To Be Destructive or Not To Be, That is
the Question on Modular Extensions

Shigeru Chiba
The University of Tokyo

1

Quotes

* Aspect oriented programming is
quantification and obliviousness.

— Robert E. Filman Daniel P. Friedman

e Obliviousness is not mandatory but
desirable.

— Awais Rashid?

Shigeru Chiba, The University of Tokyo

Shigeru Chiba, The University of Tokyo

AOP functionality (1)

e Obliviousness is useful and practical!

— An advice can obliviously modify a method.

e The original source code is not modified at all
when the software is extended.

class AddExpr {
Value eval() { ... }

} Value around(AddExpr ae):
execution(Value AddExpr.eval())
&é& this(ae) {
if (...) proceed();
else ... ;
} 3

Shigeru Chiba, The University of Tokyo

AQOP functionality (2)

e Limited scope
— An advice can modify a method call in a body
— Breaking modularity?

class VarDecl { aspect Logging {
Value init() { before():
v = right.eval(); call(void Expr.eval())

1} && withincode(* VarDecl.init()) {
class Aoprr { }

Value eval() { ... }
}

A new scripting language
in two weeks

2BETTEBRI RV)T NEREDIED T (Software

Design plus) [EfTER (V7 kA=)]

FRE®
Pl ol [V (5 customer reviews)

)yt TRIPR! R

Price: 3 2 786 & eligible for Free Shipping. Details

Only 12 left in stock (more on the way). Click here for details of availability.
Ships from and sold by Amazon.co.jp. Gift-wrap available.

ERPSERIFEELHE | 113-0033 - RRBYXREASH | mu

%x8,4B 17 CBBIT3CL. 05 6 B & 59 FLACTERXE | FAEILaHERX
B #BIRLTEXEMEL TSN (EHA T3y, Amazon /SAALR R 38H)

4 used from ¥ 1,973

HE 54X -9

am a;O n.oo.jp YourStore Amazon Points GiftCards Today's Deals Sell Help HE&E #WBTAmazon¥ 7 hHHNED
Shop by Japanese Books ~ Hello. Sign in Join 0 Wish
Department ~ 2 Your Account ~ Prime ~ -\.-./ Cart ~ List ~
Japanese Books Advanced Search Browse Genres New & Future Release Amazon Ranking Comics Magazines Bunko & Shinsho Amazon Student Bargain Books

COR-CEBFRBTERRLETH?
SoES Y

—

or
Sign in to turn on 1-Click ordering.
or

With an Amazon Prime membership. Sign
up when you check out. Learn More

[AddtoWishlist |

wone RN F— NS ARAR AZ52100 S
AL A WHALNRANEH [BAMISTTHANITYH100) , LINEZV o —hE4 5 used & new from ¥ 1,973
Share your own customer images 100 REOHREBISHD [A— IS LXAPISY£100 [KindlehFll feHP. Have one to sell?
Search inside this book suimwess. > See more product promotions
o Share (] ¥
Tell the Publisher!
TR I'd like to read this book on Kindle
)

http://www.amazon.co.jp/gp/switch-language/product/4774149748/ref=dp_change_lang?ie=UTF8&language=en_JP

A new scripting language
in two weeks

amazon. BHE F4X Ib—2X

5 .co.jp Your Store Amazon Points Gift Cards Today's Deals Sell Help BE&E #ET Amazon¥ 7 bSHiNED
Shop by J Books ~ Hello. Sign in Join 0 Wish
Department ~ e Your Account ~ Prime ~ -\.-./ Cart ~ List ~

Japanese Books Advanced Search Browse Genres New & Future Release Amazon Ranking Comics Magazines Bunko & Shinsho Amazon Student Bargain Books

Customer Reviews AETHRRLETH?

VODZRLEYVL

B st 3 YOO © 5 reviews i

4 star 1 4.0 out of 5 stars M
3 star 0 : _ umo::-CIIekotderhg.

