Separation of Concerns
In Language Definition

Eelco Visser
Delft University of Technology

]
TU Delft

“99% of errors found by Semmle are due to bad language design”

— Oege de Moor, CEO Semmle

Problem General- Solution

i Purpose -
Domain P Domain

Language

Problem General- Solution

i Purpose -
Domain P Domain

Language

¢ | ack of safety

Problem General- Solution

i Purpose -
Domain P Domain

Language

¢ | ack of safety
e | ack of abstraction

Problem General- Solution

i Purpose -
Domain P Domain

Language

¢ | ack of safety
e | ack of abstraction
e Distance from domain

Problem Domain- General- Solution

Domain Specific Purpose Domain

Language Language

¢ | ack of safety
e | ack of abstraction
e Distance from domain

Problem Domain- General- Solution

Domain Specific Purpose Domain

Language Language

¢ | anguage-based safety and security
e | ack of abstraction
e Distance from domain

Problem Domain- General- Solution

Domain Specific Purpose Domain

Language Language

¢ | anguage-based safety and security
¢ High-level domain-specific abstraction
e Distance from domain

Problem Domain- General- Solution

Domain Specific Purpose Domain

Language Language

¢ | anguage-based safety and security
¢ High-level domain-specific abstraction
e Reduced distance from problem domain

Problem
Domain

Language
Design

Domain-
Specific
Language

General-
Purpose
Language

General-
Purpose
Language

Solution
Domain

Compiler +
Editor (IDE)

Problem
Domain

Language
Design

Domain-
Specific
Language

Declarative-
Meta
Languages

General-
Purpose
Language

General-
Purpose
Language

Solution
Domain

Compiler +
Editor (IDE)

Language workbench

Declarative- General-

C iler +
Meta Purpose omprier

Language

Design Editor (IDE)

Languages Language

Language workbench

Declarative multi-purpose meta-languages

Declarative- General-

C iler +
Meta Purpose omprier

Language

Design Editor (IDE)

Languages Language

Language workbench
Declarative multi-purpose meta-languages

Useable language implementations

Declarative- General-

C iler +
Meta Purpose omprier

Language

Design Editor (IDE)

Languages Language

Language workbench

Declarative multi-purpose meta-languages

Useable language implementations

High quality language designs

Declarative- General-

C iler +
Meta Purpose omprier

Language

Design Editor (IDE)

Languages Language

] Desktop — bash — 37x16 0
(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib
Fib 6: 8
Fib 5: 8
(08:48:13] ~/Desktop$ |

"\E:p ﬁl-" C’" mk) 4
£ (rg 1)

re bwen
els

/Luﬁ“fzn_) 8 <‘|S 6-)

=] Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java

(08:48:10] ~/Desktop$ java Fib
Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 — 0O

public class Fib {
public static int calc(int n) {
1f(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

Desktop — bash — 37%x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

def Bl (m11ak) ¢
£ (ne 1)

re bwen

eS¢

T scdan

J| Fib.java 23 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc
}
}

L 5Gh=)¢ $i56-1)

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

=] Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java

08:48:10] ~/Desktop$ java Fib
Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

'[J] Fib.java x| = O

public class Fib {
public static int calc(int n) {

if(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);
3
public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [I1] is a simplification of the
signatures extension for C++ M| and is — to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C4+4, but we know of
no formal definition. Java adopts the Smalltalk [approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [EX],[53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

 Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

del LL Cnn k) {

o

(ng 1)

re bwan

else
7¢kaen

f.?(n -t

15 6-)

J] Fibjava S2 = O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T] approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

O (& Desktop — bash — 37x16 W

[08:48:06] ~/Desktop$ javac Fib.java
[08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

[08:48:13] ~/Desktop$ ||

4 s |
J| Fibjava 3 O

public class Fib {
= public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],}J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

O (& Desktop — bash — 37x16 W

[08:48:06] ~/Desktop$ javac Fib.java
[08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

[08:48:13] ~/Desktop$ ||

- — |
J] Fibjava 53 O

public class Fib {
= public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],}J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=] Desktop — bash — 37x16

