣ correspond to individual programming constructs

- each funcon is a separate component

‣ have (when validated and released)

- fixed notation

- fixed behaviour

- fixed algebraic properties

specified/proved
once and for all!

15

15

The Journal of Logic and
Algebraic Programming 60–61 (2004) 195–228

!"# $%&'()*%+
*%,-.)(/
)*,#0')-.
1'%,')22-(,

www.elsevier.com/locate/jlap

Modular structural operational semantics!

Peter D. Mosses
BRICS & Department of Computer Science, University of Aarhus, Aabogade 34, DK-8200 Aarhus N, Denmark

Abstract

Modular SOS (MSOS) is a variant of conventional Structural Operational Semantics (SOS).
Using MSOS, the transition rules for each construct of a programming language can be given incre-
mentally, once and for all, and do not need reformulation when further constructs are added to the
language. MSOS thus provides an exceptionally high degree of modularity in language descriptions,
removing a shortcoming of the original SOS framework.

After sketching the background and reviewing the main features of SOS, the paper explains the
crucial differences between SOS and MSOS, and illustrates how MSOS descriptions are written. It
also discusses standard notions of semantic equivalence based on MSOS. Appendix A shows how
the illustrative MSOS rules given in the paper would be formulated in conventional SOS.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Structural operational semantics; SOS; Modularity; MSOS

1. Introduction

Modular Structural Operational Semantics (MSOS) [23] is a variant of the conventional
Structural Operational Semantics (SOS) framework [31]. Using MSOS, the transition rules
for each construct of a programming language can be given incrementally, once and for all,
and generally do not need reformulation when further constructs are added to the described
language.

MSOS solves the modularity problem for SOS as effectively as monad transformers do
for denotational semantics. Moreover, although the foundations of MSOS involve concepts
from Category Theory, MSOS descriptions can be understood just as easily as ordinary
SOS, and MSOS has been class-tested successfully at Aarhus in undergraduate courses.

Previous papers have presented the foundations of MSOS [22,23], discussed its prag-
matic aspects [29], and demonstrated its usefulness in modular operational descriptions
of action notation [25] and the core of Concurrent ML [27]. The present paper gives a

! BRICS: Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Foun-
dation.

E-mail address: pdmosses@brics.dk (P.D. Mosses).
URL: http://www.brics.dk/∼pdm.

1567-8326/$ - see front matter ! 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2004.03.008

Implicit Propagation in
Structural Operational Semantics

Peter D. Mosses1 Mark J. New2

Department of Computer Science
Swansea University

Swansea, UK

Abstract

In contrast to a transition system specification in process algebra, a structural operational semantics (SOS) of
a programming language usually involves auxiliary entities: stores, environments, etc. When specifying SOS
rules, particular auxiliary entities often need to be propagated unchanged between premises and conclusions.
The standard technique is to make such propagation explicit, using variables. However, referring to all
entities that need to be propagated unchanged in each rule can be tedious, and it hinders direct reuse of
rules in different language descriptions.

This paper proposes a new interpretation of SOS rules, such that each auxiliary entity is implicitly propa-
gated in all rules in which it is not mentioned. The main benefits include significant notational simplification
of SOS rules and much-improved reusability. This new interpretation of SOS rules is based on the same
foundations as Modular SOS, but avoids the notational overhead of grouping auxiliary entities together in
labels.

After motivating and explaining implicit propagation, the paper considers the foundations of SOS and
Modular SOS specifications, and defines the meaning of SOS specifications with implicit propagation by
translating them to Modular SOS. It then shows how implicit propagation can simplify various rules found
in the SOS literature.

Keywords: formal semantics, structural operational semantics, Modular SOS, modularity, reuse

1 Introduction

Structural operational semantics (SOS) is a well-known framework for describing
both static and dynamic semantics of programming and specification languages.
This paper is about how its pragmatic aspects can be significantly improved, and
assumes familiarity with the standard framework (see e.g. [1,8,22,24]).