2 star 0 } Write a customer review or

1 star : Eipeited Shiping

on Prime membership. Sign
)u check out. Learn More

dtoWishList |

Most helpful customer reviews

|Buying Choices
srarevouromenond 21 Of 23 people found the following review helpful: :":l“;'fm “’973
Search inside this Yoloooh EBABRROEBRRE LoD ERDZ—M April 21, 2012 ST L)
b et the bor By Amazon Customer
Verified Purchase 6

Shige

http://www.amazon.co.jp/gp/switch-language/product/4774149748/ref=dp_change_lang?ie=UTF8&language=en_JP

Shigeru Chiba, The University of Tokyo

J

When | was When | was When | was
a student.... a postdoc.... a prof....

.;:;:e:-'.'.':'f':?:fs:'i'f?-'t"':-:::-f:?:?.:f:f::.. _'-. — T s e e
= | was a server/net. i still server/network
: admin. of our dept. =2 admin. of our dept.

P

...................
............................

Now I'm
a dept. chair....

I’'m writing PHP
for our dept. web
site.

i)
=

I

A boss in name
only?

& Shall | change my
job?

S. Chiba, A new scripting language in two weeks, Gihyo co., 2012

Shigeru Chiba, The University of Tokyo

Eric Tanter said to me.

e If the code in the book is in Scheme,
you don’t need obliviousness or AOP.

e ... Right. But Scheme also provides
“obliviousness”
or destructive extension | call.

— The code in my book is in Java.

[Chiba,lgarashi,Zakirov, OOPSLA10]

Shigeru Chiba, The University of Tokyo

Gluon]: A reviser

e Destructive extension modify
— A reviser can add and everridle a method,

and add a field to an existing class.
e [t cannot have an explicit constructor.

class AddExpr {
Value eval() { ... }
} class FloatEx revises AddExpr {
Value eval() {
if (...) super.eval();
else ... ;
}
} 9

Gluon]: A within method

e Limited scope
— A method may have a predicate.

— Its method overriding is effective only when it
is called from ...

class VarDecl { class Log revises AddExpr {

o Value eval()
Value init S .
V= righgr).e{val(); within VarDecl.init() {

class Ad¢Expr {

Value eval() { ... }
}

10

Shigeru Chiba, The University of Tokyo

Shigeru Chiba, The University of Tokyo

Contextual predicate dispatch

e Gluon]

— Predicates refers to non-local contexts
i.e. within who is a caller.

e Currently only within is available.
— to deal with crosscutting concerns

e Original predicate dispatch

— Predicates refers to only local contexts
such as arguments and receiver’s fields
e for unambiguity and exhaustiveness

11

Shigeru Chiba, The University of Tokyo

Subclassing, mixin, traits, ...

e Non-destructive extension

— Both the original and the extension coexist.
* The source code is not modified as in AOP.

class AddExpr {
Value eval() { ... }

) class FloatEx extends AddExpr {
Value eval() {
AddExpr el, e2; if (...) super.eval();
el = new AddExpr(); else ... ;
e2 = new FloatEx(); }
} 12

To Be Destructive or Not To Be, That is
the Question on Modular Extensions

13

Shigeru Chiba, The University of Tokyo

Abstract Factory pattern
or dependency injection

e AOP-like modification
by non-destructive extension (= subclassing)

class Factory { class AddExpr {
AddExpr makeAddExpr() { Value eval() { ... }
return new AddExpr(); }
}}
class FactoryEx extends Factory { class FloatEx extends AddExpr {
AddExpr makeAddExpr() { Value eval() {
return new FloatEx(); if (...) super.eval();
1} else ... ;
}
AddExpr e }
= factory.makeAddExpr(); 14

Shigeru Chiba, The University of Tokyo

Abstract Factory pattern
or dependency injection

e To switch classes,
the main method must be modified by hand.

void main(String[] args) {
factory = new FactoryEx();

program.start(args);
}

Or, another main method must be
written from scratch.