[08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

[08:48:13] ~/Desktop$ ||

J| Fib.java 2% - 0O

public class Fib {
= public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}

parser
type checker

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++4, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=] Desktop — bash — 37x16

ra

[08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser
type checker
code generator

J| Fib.java £2 - 0O

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

- public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=] Desktop — bash — 37%x16 "
[08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser
type checker
code generator
INnterpreter

J] Fibjava 52 = B

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

- public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=] Desktop — bash — 37%x16

[08:48:06] ~/Desktop$ javac Fib.java

(08:48:10] ~/Desktop$ java Fib
Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser
type checker
code generator
INnterpreter

J| Fib.java E@z » =0

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=] Desktop — bash — 37%x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser

type checker
code generator
INnterpreter

|1| Fib.java 232 » = 0

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser
error recovery

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=l Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser

type checker
code generator
INnterpreter

e | = 0 ’

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser
error recovery
syntax highlighting

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

| Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser
type checker
code generator
INnterpreter

() Fibjava 52 = 0 ’

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser

error recovery
syntax highlighting
outline

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

| Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser
type checker
code generator
INnterpreter

[3) Fibjava 5% = 0

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser

error recovery
syntax highlighting
outline

code completion

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

=] Desktop — bash — 37%x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

parser
type checker
code generator
INnterpreter

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser
error recovery
syntax highlighting
outline

code completion
navigation

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

] Desktop — bash — 37x%16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

| Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

| Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Desktop — bash — 37%x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J| Fibjava 3% - O
public class Fib {
public static int calc(int n) {
if(n < 2)
return n;

else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition
static semantics

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Desktop — bash — 37Xx16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition
static semantics
dynamic semantics

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition
static semantics
dynamic semantics

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

abstract syntax

Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition
static semantics
dynamic semantics

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

abstract syntax
type system

Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J] Fibjava 52 - O

public class Fib {
public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}

}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition
static semantics
dynamic semantics

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

abstract syntax
type system

operational
semantics

Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

J| Fibjava 3% - O
public class Fib {
public static int calc(int n) {
if(n < 2)
return n;

else
return calc(n - 1) + calc(h - 2);

}

public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}

}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

parser
type checker
code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

code completion
navigation

type checker
debugger

syntax definition
static semantics
dynamic semantics

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language
!designers was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C+4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

abstract syntax
type system

operational
semantics

type soundness
proof

O O O {1 Desktop — bash — 37x16 ™

[08:48:06] ~/Desktop$ javac Fib.java
[08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

[08:48:13] ~/Desktop$ ||

- — |
J| Fib.java ﬁ?\\\- O

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],}J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

type checker

code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

syntax definition

abstract syntax

static semantics

dynamic semantics

type system

code completion
navigation

type checker
debugger

operational
semantics

type soundness
proof

Syntax
Definition

O (& Desktop — bash — 37x16 o

Language Design

Name Ve
Binding

straints

Dynamic
Semantics

[08:48:06] ~/Desktop$ javac Fib.java
[08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

[08:48:13] ~/Desktop$ ||

- — |
J] Fibjava 53 O

public class Fib {
= public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of {0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Syntax Definition

Syntax: Phrase Structure of Programs

int fib(int n) {

1f(n <= 1)
return 1;
else

return fib(n - 2) + fib(n - 1);

Syntax: Phrase Structure of Programs

12D J+] [rib]c]n|-]2D];

return

[~ |

Syntax: Phrase Structure of Programs

int| [fib|([int] D] [tliflcIn] [<=[TiP] Jreturn] Tili] Tetse] [return] Tfib]cIn]-T2DT T Triolcn]-1:DL 3

