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Disclaimer 

The following is intended to provide some insight into a line of 
research in Oracle Labs. It is intended for information purposes 
only, and may not be incorporated into any contract.  It is not a 
commitment to deliver any material, code, or functionality, and 
should not be relied upon in making purchasing decisions. The 
development, release, and timing of any features or 
functionality described in connection with any Oracle product or 
service remains at the sole discretion of Oracle. Any views 
expressed in this presentation are my own and do not 
necessarily reflect the views of Oracle. 
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Agenda 

§  Graal 
§  Truffle 

§  Community 

§  Q&A 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4 

Dimensions of Extensibility 

Architectures Host Runtimes 

Compilation Policy Programming Languages 

Graal 

X86, SPARC, HSAIL, PTX, ... HotSpotVM, SubstrateVM, ... 

Java, JavaScript, Python, R, 
Ruby, C, Smalltalk, ... 

Baseline, Mid-tier, Optimizing, 
Vectorizing, ... 
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Modularity 

Graal 

Truffle 

runtime-specific isa-specific 

Graal extension 

Graal/Truffle bridge 

Truffle language 

Fine-grained modular structure with Rich Client 
Platforms like Eclipse or NetBeans as role models. 
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Specific to Host Runtime 
§ Field/Array Access 

–  object/array layout, read/write barriers, … 
§ Allocation 

–  garbage collector, thread-local buffer, … 
§ Type Checks 

–  class hierarchy organization, … 
§ Locking 

–  monitor system, monitor enter/exit, … 
§ JDK intrinsifications 

–  hashCode, clone, reflection, … 
§ Invocations 

§ Safepoints 
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Levels of Lowering 

Java 

Lowered 

Runtime-Specific 

ISA-Specific 

JavaArrayStore 

NullCheck Length BoundsCheck TypeCheck Store 

Read Write Barrier Cmp UCmp NullCheck 

Read&Check Write Shift Read&Cmp UCmp 

Read 

Write 
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Snippets for Graph Construction 

int max(int a, int b) {	
   if (a > b) return a;	
   else return b;	
} 

Node max(ValueNode a, ValueNode b) {	
   IfNode ifNode = new IfNode(new IntegerLessThanNode(a, b));	
   ifNode.trueSuccessor().setNext(new ReturnNode(a));	
   ifNode.falseSuccessor().setNext(new ReturnNode(b));	
   return ifNode;	
} 

Manual construction: 
  

Expression as snippet: 
  

Data Code 
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Simple API 
API Provider API User 

request 

data 

ü  Can capture statically x  Limited flexibility 
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Callback API 
API Provider API User 

request including callback 

callback with data 

callback with data 

callback with data 

request returns 

ü  High flexibility x  Cannot capture statically 
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Snippet API 
API Provider API User 

request 

code as data 

ü  High flexibility ü  Can capture statically 
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Snippet Lifecycle 

Bytecodes Prepared
IR Graph Specialized

IR Graphs

Preparation Specialization Instantiation

Once Few Times Many Times

...
aload_0 
getfield
ifne 10          
aload_1       
arraylength
...  

Frequency:

Java Bytecode Parsing

Node Intrinsification
Exhaustive Method Inlining

Constant Folding, Canonicalization

Graph Duplication

Node Intrinsification
Constant Folding, Canonicalization

Constant Parameter Replacement
Graph Duplication
Graph Inlining in Target Method
Constant Folding, Canonicalization

Steps:

Target Method 
with High-level 

Node

Specialized
IR Graph

of Snippet

Target Method 
with Low-level 

Nodes

+ =

...
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Snippet Example: Convert 

@Snippet
static int f2i(float input, int result) {

if (probability(SLOW_PATH,
result == Integer.MIN_VALUE)) {

if (Float.isNaN(input)) {
return 0;

} else if (input > 0.0f) {
return Integer.MAX_VALUE;

}
}
return result;

}
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Agenda 

§  Graal 

§  Truffle 
§  Community 

§  Q&A 
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Technical Approach 
Speculate and Optimize… 

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString
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Technical Approach 
… and Deoptimize and Reoptimize! 