1 Email: p.d.mosses@swan.ac.uk, web pages: www.cs.swan.ac.uk/~cspdm/
2 Email: csmarkn@swan.ac.uk

Electronic Notes in Theoretical Computer Science 229 (2009) 49–66

1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.073

Modular foundations

16

16

FOSSACS’13:

‣ bisimilarity
congruence
format

‣ preservation by
disjoint extension

Modular foundations

Modular Bisimulation Theory
for Computations and Values

Martin Churchill and Peter D. Mosses
{m.d.churchill,p.d.mosses}@swansea.ac.uk

Department of Computer Science, Swansea University, Swansea, UK

Abstract. For structural operational semantics (SOS) of process alge-
bras, various notions of bisimulation have been studied, together with
rule formats ensuring that bisimilarity is a congruence. For programming
languages, however, SOS generally involves auxiliary entities (e.g. stores)
and computed values, and the standard bisimulation and rule formats
are not directly applicable.
Here, we first introduce a notion of bisimulation based on the distinction
between computations and values, with a corresponding liberal congruence
format. We then provide metatheory for a modular variant of SOS (MSOS)
which provides a systematic treatment of auxiliary entities. This is based
on a higher order form of bisimulation, and we formulate an appropriate
congruence format. Finally, we show how algebraic laws can be proved
sound for bisimulation with reference only to the (M)SOS rules defining
the programming constructs involved in them. Such laws remain sound
for languages that involve further constructs.

Keywords: structural operational semantics, programming languages,
congruence formats, Modular SOS, higher-order bisimulation.

1 Introduction

Background. Structural operational semantics (SOS) [16] is a well-established
framework for specifying computational behaviour, where the behaviour of pro-
grams is modelled by labelled transition systems, defined inductively by axioms
and inference rules. The metatheory of SOS provides various notions of bisimula-
tion [7,15] for proving behavioural equivalence. Bisimilarity is guaranteed to be a
congruence when the rules used to define transition relations are restricted to
particular formats, e.g. tyft/tyxt [3].

SOS is particularly suitable for specifying process calculi such as CCS: the
states of the transition system are simply (closed) process terms, and the labels
on transitions represent actions corresponding to steps of process execution. For
programming languages, however, transition relations often involve auxiliary enti-
ties as arguments, e.g. stores (recording the values of imperative variables before
and after transitions) and environments (determining the bindings of currently
visible identifiers); they also use terminal states to represent computed values.

17

17

Fundamental constructs (funcons)

Funcons normally compute values

‣ values compute themselves

Funcon computations may also:

‣ terminate abruptly

- signalling some value as the reason

- failure is a special case

‣ never terminate

‣ have effects

18

18

Values

Universe

‣ primitive (booleans, numbers, characters, symbols)

‣ composite (sequences, maps, sets, variants)

‣ types (names for sets of values)

‣ abstractions (encapsulating funcons)

New types of values are defined in terms of old ones

19

19

Funcon ‘aspects’

(Mostly) independent concerns

‣ control flow

‣ data flow

‣ binding

‣ storing

‣ interacting

each funcon has
a primary
‘aspect’

20

20

Sorts of funcons

Notation

‣ commands

- C : computes ()

‣ declarations

- D : computes environments (mapping ids I to values V)

‣ expressions

- E : computes values

Generic funcons

- X : could be commands, declarations, expressions
21

21

Control flow

Normal

‣ seq(X₁, …)

- left to right sequencing

- concatenates computed values

‣ null is the empty sequence ()

- unit for seq(X₁, X₂)

22

22

Control flow

Conditional

‣ if-true-else(E, X₁, X₂)

- E has to be boolean-valued

‣ while-true(E, C)

- doesn’t handle break or continue

Call

‣ enact(E)

- evaluates E to an abstraction value abs(X)

- executes X
23

23

Control flow

Alternatives

‣ either(X₁, …)

- unordered alternatives

‣ else(X₁, …)

- left to right alternatives

‣ fail

- unit for either(X₁, X₂) and else(X₁, X₂)