Syntax: Phrase Structure of Programs

ID| [Param.Param Exp.Leqg| |[Statement.Return

IntType

int| [fib

‘return‘

Syntax: Phrase Structure of Programs

ID| [Param.Param Exp.Leqg| |[Statement.Return

IntType

int| [fib

‘return‘

Syntax: Phrase Structure of Programs

Statement.Return

ID| [Param.Param Exp.Leqg| |[Statement.Return

IntType

int| [fib

‘return‘

Syntax: Phrase Structure of Programs

Statement.If

Statement.Return

ID| [Param.Param Exp.Leqg| |[Statement.Return

IntType|| [IntType Exp.Var|| Exp.Int Exp.Int

Jl_‘) ‘return 1 ;else ‘return‘

int| |fib|C[int ifﬂJn

Definition. Function Syntax: Phrase Structure of Programs

Statement.If

Statement.Return

ID| [Param.Param Exp.Leqg| |[Statement.Return

IntType|| [IntType Exp.Var|| Exp.Int Exp.Int

int| |fib|(|int ifa-rlm <=| |1D ‘return 1 ;else ‘return‘

Function AbStraCt

Syntax
If Tree
Return
Add
Call Call
Param Leg Return Sub Sub
IntType|| [IntType Var Int Int Var| |Int Var| |Int

int fib(int n) {

1f(n <= 1)
return 1;
else

return fib(n - 2) + fib(n - 1);
Iy

Text

Function
parse i
Return
Param Leq Return
IntType|| |[IntType Var Int Int
fib n n 1 1

Add

Abstract
Syntax
Tree

Call

Sub

Var

Int

fib

Call

Sub

Var| |Int

fibl |In| |1

Abstract
Syntax
Tree

int fib(int n) { Fanceto
1f(n <= 1)
return 1; ————— el
else parse
return fib(n - 2) + fib(n - 1); oo
}]
Text
Function(
IntType()
, fib"
, [Param(IntType(), "n")]
, L If(
Leg(Var("n"), Int("1"))
, Int("1")
, Add(

)

Call("fib", [Sub(Var("'n"), Int("2"))])
, Call("f1ib", [Sub(Var("n"), Int("1"))])
)

),
l

Abstract
Syntax
Term

Definition.Function

1f

Type||ID||C||Param*|)| |{||Statement*| |}

Statehent.If

EXp

)

Statement

Statement||else

Statemeﬁt.Return

return| |Exp]

Exp.Add

Exp

+

EXp

Exp:Var

|
1D

Understanding Syntax =
Understanding Tree Structure

parse(prettyprint(t)) =t

No need to understand
how parse works!

Language Design

Syntax Name Type Dynamic

Definition Binding Constraints Semantics Iransform

Describing the Semantics of Java

~/Desktop$ javac Fib.java /m Fib.java EN = 0 and Proving Type Soundness

""/DeSktOps java Fib publlc class Fib { Sophia Drossopoulou and Susan Eisenbach
Fib 6: 8 = pUbliC StClti.C int CCI].C(int n) { Department of Computing

. — i T ..
e nperial Lollere o Sclence echnoloov and MNedicige

Demo: Syntax Definition in SDF3

} The mechanism for dynamic method binding is that of C4++4. but we know of
no formal definition. Java adopts the Smalltalk [{I]] approach whereby all object

} variables are implicitly pointers.
Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-

guages [1], [B1],[53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Definition.Function

The Syntax Definition Formalism SDF3

templates

Type||ID||C||Param*|)| |{||Statement*| |}

: Definition.Function = <
Statement.If <Type> <ID>(<Param*; separator=",">) {
<Statement*; separator="\n">

¥

1f||(||Exp||)||Statement||else||Statement >

Statement.If = <
1T (<Exp>)
<Statement>

Statemeﬁt.Return

return| |Exp else
: <Statement>

>

Exp.Add

Statement.Return = <return <Exp>;>

Exp| |+| |[Exp

Exp.Add = <<Exp> + <Exp>>

Exp.Vvar Exp.Var = <<ID>>

|
1D

Multi-Purpose Declarative Syntax Definition

Parser

Error recovery rules

Statement.If = < Pretty-Printer
LT (<E
i E;tﬁi’;ienb Abstract syntax tree schema
eLse Svntactic colorin
<Statement> Y g
>

Syntactic completion templates

Syntax Definition Folding rules

Outline rules

Name and Type Analysis

Name Binding & Scope Rules

Needed for

.] ? i
what does this variable refer (o: - checking correct use of names and types

- lookup In interpretation and compilation
- navigation in IDE

int fib(int n) { - code completion

1f(n <= 1)
return 1; :
else | v State-of-the-art
return fib(n - 2) + fib(n - 1);
A
} ; - programmatic encoding of name resolution algorithms
which function is being called here? Our contribution

