
Graal and Truffle:
Modularity and Separation of Concerns
as Cornerstones for Building a
Multipurpose Runtime

Thomas Wuerthinger
Oracle Labs
@thomaswue

24-April-2014,
Keynote at MODULARITY in Lugano

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 2

Disclaimer

The following is intended to provide some insight into a line of
research in Oracle Labs. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or
functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views
expressed in this presentation are my own and do not
necessarily reflect the views of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3

Agenda

§  Graal
§  Truffle

§  Community

§  Q&A

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4

Dimensions of Extensibility

Architectures Host Runtimes

Compilation Policy Programming Languages

Graal

X86, SPARC, HSAIL, PTX, ... HotSpotVM, SubstrateVM, ...

Java, JavaScript, Python, R,
Ruby, C, Smalltalk, ...

Baseline, Mid-tier, Optimizing,
Vectorizing, ...

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 5

Modularity

Graal

Truffle

runtime-specific isa-specific

Graal extension

Graal/Truffle bridge

Truffle language

Fine-grained modular structure with Rich Client
Platforms like Eclipse or NetBeans as role models.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 6

Specific to Host Runtime
§ Field/Array Access

–  object/array layout, read/write barriers, …
§ Allocation

–  garbage collector, thread-local buffer, …
§ Type Checks

–  class hierarchy organization, …
§ Locking

–  monitor system, monitor enter/exit, …
§ JDK intrinsifications

–  hashCode, clone, reflection, …
§ Invocations

§ Safepoints

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 7

Levels of Lowering

Java

Lowered

Runtime-Specific

ISA-Specific

JavaArrayStore

NullCheck Length BoundsCheck TypeCheck Store

Read Write Barrier Cmp UCmp NullCheck

Read&Check Write Shift Read&Cmp UCmp

Read

Write

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 8

Snippets for Graph Construction

int max(int a, int b) {	
 if (a > b) return a;	
 else return b;	
}

Node max(ValueNode a, ValueNode b) {	
 IfNode ifNode = new IfNode(new IntegerLessThanNode(a, b));	
 ifNode.trueSuccessor().setNext(new ReturnNode(a));	
 ifNode.falseSuccessor().setNext(new ReturnNode(b));	
 return ifNode;	
}

Manual construction:

Expression as snippet:

Data Code

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 9

Simple API
API Provider API User

request

data

ü  Can capture statically x  Limited flexibility

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 10

Callback API
API Provider API User

request including callback

callback with data

callback with data

callback with data

request returns

ü  High flexibility x  Cannot capture statically

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 11

Snippet API
API Provider API User

request

code as data

ü  High flexibility ü  Can capture statically

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 12

Snippet Lifecycle

Bytecodes Prepared
IR Graph Specialized

IR Graphs

Preparation Specialization Instantiation

Once Few Times Many Times

...
aload_0
getfield
ifne 10
aload_1
arraylength
...

Frequency:

Java Bytecode Parsing

Node Intrinsification
Exhaustive Method Inlining

Constant Folding, Canonicalization

Graph Duplication

Node Intrinsification
Constant Folding, Canonicalization

Constant Parameter Replacement
Graph Duplication
Graph Inlining in Target Method
Constant Folding, Canonicalization

Steps:

Target Method
with High-level

Node

Specialized
IR Graph

of Snippet

Target Method
with Low-level

Nodes

+ =

...

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 13

Snippet Example: Convert

@Snippet
static int f2i(float input, int result) {

if (probability(SLOW_PATH,
result == Integer.MIN_VALUE)) {

if (Float.isNaN(input)) {
return 0;

} else if (input > 0.0f) {
return Integer.MAX_VALUE;

}
}
return result;

}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 14

Agenda

§  Graal

§  Truffle
§  Community

§  Q&A

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 15

Technical Approach
Speculate and Optimize…

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 16

Technical Approach
… and Deoptimize and Reoptimize!

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 17

Technical Approach
Three main parts for driving partial evaluation

§ Limit partial evaluation expansion
–  Annotation @SlowPath on a method stops the inclusion of a method

in the expansion.

§ Dynamic speculation
–  Call to CompilerDirectives.transferToInterpreter()

advises the partial evaluator to stop and place a deoptimization exit.

§ Global speculation
–  Assumption objects can be used for global speculations about the

system state. Checking the assumption in compiled code poses no
runtime overhead.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 18

Peak Performance: JavaScript
Speedup relative to V8

1.
0

1.
5

0.
6 0.
7

0.
9

2.
6

0.
5

1.
4

0.
8 1.

0

0.
7

0.
8 1.