‣ when-true(E, X), check-true(E)

- fail when E false
24

24

Data flow

Lifting operations

‣ value operations F(V₁, …) lift to funcons F(E₁, …)

- argument evaluation implicitly interleaved

- F(seq(E₁, …)) ensures left to right evaluation

e.g.: not(is-equal(seq(E₁, E₂)))
Discarding values

‣ effect(X)

- executes X, but computes ()

25

25

Control and data flow

Giving

‣ give-val(E, X)

- first evaluates E to a value V

- then executes X, with the funcon given referring to V

‣ given

Application

‣ apply(E₁, E₂)

- evaluates E₁ to an abstraction abs(X), and
evaluates E₂ to a value V

- then executes X, with the funcon given referring to V
26

26

Control and data flow

Exception handling

‣ handle-thrown(X₁, X₂)

- try to handle abrupt termination of X₁ by giving the
thrown value to the execution of X₂

‣ throw-val(E)

- terminates abruptly, throwing the value of E

Continuations

‣ see the paper by Neil Sculthorpe et al. at the ETAPS 2015
Workshop on Continuations

27

27

Binding

Scopes

‣ scope(D, X)

- localises the bindings computed by D to X

‣ bind-val(I, E)

- computes the binding of the id I to the value of E

‣ bound-val(I)

- inspects the current binding of the id I

28

28

Binding

Scopes

‣ override(D₁, D₂)

‣ unite(D₁, D₂)

‣ accumulate(D₁, D₂)

‣ recursive(Iset, D)

- various ways of composing declarations

29

29

Binding

Scopes in abstractions

‣ close(E)

- evaluates E to an abstraction abs(X)

- returns the closure incorporating the current bindings

Patterns

‣ simple: abstractions abs(D)

‣ composite: formed using value constructors

- structure (and any immutable components) required
to be identical when matching

30

30

Binding

Pattern matching

‣ match-val(E₁, E₂)

- evaluates E₁ to a pattern P and E₂ to a value V

- matching P to V computes bindings

‣ case(E, X)

- evaluates E to a pattern P,
then matches P to a given value

- the scope of the computed bindings is X

- equivalent to scope(match(E, given), X)

31

31

Storing

Variables

‣ simple: representing independent storage locations

- for storing values of a fixed type

- monolithic update

‣ composite: formed using value constructors

- component variables can be independently updated

- structure (and any immutable components) required
to be identical when updating

32

32

Storing

Variable allocation

‣ alloc(E₁, E₂)

- evaluates E₁ to a type T, and E₂ to a value V

- allocates a simple or composite variable for storing
values of type T

- assigns V to the variable

‣ release(E)

- evaluates E to a variable

- terminates the allocation of the variable

33

33

Storing

General assignment

‣ assign(E₁, E₂)

- evaluates E₁ to V₁, and E₂ to V₂

- when V₁ and V₂ have the same structure, updates the
stored values of any simple variables in V₁ by the
corresponding component values of V₂

‣ current-val(E)

- evaluates E to V

- gives the value formed by replacing any simple
variables in V by their stored values

34

34

Language construct:

stm ::= while(exp)stm

Translation to funcons:

exec ⟦ while(E)S ⟧ =
 while-true(current-val(eval ⟦ E ⟧), exec ⟦ S ⟧)

For languages with break statements:

exec ⟦ while(E)S ⟧ =
 handle-thrown(
 while-true(current-val(eval ⟦ E ⟧), exec ⟦ S ⟧),
 case(‘break’, null))

A component reuse example

35

35

High modularity

36

36

Reusable components of language definitions

‣ fundamental programming constructs

Component-based semantics

Language₁ Language₂ Language₃

…
Translation

Flat structure

Moderated – no versioning!

open-ended

37

37

Component specification

38

38

SOS: Structural operational semantics

Plotkin (1981)

‣ (optionally-)labelled transition relations

‣ states: include programs X, environments ρ, stores σ, …

- environments preserved by ρ ⊢ (…) → (…)