- declarative language for name binding & scope rules
- generation of incremental name resolution algorithm

- Konat, Kats, Wachsmuth, Visser (SLE 2012)
- Wachsmuth, Konat, Vergu, Groenewegen, Visser (SLE 2013)

Syntax
Definition

Language Design

Name Type

Binding Constraints

~/Desktop$ javac Fib.java
~/Desktop$ java Fib

Fib 6: 8

public class Fib {

= public static int calc(int n) {

Dynamic

Semantics

Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing

. — i T ..
nperial Lollere o Sclence echnoloov and MNedicige

Demo: Name and Type Analysis in NaBL+TS

The mechanism for dynamic method binding is that of C4++4. but we know of
no formal definition. Java adopts the Smalltalk [{I]] approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [B1],[53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Declarative Name Binding and Scope Rules

binding rules

Param(t, name) :
defines Variable name

Var(name) :
refers to Variable name

Function(t, name, param*, s) :

defines Function name
scopes Variable, Function

Call(name, exp*)
refers to Function name

Incremental name resolution algorithm
Name checks
Reference resolution

Semantic code completion

Semantics of Name Binding?

binding rules

Param(t, name) :
defines Variable name

Var(name) :
refers to Variable name

Function(t, name, param*, s)
defines Function name
scopes Variable, Function

Call(name, exp*)
refers to Function name

Research: how to characterize correctness of the result of
name resolution without appealing to the algorithm itself?

Definition.Function

Type

ID

[d

Param*

[in]Statement* jj

Statement.If

1 Exp m Statement||else

Statement

Statement.Return

return

I
I
Exp

Exp.Add

Exp

|
E] Exp

Exp.Var

I
ID

Declarative Syntax Definition =
Specifying Tree Constructors

parse(pp(t)) =t

No need to understand
how parse works!

Analogy: declarative semantics of syntax definition

Interpretation
& Verification

Syntax

Definition

=] Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java
08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

(08:48:13] ~/Desktop$ ||

Name
Binding

Language Design

Type
Constraints

Dynamic
Semantics

Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++4, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

DynSem: Dynamic Semantics Specification

module semantics
rules
E env |- Var(x) --> v
where env[x] => T(e, env'),
E env' |- e --> v

E env |- Fun(Param(x, t), e) --> C(x, e, env)

E env |- App(el, e2) --> v

where E env [- el --> C(x, e, env'),
E {x [--> T(e2, env), env'} [- e --> v
E env |- Fix(Param(x, t), e) --> v
where
E {x [--> T(Fix(Param(x,t),e),env), env} [- e --> v

E env |- Let(x, t, el, e2) --> v
where E {x |--> T(el, env), env} |- e2 --> v

rules
Num(1i) --> I(1)

Ifz(el, e2, e3) --> v
where el --> I(1), 1 =0, e2 --> v

Ifz(el, e2, e3) --> v
where el --> I(1), 1 !'= 0, e3 --> v

Add(el, e2) --> ICaddInt(i, 3))
where el --> I(1), e2 --> I(3)

Sub(el, e2) --> I(subInt(i, 3))
where el --> I(1), e2 --> I(3)

Mul(el, e2) --> I(mulInt(i, j))
where el --> I(1), e2 --> I(3)

Implicitly-Modular Structural Operational Semantics (I-MSOS)*

rules rules
E env [- Var(x) --> v E env [- Var(x) --> v
where env[x] => T(e, env'), where env[x] => T(e, env'),
E env' [- e --> v E env' [- e --> v
Add(el, e2) --> I(CaddInt(i, j)) E env |- Add(el, e2) --> I(CaddInt(i, 7))
where el --> I(1), | where E env |- el --> I(1),
e2 --> I(j) explicate E env |- e2 --> I(j)

*P. D. Mosses. Modular structural operational semantics. JLP, 60-61:195-228, 2004.
M. Churchill, P. D. Mosses, and P. Torrini. Reusable components of semantic specitications. In MODULARITY, April 2014.

