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Quotes

* Aspect oriented programming is
quantification and obliviousness.

— Robert E. Filman Daniel P. Friedman

e Obliviousness is not mandatory but
desirable.

— Awais Rashid?
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AOP functionality (1)

e Obliviousness is useful and practical!

— An advice can obliviously modify a method.

e The original source code is not modified at all
when the software is extended.

class AddExpr {
Value eval() { ... }

} Value around(AddExpr ae):
execution(Value AddExpr.eval())
&é& this(ae) {
if (...) proceed();
else ... ;
} 3
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AQOP functionality (2)

e Limited scope
— An advice can modify a method call in a body
— Breaking modularity?

class VarDecl { aspect Logging {
Value init() { before():
v = right.eval(); call(void Expr.eval())

1} && withincode(* VarDecl.init()) {
class Aoprr { }

Value eval() { ... }
}
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Eric Tanter said to me.

e If the code in the book is in Scheme,
you don’t need obliviousness or AOP.

e ... Right. But Scheme also provides
“obliviousness”
or destructive extension | call.

— The code in my book is in Java.
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Gluon]: A reviser

e Destructive extension modify
— A reviser can add and everridle a method,

and add a field to an existing class.
e [t cannot have an explicit constructor.

class AddExpr {
Value eval() { ... }
} class FloatEx revises AddExpr {
Value eval() {
if (...) super.eval();
else ... ;
}
} 9



Gluon]: A within method

e Limited scope
— A method may have a predicate.

— Its method overriding is effective only when it
is called from ...

class VarDecl { class Log revises AddExpr {

o Value eval()
Value init S .
V= righgr).e{val(); within VarDecl.init() {

class Ad¢Expr {

Value eval() { ... }
}

10
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Contextual predicate dispatch

e Gluon]

— Predicates refers to non-local contexts
i.e. within who is a caller.

e Currently only within is available.
— to deal with crosscutting concerns

e Original predicate dispatch

— Predicates refers to only local contexts
such as arguments and receiver’s fields
e for unambiguity and exhaustiveness

11
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Subclassing, mixin, traits, ...

e Non-destructive extension

— Both the original and the extension coexist.
* The source code is not modified as in AOP.

class AddExpr {
Value eval() { ... }

) class FloatEx extends AddExpr {
Value eval() {
AddExpr el, e2; if (...) super.eval();
el = new AddExpr(); else ... ;
e2 = new FloatEx(); }
} 12



To Be Destructive or Not To Be, That is
the Question on Modular Extensions
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Abstract Factory pattern
or dependency injection

e AOP-like modification
by non-destructive extension (= subclassing)

class Factory { class AddExpr {
AddExpr makeAddExpr() { Value eval() { ... }
return new AddExpr(); }
}}
class FactoryEx extends Factory {  class FloatEx extends AddExpr {
AddExpr makeAddExpr() { Value eval() {
return new FloatEx(); if (...) super.eval();
1} else ... ;
}
AddExpr e }
= factory.makeAddExpr(); 14
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Abstract Factory pattern
or dependency injection

e To switch classes,
the main method must be modified by hand.

void main(String[] args) {
factory = new FactoryEx();

program.start(args);
}

Or, another main method must be
written from scratch.

15
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Abstract Factory pattern
or dependency injection

e To switch classes,

the main method must be modified by hand.

void main(String[] args) {
factory = new FactoryEx();

program.start(args);

}

Or, another m

void main(String[] args) {
factory = new Factory():

program.start(args);

}

1in method must be

written from scratch.
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Also,

e Family polymorphism/virtual classes

— are non-destructive
like Abstract Factory pattern.

17
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Destructive or Non-destructive

e Modification or Another copy

\/

.
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Destructive or Non-destructive

e Modification or Another copy
— when an intermediate module is modified

\/_

19



Shigeru Chiba, The University of Tokyo

Destructive extension

e OK, it's useful when | want to modify
only a piece of code in my program.

e But, | often want to reuse the original
code in the same program.

20



Scope!

® Destructive Always modify

° Conditionally
— Aspect])’s within, withincode, and cflow
— Gluon)’s within
— Context]

e Non-destructive Only specific instances

21
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Various kinds of scopes

 In Ruby

class Integer
def div(x)
# returns a
# rational num.
end

end destructive

def average(list)
sum = ...

class Integer
def div(x)
# returns an

# integer result

end
end

\include

list = ...
a = average(|

sum / list.size
end

include

a2=a/10*

ist)
10
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Reusable destructive extensions

e Module users should specify where they
are effective.

— Module writers should not.

class Integer

class Integer def div(x)
def div(x) # returns an
# returns a # integer result
# rational num. end
o end end
The new div() is end destructive
effective only include

within average() def average(list) list = ..

, sum = .. a = average(list)
User of new div() sum / list.size include | @2=a/10*10
module end

23
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Mentioning the scope

e At the side of the module user.

* Aspect]

— abstract pointcut

e Dynamic Aspect-Oriented Programming
— deploy(...) { ... } in Caesar]

e Context-Oriented Programming
—with(...) { ... } in Context]

24
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More structural scope

e Method shelters [Akai&Chiba, AOSD’12]
e Method shells [Takeshita&Chiba, SC‘13]

e When a " "module” is imported,

— the scope of the destructive extensions in it
is declaratively specified.

25
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Method shells

[Takeshita&Chiba’13]

e Two kinds of module import

— Include

— link

-

\

Link makes
methods in a
different scope
visible.

/

|

Include put in
the same scope

=

class Integer
def div(x)
# returns a

end
end

# rational num.

destructive

include

include /

def average(list)
sum = ...
sum / list.size
end

TN

class Integer
def div(x)
# returns an
# integer result

end
\include

end
list = ...

a = average(list)

=

link a2=a/10*10
26
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The semantics of link is comlex

e Takeshita’s master thesis in 2014
— When are scopes switched?

class Integer class Integer
def div(x) - lud def div(x)
# rational num "N # integer
end end
def toInt(r) end
# .
end ¢
end destructive
4 % include/ include
All the methods : :
0 this scone def average(list) list = ...
" .. P sum = ... < a = average(list)
are visible. sum / list.size T a2=a/10*1
o ) end \0\3\: toInt(a
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Summary

e To Be Destructive or Not To Be, That is the
Question on Modular Extensions

e Destructive extensions Always
e Conditionally ...

— Specified by extension-users
— Structural scope  e.g. Method Shelters/Shells

e Non-destructive Only specific instances



