Coccinelle: Reducing the Barriers to
Modularization in a Large C Code Base

Julia Lawall
Inria/LIP6/UPMC/Sorbonne University-Regal

Modularity 2014

Modularity

Wikipedia:
Modularity is the degree to which a system’s components may be
separated and recombined.

o A well-designed system (likely) starts with a high degree of
modularity.

e Modularity must be maintained as a system evolves.

e Evolution decisions may be determined by the impact on

modularity.

Goal: Maintaining modularity should be easy as a system evolves.

Modularity and API functions

Well designed API functions can improve modularity

e Hide module-local variable names.

e Hide module-local function protocols.

Problem:

e The perfect APl may not be apparent in the original design.
e The software may evolve, making new APIs needed.

e Converting to new APIs is hard.

Modularity in the Linux kernel

Net
library

File system
library

€1000e

Driver
library

tef6862

Case study: Memory management in Linux
Since Linux 1.0, 1994:

e kmalloc: allocate memory
e memset: clear memory

e kfree: free memory

Since Linux 2.6.14, 2006:
e kzalloc: allocate memory
e kfree: free memory

e No separate clearing, but need explicit free.

Since Linux 2.6.21, 2007:
e devm_kzalloc: allocate memory

e No explicit free.

API introduction in practice: devm_kzalloc

calls

7 ---®-- platform kzalloc
800 — —— platform devm_kzalloc
- - -®-- i2ckzalloc
] —— i2c devm_kzalloc
600 —
400
200 —
0 -

T T T 1T 1
SN B N

0T97C
9T
¥T°9C
9T9C
9T
¥€9°C
9€'9C
8¢€9C
01°¢

Linux version

API introduction in practice: devm_kzalloc

calls

400

300

200

100

- -® - - usb kzalloc
—— usb devm_kzalloc
- - - - pcikzalloc
—— pci devm_kzalloc

T T 1T T T 1
NN N N e e e el
AN NN
DR R L L W W S
SN K XSO0 B ®

Linux version

Adoption challenges

Partial patch introducing devm_kzalloc:

- rfkill_data = kzalloc(sizeof (*rfkill_data), GFP_KERNEL);
+ rfkill_data = devm_kzalloc(&pdev->dev, sizeof (*rfkill_data), GFP_KERNEL);
if (rfkill_data == NULL) {
ret = -ENOMEM;
goto err_data_alloc;
}
rf_kill = rfkill_alloc(...);
if (rf_kill == NULL) {
ret = -ENOMEM;
- goto err_rfkill_alloc;
+ goto err_data_alloc;

}

return O;

err_rfkill_register: rfkill_destroy(rf_kill);
-err_rfkill_alloc: kfree(rfkill_data);

err_data_alloc: regulator_put (vee);
out: return ret;

Summary of changes

devm_kzalloc replaces kzalloc

devm_kzalloc needs a parent argument.
— kzalloc(el,e2) becomes devm_kzalloc(dev,el,e2)

The allocated value must live from the initialization to the
removal of the driver.

kfrees on the allocated value should be removed.

Remaining changes

e Also have to adjust the remove function.

e regulator_put also has a devm variant.
— Should fix that too.

10

Issues

The API is not sufficiently well known.
The conditions required for introducing the APl are complex.
The changes required are tedious and error prone.

Relevance to different kinds of actors:

e For the developer:
How to find and fix potential uses of the new API?
— For the manager:
How to assess the adoption of the new API?
— For the maintainer:
How to find and fix faults in the use of the new API?

All need to know precisely how the APl should be used.

11

Coccinelle to the rescue

Matching and transformation for unpreprocessed C code.

Developer-friendly scripting, based on patch notation
— semantic patches.

Applicable to large code bases.
— The Linux kernel (12 MLOC).

Available in major Linux distributions.

http://coccinelle.lip6.fr/
http://coccinellery.org/

12

http://coccinelle.lip6.fr/
http://coccinellery.org/

Pbl.

Pb2.

Pb3.

Pb4.

For the developer: Issues to address

devm_kzalloc replaces kzalloc

devm_kzalloc needs a parent argument.
— kzalloc(el,e2) becomes devm_kzalloc(dev,el,e2)

The allocated value must live from the initialization to the
removal of the driver.

kfrees on the allocated value should be removed.

13

Pbl. devm kzalloc replaces kzalloc

Q@

expression e, el, e2;

Q@

- e = kzalloc(el, e2)

+ e = devm_kzalloc(dev, el, e2)

14

Pbl. devm kzalloc replaces kzalloc

Q@

expression e, el, e2;

Q@

- e = kzalloc(el, e2)

+ e = devm_kzalloc(dev, el, e2)

Where does dev comes from?

15

Pb2. Obtaining a dev value

devm_kzalloc can only be used with drivers that build on libraries
that manage memory.
e Examples: platform driver, i2c driver, usb driver, pci driver.

These libraries pass to the driver probe function a dev value.

16

Pb2. Obtaining a dev value

©Q

identifier probefn, pdev;

expression e, el, e2;

0Q

probefn(struct platform_device *pdev,
<+...