0

0.
7

1.
1

1.
6

0.
6

1.
1

1.
2

0.
9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ric
ha

rd
s

de
lta

blu
e

cry
pto

ra
ytr

ac
e

na
vie

r-s
tok

es

sp
lay

ea
rle

y-b
oy

er

bo
x2

d

gb
em

u

Com
po

sit
e

Truffle

SpiderMonkey

Selection of benchmarks from Google‘s Octane benchmark suite v1.0
latest versions of V8, Truffle, and SpiderMonkey as of December 2013

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 19

Peak Performance: C
Speedup relative to GCC O0

1 1 1 1 1 1

2.
7

2.
0 2.
0

1.
9

2.
6

3.
2

2.
5

1.
7

2.
0

1.
9

2.
7

3.
4

2.
1

1.
8 1.
9

1.
0

2.
8

3.
4

0

0.5

1

1.5

2

2.5

3

3.5

4

fannkuch-redux fasta mandelbrot meteor-contest nbody spectralnorm

GCC O0
GCC Best
Clang Best
Truf f leC

Grimmer, Rigger, Schatz, Stadler, Mössenböck:
TruffleC: Dynamic Execution of C on the Java
Virtual Machine; to be submitted	

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 20

Agenda

§  Graal

§  Truffle

§  Community
§  Q&A

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21

Graal OpenJDK Project

Graal

Truffle

JavaScript

HotSpotVM

R Ruby

Java Scala

Python Smalltalk C J

http://openjdk.java.net/projects/graal/

§ Development of Graal/Truffle core artifacts and APIs
§ Highly active: 30+ contributors over last 12 months
§ Highly modular: 80+ individual modules

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 22

Research Areas

Language
Implementation

General Language
Research

Compiler
Construction

Experimentation with new language
features, new languages, new

execution models

Language-independent instrumentation,
cross-language research, automatic partial

evaluation experiments

Core compiler construction research,
heterogenuous computing, advanced

architectures and backends

Truffle
Interpreters

Truffle

Graal

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23

Graal/Truffle Related Research Projects (1)

§ TruffleRuby
–  Development in the JRuby repository (lead Chris Seaton).
–  https://github.com/jruby/jruby
–  http://blog.jruby.org/2014/01/truffle_graal_high_performance_backend/

§ FastR
–  Joint effort of a group from Purdue University (Prof. Jan Vitek) and a

team at Oracle Labs (lead Michael Haupt).
–  https://bitbucket.org/allr/fastr

§ ZipPy
–  Development by a group from University of California, Irvine (Prof.

Michael Franz).
–  https://bitbucket.org/ssllab/zippy

§ TruffleSOM
–  Development by Stefan Marr at: https://github.com/smarr/

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 24

Graal/Truffle Related Research Projects (2)
§ C and Language Interoperability

–  Experiment by students at JKU Linz (Matthias Grimmer and Manuel Rigger).

§ JavaScript
–  Effort done by the core Graal/Truffle team.

§ Debugging
–  Effort by Micheal van de Vanter from Oracle Labs.

§ SubstrateVM
–  Team at Oracle Labs led by Christian Wimmer is developing an alternative

host runtime.

§ Graal IR Instrumentation
–  Research by Yudi Zheng (USI Lugano) on instrumenting Graal IR.

§ GPU Offload
–  Research by Christopher Dubach et al. from the University of Edinburgh.
–  Graal is the compiler of choice for Project Sumatra (HSAIL/PTX offload).

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 25

Your Language or Compiler Extension?
http://openjdk.java.net/projects/graal/

graal-dev@openjdk.java.net

$ hg clone http://hg.openjdk.java.net/graal/graal
$ cd graal
$./mx --vm server build
$./mx ideinit
$./mx --vm server unittest SumTest

§ Truffle API License: GPLv2 with Classpath Exception

§ Graal License: GPLv2

https://wiki.openjdk.java.net/display/Graal/Main

§ Graal Resources

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 26

Acknowledgements
Oracle Labs
Danilo Ansaloni
Daniele Bonetta
Laurent Daynès
Erik Eckstein
Michael Haupt
Peter Kessler
David Leibs
Mick Jordan
Tom Rodriguez
Roland Schatz
Chris Seaton
Doug Simon
Lukas Stadler
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth
Mario Wolczko
Thomas Würthinger
Laura Hill

Interns
Miguel Garcia Gutierrez
Shams Imam

Stephen Kell
Gregor Richards
Rifat Shariyar

JKU Linz
Prof. Hanspeter Mössenböck
Stefan Anzinger
Gilles Duboscq
Josef Eisl
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Humer
Christian Huber
David Leopoldseder
Manuel Rigger
Georg Schmid
Bernhard Urban
Andreas Wöß

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Prof. Michael Franz
Codrut Stancu
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj  
Lei Zhao

T. U. Dortmund
Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

 And many more…

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 27

Q/A

http://openjdk.java.net/projects/graal/

graal-dev@openjdk.java.net

@thomaswue

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29