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation
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Technical Approach 
Three main parts for driving partial evaluation 

§ Limit partial evaluation expansion 
–  Annotation @SlowPath on a method stops the inclusion of a method 

in the expansion. 
 

§ Dynamic speculation 
–  Call to CompilerDirectives.transferToInterpreter() 

advises the partial evaluator to stop and place a deoptimization exit. 
 

§ Global speculation 
–  Assumption objects can be used for global speculations about the 

system state. Checking the assumption in compiled code poses no 
runtime overhead. 
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Peak Performance: JavaScript 
Speedup relative to V8 
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Selection of benchmarks from Google‘s Octane benchmark suite v1.0 
latest versions of V8, Truffle, and SpiderMonkey as of December 2013 
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Peak Performance: C 
Speedup relative to GCC O0 
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Grimmer, Rigger, Schatz, Stadler, Mössenböck: 
TruffleC: Dynamic Execution of C on the Java 
Virtual Machine; to be submitted	  
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Agenda 

§  Graal 

§  Truffle 

§  Community 
§  Q&A 
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Graal OpenJDK Project 

Graal 

Truffle 

JavaScript 

HotSpotVM 

R Ruby 

Java Scala 

Python Smalltalk C J 

http://openjdk.java.net/projects/graal/ 

§ Development of Graal/Truffle core artifacts and APIs 
§ Highly active: 30+ contributors over last 12 months 
§ Highly modular: 80+ individual modules 
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Research Areas 

Language 
Implementation 

General Language 
Research 

Compiler 
Construction 

Experimentation with new language 
features, new languages, new 

execution models 

Language-independent instrumentation, 
cross-language research, automatic partial 

evaluation experiments 

Core compiler construction research, 
heterogenuous computing, advanced 

architectures and backends 

Truffle 
Interpreters 

Truffle 

Graal 
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Graal/Truffle Related Research Projects (1) 

§ TruffleRuby 
–  Development in the JRuby repository (lead Chris Seaton). 
–  https://github.com/jruby/jruby 
–  http://blog.jruby.org/2014/01/truffle_graal_high_performance_backend/  

§ FastR 
–  Joint effort of a group from Purdue University (Prof. Jan Vitek) and a 

team at Oracle Labs (lead Michael Haupt). 
–  https://bitbucket.org/allr/fastr 

§ ZipPy 
–  Development by a group from University of California, Irvine (Prof. 

Michael Franz). 
–  https://bitbucket.org/ssllab/zippy 

§ TruffleSOM 
–  Development by Stefan Marr at: https://github.com/smarr/ 
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Graal/Truffle Related Research Projects (2) 
§ C and Language Interoperability 

–  Experiment by students at JKU Linz (Matthias Grimmer and Manuel Rigger).  

§ JavaScript 
–  Effort done by the core Graal/Truffle team. 

§ Debugging 
–  Effort by Micheal van de Vanter from Oracle Labs. 

§ SubstrateVM 
–  Team at Oracle Labs led by Christian Wimmer is developing an alternative 

host runtime. 

§ Graal IR Instrumentation 
–  Research by Yudi Zheng (USI Lugano) on instrumenting Graal IR. 

§ GPU Offload 
–  Research by Christopher Dubach et al. from the University of Edinburgh. 
–  Graal is the compiler of choice for Project Sumatra (HSAIL/PTX offload). 
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Your Language or Compiler Extension? 
http://openjdk.java.net/projects/graal/ 

graal-dev@openjdk.java.net 

$ hg clone http://hg.openjdk.java.net/graal/graal 
$ cd graal 
$ ./mx --vm server build 
$ ./mx ideinit 
$ ./mx --vm server unittest SumTest 

§ Truffle API License: GPLv2 with Classpath Exception 

§ Graal License: GPLv2 

https://wiki.openjdk.java.net/display/Graal/Main 

§ Graal Resources 
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Q/A 

http://openjdk.java.net/projects/graal/ 

graal-dev@openjdk.java.net 

@thomaswue 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29 