Interpreter Generation

rules

Ifz(el, €2, e3) --> v
where el --> I(1), 1 =0, €2 --> v

Ifz(el, €2, e3) --> v
where el --> I(1), 1 !'= 0, e3 --> v

explicate
& merge

rules

E env |- Ifz(el, e2, e3) --> v

where E env |- el --> I(1),
[1 =0, E env |- e2 --> v] +
1 !=0, E env [- e3 --> v]

package org.metaborg.lang.pcf.interpreter.nodes;

public class Ifz_3 Node extends AbstractNode
implements I_EXp

{

public I_Exp _1, _2, _3;
@Override
public Value evaluate (I_InterpreterFrame frame) {
I_InterpreterFrame env = frame;
I_Exp el = this._1;
I_Exp e2 = this._2;
I_Exp e3 = this._3;
Value vl = el.evaluate (env);
1f (vl instanceof I 1 Node) {
I 1 Node ¢ 0 = (I_1 Node) vl1;
int 1 = ¢ _0._1;
1if (1 !'= 0) {
return e3.evaluate (env) ;
} else {
if (1 == 0) {
return e2Z2.evaluate (env);
} else {

throw new
InterpreterException ("Premise failed");

}
}

} else {
throw new
InterpreterException("Premise failed");

}
}

// constructor omitted

First Little (Big) Step: From PCF in Spoofax ...

module PCF
sorts Exp Param Type
templates
Exp.Var = [[ID]]
Exp.App = [[Exp] [Exp]] {left}
Exp.Fun = [
fun [Param] (
[Exp]
),
]
Exp.Fix = [
fix [Param] (
[Exp]
),
]
Exp.Let = [
let [ID] : [Type] =
[Exp]
in [Exp]
]
Exp.Num = [[INT]]
Exp.Add = [[Exp] + [Exp]] {left}

Exp.Sub = [[Exp] - [Exp]] {left}
Exp.Mul = [[Exp] * [Exp]] {left}
Exp = [([Exp])] {bracket}
Exp.Ifz = [
1fz [Exp] then
[Exp]
else
[Exp]
]

Type.IntType = [int]
Type.FunType = [[Type] -> [Typel]

Param.Param = [[ID] : [Typel]

context-free priorities

Exp.App > Exp.Mul > {left: Exp.Add Exp.Sub}
> Exp.Ifz

module names
namespaces Variable
binding rules

Var(x) :
refers to Variable x

Param(x, t) :
defines Variable x of type t

Fun(p, e) :
scopes Variable

Fix(p, e) :
scopes Variable

Let(x, t, el, e2) :
defines Variable x of type t in e2

module types
type rules

Var(x) : t
where definition of x : t

Param(x, t) : t

Fun(p, e) : FunType(tp, te)
where p : tp and e : te

App(el, e2) : tr
where el : FunType(tf, tr) and e2 : ta
and tf == ta
else error "type mismatch" on eZ2

Fix(p, e) : tp
where p : tp and e : te
and tp == te
else error "type mismatch" on p

Let(x, tx, el, e2) : t2
where e2 : t2 and el : tl
and tl == tx
else error "type mismatch" on el

Num(i) : IntType()

Ifz(el, e2, e3) : t2
where el : IntType() and e2 :
and t2 == t3
else error "types not compatible" on e3

t2 and e3 : t3

e@Add(el, e2) + e@Sub(el, e2) + e@Mul(el, e2) :

where el : IntType()
else error "Int type expected" on e

and e2 : IntType()
else error "Int type expected" on e

IntType()

module semantics

rules
E env |- Var(x) --> v
where env[x] => T(e, env'),
E env' |- e --> v
E env |- Fun(Param(x, t), e) --> C(x, e, env)

E env |- App(el, e2) --> v

where E env |- el --> C(x, e, env'),
E {x |--> T(e2, env), env'} |- e --> v
E env |- Fix(Param(x, t), e) --> v
where
E {x |--> T(Fix(Param(x,t),e),env), env} |- e --> v

E env |- Let(x, t, el, e2) --> v
where E {x [--> T(el, env), env} |- e2 --> v

rules
Num(i) --> I(1i)