15

Shigeru Chiba, The University of Tokyo

Abstract Factory pattern
or dependency injection

e To switch classes,

the main method must be modified by hand.

void main(String[] args) {
factory = new FactoryEx();

program.start(args);

}

Or, another m

void main(String[] args) {
factory = new Factory():

program.start(args);

}

1in method must be

written from scratch.

16

Shigeru Chiba, The University of Tokyo

Also,

e Family polymorphism/virtual classes

— are non-destructive
like Abstract Factory pattern.

17

Shigeru Chiba, The University of Tokyo

Destructive or Non-destructive

e Modification or Another copy

\/

.

18

Shigeru Chiba, The University of Tokyo

Destructive or Non-destructive

e Modification or Another copy
— when an intermediate module is modified

\/_

19

Shigeru Chiba, The University of Tokyo

Destructive extension

e OK, it's useful when | want to modify
only a piece of code in my program.

e But, | often want to reuse the original
code in the same program.

20

Scope!

® Destructive Always modify

° Conditionally
— Aspect])’s within, withincode, and cflow
— Gluon)’s within
— Context]

e Non-destructive Only specific instances

21

Shigeru Chiba, The University of Tokyo

Shigeru Chiba, The University of Tokyo

Various kinds of scopes

 In Ruby

class Integer
def div(x)
returns a
rational num.
end

end destructive

def average(list)
sum = ...

class Integer
def div(x)
returns an

integer result

end
end

\include

list = ...
a = average(|

sum / list.size
end

include

a2=a/10*

ist)
10

22

Shigeru Chiba, The University of Tokyo

Reusable destructive extensions

e Module users should specify where they
are effective.

— Module writers should not.

class Integer

class Integer def div(x)
def div(x) # returns an
returns a # integer result
rational num. end
o end end
The new div() is end destructive
effective only include

within average() def average(list) list = ..

, sum = .. a = average(list)
User of new div() sum / list.size include | @2=a/10*10
module end

23

Shigeru Chiba, The University of Tokyo

Mentioning the scope

e At the side of the module user.

* Aspect]

— abstract pointcut

e Dynamic Aspect-Oriented Programming
— deploy(...) { ... } in Caesar]

e Context-Oriented Programming
—with(...) { ... } in Context]

24

Shigeru Chiba, The University of Tokyo

More structural scope

e Method shelters [Akai&Chiba, AOSD’12]
e Method shells [Takeshita&Chiba, SC‘13]

e When a " "module” is imported,

— the scope of the destructive extensions in it
is declaratively specified.

25

Shigeru Chiba, The University of Tokyo

Method shells

[Takeshita&Chiba’13]

e Two kinds of module import

— Include

— link

-

\

Link makes
methods in a
different scope
visible.

/

|

Include put in
the same scope

=

class Integer
def div(x)
returns a

end
end

rational num.

destructive

include

include /

def average(list)
sum = ...
sum / list.size
end

TN

class Integer
def div(x)
returns an
integer result

end
\include

end
list = ...

a = average(list)

=

link a2=a/10*10
26

Shigeru Chiba, The University of Tokyo

The semantics of link is comlex

e Takeshita’s master thesis in 2014
— When are scopes switched?

class Integer class Integer
def div(x) - lud def div(x)
rational num "N # integer
end end
def toInt(r) end
.
end ¢
end destructive
4 % include/ include
All the methods : :
0 this scone def average(list) list = ...
" .. P sum = ... < a = average(list)
are visible. sum / list.size T a2=a/10*1
o) end \0\3\: toInt(a

Shigeru Chiba, The University of Tokyo

Summary

e To Be Destructive or Not To Be, That is the
Question on Modular Extensions

e Destructive extensions Always
e Conditionally ...

— Specified by extension-users
— Structural scope e.g. Method Shelters/Shells

e Non-destructive Only specific instances