‣ labels: simple synchronisation actions α

(X, ρ, σ, …) (X′, ρ, σ′, …) (X″, ρ, σ″, …)
α α′

39

39

MSOS: Modular SOS

M (1999)

‣ arrow-labelled transition relations

‣ states: simple programs X, computed values V

‣ labels: include environments ρ, stores σ, actions α, …

- adjacent labels required to be composable

• fixed environment (ρ)

• store updates (σ, σ′)

X X′ X″(ρ, σ, σ′, α′, …) (ρ, σ′, σ″, α″, …)

40

40

Component specification

Notation

Static semantics

Dynamic semantics

if-true-else(E : computes(booleans), X1, X2 : computes(T)) :
computes(T)

E : booleans X1 : T X2 : T

if-true-else(E, X1, X2) : T

if-true-else(true, X1, X2) → X1E → E′
if-true-else(E, X1, X2) →
if-true-else(E′, X1, X2)

if-true-else(false, X1, X2) → X2

41

41

Component specification

Notation

Static semantics

Dynamic semantics

if-true-else(E : computes(booleans), X1, X2 : computes(T)) :
computes(T)

E : booleans X1 : T X2 : T

if-true-else(E, X1, X2) : T

if-true-else(true, X1, X2) → X1E → E′
if-true-else(E, X1, X2) →
if-true-else(E′, X1, X2)

if-true-else(false, X1, X2) → X2

42

42

Component specification

Notation

Static semantics

Dynamic semantics

scope(computes(envs), computes(T)) : computes(T)

env(ρ) ⊢ D : ρ′ env(ρ′/ρ) ⊢ X : T

env(ρ) ⊢ scope(D, X) : T

scope(ρ, V) → V

D → D′
scope(D, X) → scope(D′, X)

env(ρ′/ρ) ⊢ X → X′
env(ρ) ⊢ scope(ρ′, X) →

 scope(ρ′, X′)

43

43

Component specification

Notation

Static semantics

Dynamic semantics

scope(computes(envs), computes(T)) : computes(T)

env(ρ) ⊢ D : ρ′ env(ρ′/ρ) ⊢ X : T

env(ρ) ⊢ scope(D, X) : T

scope(ρ, V) → V

D → D′
scope(D, X) → scope(D′, X)

env(ρ′/ρ) ⊢ X → X′
env(ρ) ⊢ scope(ρ′, X) →

 scope(ρ′, X′)

44

44

Tool support

45

45

 Preliminary tool support

SPOOFAX/ECLIPSE

‣ parsing programs (SDF3, disambiguation, AST creation)

‣ translating ASTs to funcon terms (SDF3, STRATEGO)

‣ browsing and editing component-based specifications
(SDF3, NABL, STRATEGO)

PROLOG

‣ translating MSOS rules for funcons to PROLOG

- currently migrating to STRATEGO

‣ running funcon terms

46

46

ESOP’14:

‣ refocusing
small-step
(M)SOS rules

 Future tool support

Deriving Pretty-Big-Step Semantics

from Small-Step Semantics

Casper Bach Poulsen and Peter D. Mosses

Department of Computer Science, Swansea University, Swansea, UK,
cscbp@swansea.ac.uk, p.d.mosses@swansea.ac.uk

Abstract. Big-step semantics for languages with abrupt termination
and/or divergence suffer from a serious duplication problem, addressed by
the novel ‘pretty-big-step’ style presented by Charguéraud at ESOP’13.
Such rules are less concise than corresponding small-step rules, but they
have the same advantages as big-step rules for program correctness proofs.
Here, we show how to automatically derive pretty-big-step rules directly
from small-step rules by ‘refocusing’. This gives the best of both worlds:
we only need to write the relatively concise small-step specifications,
but our reasoning can be big-step as well as small-step. The use of
strictness annotations to derive small-step congruence rules gives further
conciseness.