Ifz(el, €2, e3) --> v
where el --> I(1), 1 =0, e2 --> v

Ifz(el, €2, e3) --> v
where el --> I(1), 1 !=0, e3 --> v

Add(el, e2) --> I(CaddInt(i, j))
where el --> I(1), e2 --> I(3)

Sub(el, e2) --> I(subInt(i, j))
where el --> I(1), e2 --> I(3)

Mul(Cel, e2) --> I(mullnt(Ci, j))
where el --> I(1), e2 --> I(3)

et B N N

[Exp]
]
Type.IntType = [1int]
Type.FunType = [[Type] -> [Type]]

Param.Param = [[ID] : [Typel]l]

TN) -7

defines Variable x of type t

Fun(p, e) :
scopes Variable

i e =) T~ S .

where el : IntType() and e2
and t2 == t3
else error "types not compatible" on e3

t2 and e3 : t3

e@Add(el, e2) + e@Sub(el, e2) + e@Mul(el, e2) : IntType()

e S J —=) T~ - -

where el --> I(1), 1 !=0, €3 --> v

Add(el, e2) --> I(addInt(i, j))
where el --> I(1), e2 --> I(3)

Fix(p, €) where el : IntType() Sub(el, e2) --> I(subInt(i, 3))
context-free priorities scopes Variable else error "Int type expected" on e where el --> I(1), e2 --> I(3)
and e2 : IntType()

Exp.App > Exp.Mul > {left: Exp.Add Exp.Sub} Let(x, t, el, e2) : else error "Int type expected" on e Mul(Cel, e2) --> I(mullnt(Ci, 3))
defines Variable x of type t in e2

> Exp.Ifz where el --> I(1), e2 --> I(3)
Inductive sorts : Set := Inductive ID_NS : Set := Inductive has_type (C: Context) : term -> term -> Prop :=
| Param_S | VariableNS VarC_ht ns k@ t x k1 : lookup C x ns k@ t -> has_type C (Co VarC [Id x k@] k1) t
| ID_S ParamC_ht x t k@ : has_type C (Co ParamC [x;t] k@) t ;
| INT_S FunC_ht k@ t_p t_e p e k1 : has_type C p t_p -> has_type C e t_e -> has_type C (Co FunC [p;e] k1) (Co FunTypeC [t_p;t_e] k0) %
| Exp_S Definition NS 1= FixC_ht t_p t_e p e k@ : has_type C p t_p -> has_type C e t_e -> (t_p = t_e) -> has_type C (Co FixC [p;e] k@) t_p }7
| Type_S ID_NS AppC_ht t_r k@ t_f t_a el e2 k1 : has_type C el (Co FunTypeC [t_f;t_r] k@) -> has_type C e2 t_a -> (t_f = t_a) -> has_type C Jo AppC [el;e2] k1) t_r

LetC_ht t2 t1 x t_x el e2 k@ : has_type C e2 t2 -> has_type C el t1 -> (t1 = t_x) -> has_type C (Co LetC [x;t_x;el;e2] k@) tZ
NumC_ht k@ i k1 : has_type C (Co NumC [i] k1) (Co IntTypeC [] k@) i
IfzC_ht kO t2 t3 el e2 e3 k1 : has_type C el (Co IntTypeC [] k@) -> has_type C e2 t2 -> has_type C e3 t3 -> (t2 = t3) -> has_§
AddC_ht k2 k@ k1 el e2 k3 : has_type C el (Co IntTypeC [] k@) -> has_type C e2 (Co IntTypeC [] k1) -> has_type C (Co AddC [elje?] k3) (Co IntTypeC [] k2)
SubC_ht k2 k@ k1 el e2 k3 : has_type C el (Co IntTypeC [] k@) -> has_type C e2 (Co IntTypeC [] k1) -> has_type C (Co SubC [el@e2] k3) (Co IntTypeC [] k2)
MulC_ht k2 k@ k1 el e2 k3 : has_type C el (Co IntTypeC [] k@) -> has_type C e2 (Co IntTypeC [] k1) -> has_type C (Co MulC [e:§-2] k3) (Co IntTypeC [] k2D
HT_eq e tyl ty2 (htyl: has_type C e tyl) (tyeq: term_eq tyl ty2) : has_type C e ty2