- e = kzalloc(el, e2)

+ e = devm_kzalloc(&pdev->dev, el, e2)

>

}

.0 Ao

17

Pb2. Obtaining a dev value

@@
identifier probefn, pdev;
expression e, el, e2;

©e

probefn(struct platform_device *pdev, ...) {
<+

- e = kzalloc(el, e2)

+ e = devm_kzalloc(&pdev->dev, el, e2)
R

}

How to be sure that probefn is a probe function?

18

Pb2. Obtaining a dev value

Oplatform@

identifier s, probefn;

Q@

struct platform_driver s = {
.probe = probefn,

3

Q@

identifier platform.probefn, pdev;

expression e, el, e2;

@@

probefn(struct platform_device *pdev,
<+...

- e = kzalloc(el, e2)

+ e = devm_kzalloc(&pdev->dev, el, e2)

. >

3

) Ap

10

Pb3. Lifetime of the allocated value

Issues:
e Using devm functions, allocated values are live until after the
driver remove function.

e To preserve the same behavior, have to check all the other
functions for kfrees.

e Simplifying assumption: kzalloced data in the probe
function is live until the remove function.
— This assumption can be removed using a more complex
Coccinelle rule.

20

Pb4. Removing kfrees

Where are they?

e Failure of probe function.

e Success of remove function.

Which ones to remove?

e Simplifying assumption: An allocated value is always
referenced in the same way.

e This assumption can be partially removed using a more
complex Coccinelle rule.

21

Pb4. Removing kfrees: Find the remove function

O@platform@
identifier s, probefn, removefn;
@@
struct platform_driver s = {
.probe = probefn,
.remove = removefn,

};

29

Pb4. Remove kfrees from probe

@platform@
identifier s, probefn, removefn;
@@
struct platform_driver s = {
.probe = probefn,
.remove = removefn,

};

Oprbe
identifier platform.probefn, pdev; expression e, el, e2;
(¢I¢]
probefn(struct platform_device *pdev, ...) {

<+...
- e = kzalloc(el, e2)
+ e = devm_kzalloc(&pdev->dev, el, e2)

?-kfree(e);
o>
}

272

Pb4. Remove kfrees from remove

Oplatform@ identifier s, probefn, removefn; @@
struct platform_driver s = { .probe = probefn, .remove = removefn, };

Oprb@ identifier platform.probefn, pdev; expression e, el, e2; @@

probefn(struct platform_device *pdev, ...) {
<+...

- e = kzalloc(el, e2)

+ e = devm_kzalloc(&pdev->dev, el, e2)

?-kfree(e);

o>
}
Orem depends on prb@ identifier platform.removefn; expression e; Q@
removefn(...) {

<...
- kfree(e);

o>
}

Proposes updates to 261 platform drivers o

For the Manager: How to assess adoption of the new API?

Coccinelle supports not only transformation, but also other
program matching tasks.

Idea:

e Search for the pattern as for transformation.
e Record the position of relevant information.
e Use python or ocaml scripting to process the recorded

information.

— Make charts and graphs.
— Update a database.
— Send reminder letters, etc.

I5

For the Manager: How to assess adoption of the new API?

Q@initialize:python@ @@
count = 0

Oplatform@ identifier s, probefn; @@
struct platform_driver s = { .probe = probefn, };

Q@prba@
identifier platform.probefn, pdev; expression e, el, e2; position p;
ee

probefn@p(struct platform_device *pdev, ...) {
<+...
e = kzalloc(el, e2)
o>

}

Oscript:python@ p << platform.p; @@
count = count + 1

@finalize:python@ @@
print count

26

For the maintainer: Finding faults in APl usage

e devm_kzalloc + kfree is forbidden.
e devm kzalloc + devm_kfree should be unnecessary.

e Both may result from a misunderstanding of how
devm_kzalloc works.

27

Differentiated finding fault, part 1

Or existsO
expression e,el;
position p;
0Q
e = devm_kzalloc(...)
. when != e = el
(kfree@p | devm kfree@p) (e)

Oscript:ocaml@

p << r.p;

@0

let p = List.hd p in

Printf.printf "Very suspicious free:

p.line p.file

line %d of file Y%s"

28

Differentiated finding fault, part 2

0s exists@
expression r.e;
position p !'= r.p;
@@
. when != e = kmalloc(...)
when != e = kzalloc(...)
(kfree@p | devm kfree@p) (e)

Oscript:ocaml@

p << s.p;

@0

let p = List.hd p in

Printf.printf "Possibly suspicious free: line %d of file %s"
p.line p.file

5 “possibly” reports, 3 are probable bugs.

20

Conclusion

Declarative matching and transformation language.
Mostly C-like. No large reference manual.

Reduces the barrier to improvements that require repetitive
changes.

Versatile: developers, managers, maintainers.
— Possibility to reuse specifications for multiple roles.

Accessible to ordinary developers.
— Almost 2000 patches in the Linux kernel motivated by
Coccinelle, including patches by around 90 developers from
outside our research group.

320