Keywords: structural operational semantics, SOS, Modular SOS, pretty-
big-step semantics, small-step semantics, big-step semantics, natural
semantics, refocusing

1 Introduction

Structural operational semantics (SOS) are typically given in either small-step
(Plotkin 2004) or big-step (Kahn 1987) style. Big-step rules evaluate terms by
relating them to their computed values, whereas small-step evaluation involves
partly evaluated terms. Both styles are powerful frameworks for formalizing
operational semantics, and each has its own merits and limitations. For example,
small-step semantics is usually preferred for process algebras (Milner 1980),
interleaving, and type soundness proofs (Pierce 2002; Wright and Felleisen 1994),
whereas the big-step style is more suitable for proving correctness of program
transformations (Charguéraud 2013; Leroy and Grall 2009). An equally important
concern is the effort involved in specifying the semantics: rules should be concise,
but comprehensible. But which style requires less effort?

The answer to this question depends not only on conciseness, but also on
the application, i.e., on features of the specified language and properties that
the semantics will be used to reason about. When the language involves abrupt
termination, Charguéraud (2013) recently noted that big-step semantics (also
called natural semantics) duplicate premises and rules to propagate abrupt
termination and/or divergence. In contrast, the small-step style allows for more
concise specifications involving abrupt termination, and there is no need to specify

47

47

WRLA’14:

‣ using the K
framework
and tools

 Alternative tool support

48

FunKons: Component-Based Semantics in K

Peter D. Mosses and Ferdinand Vesely(B)

Swansea University, Swansea SA2 8PP, UK
{p.d.mosses,csfvesely}@swansea.ac.uk

Abstract. Modularity has been recognised as a problematic issue of
programming language semantics, and various semantic frameworks have
been designed with it in mind. Reusability is another desirable feature
which, although not the same as modularity, can be enabled by it. The
K Framework, based on Rewriting Logic, has good modularity support,
but reuse of specifications is not as well developed.

The PLanCompS project is developing a framework providing an
open-ended collection of reusable components for semantic specification.
Each component specifies a single fundamental programming construct,
or ‘funcon’. The semantics of concrete programming language constructs
is given by translating them to combinations of funcons. In this paper, we
show how this component-based approach can be seamlessly integrated
with the K Framework. We give a component-based definition of CinK
(a small subset of C++), using K to define its translation to funcons as
well as the (dynamic) semantics of the funcons themselves.

1 Introduction

Even very different programming languages often share similar constructs. Con-
sider OCaml’s conditional ‘if E1 then E2 else E3’ and the conditional operator
‘E1 ? E2 : E3’ in C. These constructs have different concrete syntax but similar
semantics, with some variation in details. We would like to exploit this similar-
ity when defining formal semantics for both languages by reusing commonali-
ties between the OCaml and C specifications. With traditional approaches to
semantics, reuse through ‘copy-paste-and-edit’ is usually the only option that is
available to us. By default, this is also the case with the K Framework [9,13].
This style of specification reuse is not systematic, and prone to error.

The semantic framework currently being developed by the PLanCompS
project1 provides fundamental constructs (funcons) that address the issues of
reusability in a systematic manner. Funcons are small semantic entities which
express essential concepts of programming languages. These formally specified
components can be composed to capture the semantics of concrete program-
ming language constructs. A specification of Caml Light has been developed as
an initial case study [3] and a case study on C# is in progress.
1 http://www.plancomps.org/

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 213–229, 2014.
DOI: 10.1007/978-3-319-12904-4_12

48

PLANCOMPS project (2011-2015)

Foundations

‣ component-based semantics [Swansea]

‣ GLL parsing, disambiguation [RHUL]

Case studies

‣ CAML LIGHT, C#, JAVA [Swansea]

Tool support

‣ IDE, funcon interpreter/compiler [RHUL, Swansea]

Digital library

‣ interface [City], historic documents [Newcastle]
49

49

http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/
http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

Conclusion

Reusable components

to reduce the initial effort

High modularity

to reduce the effort of change

Tool support

to reduce the effort of getting it right!

Fundamental constructs:
The Unix philosophy for semantics

of programming languages

50

50