Parameter Ident : Set. Inductive scopesR
| Fun_scopes_Variable p e k@ :

| Fix_scopes_Variable p e k@ :

: term -> NS -> Prop :=
scopesR (Co FunC [p;e] k@) VariableNS
scopesR (Co FixC [p;e] k@) VariableNS

pe C (Co IfzC [el;e2;e3] k1) t2

I
I
I
I
I
I
I
I
I
Definition sort t= I
sorts I
I
Definition scopes_R =
scopesR

Definition Ident_Sort =
ID_S

Inductive definesR : term -> Ident -> NS -> key -> Prop :=
Inductive Constructors 1= | Param_defines_Variable x k1 t k@ : definesR (Co ParamC [Id x k1;t] k@) x VariableNS k1l

INTC (n: nat)

|
| VarcC
| FunC Definition defines_R 1=
| FixC definesR
| AppC . Inductive semantics_cbn : Env -> term -> value -> Prop :=
| LetC | Var@C_sem env' e env x k@ v : get_env x env e env' -> semantics_cbn env' e v -> semantics_cbn env (Co VarC [x] k@) v
| ParamC Inductive refers_toR : term -> Ident -> NS -> key -> Prop := | Fun@C_sem t k1 k@ x e env : semantics_cbn env (Co FunC [Co ParamC [x;t] k1;e] k@) (Clos x e env)
| NumC | Var_refers_to_Variable x k1l k@ : refers_toR (Co VarC [Id x k1] k@) x VariableNS k1 | Fix@C_sem k1 k@ env x t k3 e k2 v : semantics_cbn { x |--> (Co FixC [Co ParamC [x;t] kl;e] k@,env), env } e v -> semantics_cbn env (Co FixC [Co ParamC [x;t] k3;e] k2) v
| AddC | App@C_sem env' x e env el e2 k@ v : semantics_cbn env el (Clos x e env') -> semantics_cbn { x |--> (e2,env), env' } e v -> semantics_cbn env (Co AppC [el;e2] k@) v
| SubC | Let@C_sem env x t el e2 k@ v : semantics_cbn { x |--> (el,env), env } €2 v -> semantics_cbn env (Co LetC [x;t;el;e2] k@) v
| MulC Definition refers_to_R 1= | Num@C_sem env k@ i : semantics_cbn env (Co NumC [i] k@) (Natval i)
| DivC refers_toR | Ifz0C_sem 1 env el e2 e3 k@ v : semantics_cbn env el (Natval i) -> (i = @) -> semantics_cbn env e2 v -> semantics_cbn env (Co IfzC [el;e2;e3] k@) v
| IfzC | IfzlC_sem 1 env el e2 e3 k@ v : semantics_cbn env el (Natval i) -> (i <> @) -> semantics_cbn env e3 v -> semantics_cbn env (Co IfzC [el;e2;e3] k@) v
| IntTypeC | AddOC_sem env el e2 k@ i j : semantics_cbn env el (Natval i) -> semantics_cbn env e2 (Natval j) -> semantics_cbn env (Co AddC [el;e2] k@) (plus i j)
| FunTypeC Inductive typed_definesR : term -> Ident -> NS -> term -> key -> Prop := | Sub@C_sem env el e2 k@ i j : semantics_cbn env el (Natval i) -> semantics_cbn env e2 (Natval j) -> semantics_cbn env (Co SubC [el;e2] k@) (minus i j)
| Param_typed_defines_Variable x t k1 t k@ : typed_definesR (Co ParamC [Id x kl1l;t] k@) x VariableNS t k1l | Mul@C_sem env el e2 k@ i j : semantics_cbn env el (Natval i) -> semantics_cbn env e2 (Natval j) -> semantics_cbn env (Co MulC [el;e2] k@) (mult i j)

Definition constructors =

Constructors Definition typed_defines_R :=
typed_definesR
Fixpoint
get_sig (x: constructors) : list sort * sort :=
match x with

| INTC n => ([],INT_S)

VarC => ([ID_S],Exp_S)

FunC => ([Param_S;Exp_S],Exp_S)

FixC => ([Param_S;Exp_S],Exp_S)

AppC => ([Exp_S;Exp_S],Exp_S)

LetC => ([ID_S;Type_S;Exp_S;Exp_S],Exp_S)
ParamC => ([ID_S;Type_S],Param_S)
NumC => ([INT_S],Exp_S)

AddC => ([Exp_S;Exp_S],Exp_S)

SubC => ([Exp_S;Exp_S],Exp_S)

MulC => ([Exp_S;Exp_S],Exp_S)

DivC => ([Exp_S;Exp_S],Exp_S)

IfzC => ([Exp_S;Exp_S;Exp_S],Exp_S)
IntTypeC => ([],Type_S)

FunTypeC => ([Type_S;Type_S],Type_S)
end.

... 1o PCF Iin Coq (+ manual proof of type preservation)

Summary

O O O {1 Desktop — bash — 37x16 ™

[08:48:06] ~/Desktop$ javac Fib.java
[08:48:10] ~/Desktop$ java Fib

Fib 6: 8

Fib 5: 8

[08:48:13] ~/Desktop$ ||

- — |
J| Fib.java ﬁ?\\\- O

public class Fib {
- public static int calc(int n) {
if(n < 2)
return n;
else
return calc(n - 1) + calc(n - 2);

}

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

parser

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],}J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

type checker

code generator
INnterpreter

parser
error recovery
syntax highlighting
outline

syntax definition

abstract syntax

static semantics

dynamic semantics

type system

code completion
navigation

type checker
debugger

operational
semantics

type soundness
proof

Declarative Multi-Purpose Language Definition

Syntax Name ype Dynamic
Definition Binding straints Semantics

=] Desktop — bash — 37x16

2 — ———— S — ™ ‘ ‘
[08:48:06] ~/Desktop$ javac Fib.java /] Fibjava &3 - The Java Language
[08:48:10] ~/Desktop$ java Fib public class Fib { Specification
glz g: g B pul?]lc}c stg’;ic int calc(int n) { Java SE 7 Edition
i 2 if(n <
[08:48:13] ~/Desktop$ || return n; James Gosling
else Bill Joy
return calc(n - 1) + calc(n - 2); Guy Steele
} Gilad Bracha
Alex Buckley

= public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

2012-07-27

Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [0 is a simplification of the
signatures extension for C++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk [T approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Declarative Multi-Purpose Language Definition

NaBL: Name
Binding

SDF3: Syntax
Definition

TS: Type
Constraints

DynSem:
Dynamic
Semantics

Desktop — bash — 37%x16

(08:48:06] ~/Desktop$ javac Fib.java
(08:48:10] ~/Desktop$ java Fib public class Fib {
Fib 6: 8 = public static int calc(int n) {
Fib 5: 8 if(n < 2)
(08:48:13] ~/Desktop$ D return n;
else
return calc(n - 1) + calc(h - 2);

}

- public static void main(String[] args
System.out.println("Fib 6: " + calc
System.out.println("Fib 5: " + calc

}
}

The Java™ Language
Specification
Java SE 7 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley

2012-07-27

Stratego:
Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Cros. The philosophy of the language

esigners was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [is a simplification of the
signatures extension for C4++ M| and is - to the best of our knowledge — novel.
The mechanism for dynamic method binding is that of C+4, but we know of
no formal definition. Java adopts the Smalltalk 1] approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

SDF3: Syntax
Definition

I Desktop — bash — 37x16

(08:48:06] ~/Desktop$ javac Fib.java

08:48:10] ~/Desktop$ java Fib
Fib 6: 8

Declarative Multi-Purpose Language Definition

NaBL: Name
Binding

TS: Type
Constraints

DynSem:
Dynamic
Semantics

v
1J] Fib.java EN

public class Fib {
= public static int calc(int n) {

The Java™ Language
Specification
Java SE 7 Edition

Spoofax Language Workbench

2012-07-27

Stratego:
Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing

e e hnolosv and Medicig

The mechanism for dynamic method binding is that of C++4, but we know of
no formal definition. Java adopts the Smalltalk 1] approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

